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Abstract

In this paper, we investigate the Cauchy problem for long water wave equations for the existence and nonuniqueness of
global classical solutions. We give sufficient conditions on the initial data of the considered equations that guarantee
the existence and multiplicity of nonnegative global classical solutions. For this goal, a new topological approach to
the fixed point theory of the sum of two operators in Banach spaces is used.
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1 Introduction

In this paper, we are concerned with a system of nonlinear evolution equations. Namely, we investigate the Cauchy
problem for the approximate long water wave equations [1], [9], [16] in the form:

ut − uux − vx + αuxx = 0, t ∈ (0,∞), x ∈ R,
vt − (uv)x − αvxx = 0, t ∈ (0,∞), x ∈ R,
u(0, x) = u0(x), x ∈ R,
v(0, x) = v0(x), x ∈ R,

(1.1)

where the unknowns u = u(t, x) and v = v(t, x) denote respectively, the horizontal velocity and the height that deviates
from equilibrium position of the liquid. Here, the constant α which represents a diffusion power, belongs to the set of
all nonzero real numbers R∗, and the initial conditions u0, v0 are given functions.

The equations of IVP (1.1) play a vital role in describing the properties of shallow water waves and they are using to
study many physical phenomena, such as propagation of waves in dissipative and nonlinear media in hydrodynamics.
They are also widely used in ocean and coastal engineering, see [5], [8] and the references therein. In [4], the authors
have developed some approximate models for water waves. In [15] and [7], the travelling wave solutions of the
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approximate long water wave equations are found out by using the (G
′

G )-expansion method. Solitary wave solutions
to the approximate long water wave equations are considered in [11] by using the first integral method. In [14], the
q-homotopy analysis transform method is employed to study the approximate long wave equations of the Caputo
fractional time derivative, see also [17] and [10] for fractional approximate long wave equations.

In this paper, we are especially interested in question of what conditions the initial data u0, v0 must verify in
order that Problem (1.1) has classical solutions. Here, by a classical solution to the approximate long water wave
equations we mean a solution which is at least two times continuously differentiable in x and once in t for any t ≥ 0. In
other words, (u, v) belongs to the space C1([0,∞), C2(R)) × C1([0,∞), C2(R)) of continuously differentiable functions
on [0,∞) with values in the Banach space C2(R). The main assumption on the functions u0, v0 is

(H1) u0, v0 ∈ C1(R), 0 ≤ u0, v0 ≤ B on R for some positive constant B.

To prove our main results we use the fixed-point index theory in cone spaces. During the last decades, the fixed-point
index theory in cone spaces has intensively used for the proof of existence of solutions of different classes initial and
boundary value problems for ordinary and partial differential equations (see [2], [13] and references therein). In many
cases, via the fixed-point index theory in cone spaces are obtained new and complimentary results to the classical
results.

The paper is organized as follows. In the next section, we give some auxiliary results concerning a new topological
approach which uses fixed point theory of the sum of two operators. In Section 3, we give an integral representation
and some estimates for solutions of IVP (1.1). In Section 4, we prove existence and multiplicity of solutions for the
system (1.1). Finally, in section 5 we give an example to illustrate our main results.

2 Auxiliary Results

In this section, some definitions and results related to fixed points for the sum of two operators will be given.

Theorem 2.1. Let E be a Banach space and

E1 = {x ∈ E : ∥x∥ ≤ R},

with R > 0. Consider two operators T and S, where

Tx = −ϵx, x ∈ E1,

with ϵ > 0 and S : E1 → E be continuous and such that

(i) (I − S)(E1) resides in a compact subset of E and

(ii) {x ∈ E : x = λ(I − S)x, ∥x∥ = R} = ∅, for any λ ∈
(
0, 1

ϵ

)
.

Then there exists x∗ ∈ E1 such that
Tx∗ + Sx∗ = x∗.

Theorem 2.1 will be used to prove Theorem 4.1 and its proof can be found in [6].

Let E be a real Banach space.

Definition 2.2. A closed, convex set P in E is said to be cone if

1. βx ∈ P for any β ≥ 0 and for any x ∈ P,

2. x,−x ∈ P implies x = 0.

Definition 2.3. A mapping K : E → E is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

Definition 2.4. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there exists
a constant h > 1 such that

∥Kx−Ky∥Y ≥ h∥x− y∥X
for any x, y ∈ X.
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The following result (see details of its proof in [3]) will be used to prove Theorem 4.4.

Theorem 2.5. Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3 three open bounded subsets
of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping, S : U3 → E is a
completely continuous and S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there exists
w0 ∈ P\{0} such that the following conditions hold:

(i) Sx ̸= (I − T )(x− λw0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λw0),

(ii) there exists ε > 0 such that Sx ̸= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx ̸= (I − T )(x− λw0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λw0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or
x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

The following result will be used to prove the existence of three nonnegative solutions (at least two non zeros) of our
proposal problem. More precisely, it will be used to prove Theorem 4.5. For the proof, we use the same arguments
used in [3].

Theorem 2.6. Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3 three open bounded subsets
of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → E is an expansive mapping, S : U3 → E is a
completely continuous one and S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there
exist w0 ∈ P∗ and ε > 0 small enough such that the following conditions hold:

(i) Sx ̸= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U1 and λx ∈ Ω,

(ii) Sx ̸= (I − T )(x− λw0), for all λ ≥ 0 and x ∈ ∂U2 ∩ (Ω + λw0),

(iii) Sx ̸= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U3 and λx ∈ Ω.

Then T + S has at least three non trivial fixed points x1, x2, x3 ∈ P such that

x1 ∈ U1 ∩ Ω and x2 ∈ (U2 \ U1) ∩ Ω and x3 ∈ (U3) \ U2) ∩ Ω.

3 Integral representation and some estimates for solutions of Problem (1.1)

Let X = X1 ×X1, where X1 = C1([0,∞), C2(R)). For (u, v) ∈ X, define the operators S1
1 , S

2
1 and S1 as follows.

S1
1(u, v)(t, x) = u(t, x)− u0(x) +

∫ t

0

(−u(s, x)ux(s, x)− vx(s, x) + αuxx(s, x))ds,

S2
1(u, v)(t, x) = v(t, x)− v(0, x) +

∫ t

0

(−ux(s, x)v(s, x)− u(s, x)vx(s, x)− αvxx(s, x)) ds,

S1(u, v)(t, x) =
(
S1
1(u, v)(t, x), S

2
1(u, v)(t, x)

)
, (t, x) ∈ [0,∞)× R.

Lemma 3.1. Suppose that (H1) is satisfied. If (u, v) ∈ X satisfies the equation

S1(u, v)(t, x) = 0, (t, x) ∈ [0,∞)× R, (3.1)

then (u, v) is a solution of the IVP (1.1).
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Proof . Let (u, v) ∈ X is a solution to the equation (3.1). Then

S1
1(u, v)(t, x) = 0, S2

1(u, v)(t, x) = 0, (t, x) ∈ [0,∞)× R. (3.2)

We differentiate both equations of (3.2) with respect to t and we find

ut(t, x)− u(t, x)ux(t, x)− vx(t, x) + αuxx(t, x) = 0, (t, x) ∈ [0,∞)× R,

vt(t, x)− ux(t, x)v(t, x)− u(t, x)vx(t, x)− αvxx(t, x) = 0, (t, x) ∈ [0,∞)× R.

We put t = 0 in both equations of (3.2) and we arrive at

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R.

This completes the proof. □

Lemma 3.2. Suppose that (H1) is satisfied. Let h ∈ C([0,∞) × R) be a positive function almost everywhere on
[0,∞)× R. If (u, v) ∈ X satisfies the following integral equations:∫ t

0

∫ x

0

(t− t1)(x− x1)
2h(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1 = 0, (t, x) ∈ [0,∞)× R,

and ∫ t

0

∫ x

0

(t− t1)(x− x1)
2h(t1, x1)S

2
1(u, v)(t1, x1)dx1dt1 = 0, (t, x) ∈ [0,∞)× R,

then (u, v) is a solution to the IVP (1.1).

Proof . We differentiate two times with respect to t and three times with respect to x the integral equations of
Lemma 3.2 and we find

h(t, x)S1(u, v)(t, x) = 0, (t, x) ∈ [0,∞)× R,

whereupon
S1(u, v)(t, x) = 0, (t, x) ∈ (0,∞)× R.

Hence and Lemma 3.1, we conclude that (u, v) is a solution to the IVP (1.1). □

Now, let us prove some estimates related to solutions of IVP (1.1). In the sequel, X = X1 × X1 where X1 =
C1([0,∞), C2(R)) will be endowed with the norm

∥(u, v)∥ = max{∥u∥X1 , ∥v∥X1}, (u, v) ∈ X,

with

∥u∥X1 = max

{
sup

(t, x) ∈ [0,∞)× R
|u(t, x)|, sup

(t, x) ∈ [0,∞)× R
|ut(t, x)|,

sup
(t, x) ∈ [0,∞)× R

|ux(t, x)|, sup
(t, x) ∈ [0,∞)× R

|uxx(t, x)|
}
,

provided it exists. Let
B1 = max{2B,B2 +B + |α|B, 2B2 + |α|B}.

Lemma 3.3. Under hypothesis (H1) and for (u, v) ∈ X with ∥(u, v)∥ ≤ B, the following estimates hold:

|S1
1(u, v)(t, x)| ≤ B1(1 + t), (t, x) ∈ [0,∞)× R,

and
|S2

1(u, v)(t, x)| ≤ B1(1 + t), (t, x) ∈ [0,∞)× R.
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Proof . Suppose that (H1) is satisfied and let (u, v) ∈ X with ∥(u, v)∥ ≤ B.

(i) Estimation of |S1
1(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :

|S1
1(u, v)(t, x)| =

∣∣∣∣u(t, x)− u0(x) +

∫ t

0

(−u(s, x)ux(s, x)− vx(s, x) + αuxx(s, x))ds

∣∣∣∣
≤ |u(t, x)|+ |u0(x)|+

∫ t

0

(|u(s, x)||ux(s, x)|+ |vx(s, x)|+ |α||uxx(s, x)|)ds

≤ 2B + (B2 +B + |α|B)t ≤ B1(1 + t).

(ii) Estimation of |S2
1(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :∣∣∣S2

1(u, v)(t, x)
∣∣∣ =

∣∣∣v(t, x)− v(0, x)

+

∫ t

0

(−ux(s, x)v(s, x)− u(s, x)vx(s, x)− αvxx(s, x)) ds
∣∣∣

≤ |v(t, x)|+ |v(0, x)|

+

∫ t

0

(|ux(s, x)||v(s, x)|+ |u(s, x)||vx(s, x)|+ |α||vxx(s, x)|) ds

≤ 2B + (2B2 + |α|B)t

= B1(1 + t).

This completes the proof. □

Suppose

(H2) g ∈ C([0,∞)× R) is a positive function almost everywhere on [0,∞)× R such that

8(1 + t)2
(
1 + |x|+ x2

) ∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞)× R,

for some constant A > 0.

In the last section, we will give an example for a function g that satisfies (H2). For (u, v) ∈ X, define the operators
S1
2 , S

2
2 and S2 as follows.

S1
2(u, v)(t, x) =

∫ t

0

∫ x

0

(t− t1)(x− x1)
2g(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1, (t, x) ∈ [0,∞)× R,

S2
2(u, v)(t, x) =

∫ t

0

∫ x

0

(t− t1)(x− x1)
2g(t1, x1)S

2
1(u, v)(t1, x1)dx1dt1, (t, x) ∈ [0,∞)× R,

and

S2(u, v)(t, x) =
(
S1
2(u, v)(t, x), S

2
2(u, v)(t, x)

)
, (t, x) ∈ [0,∞)× R. (3.3)

Lemma 3.4. Under hypotheses (H1) and (H2) and for (u, v) ∈ X, with ∥(u, v)∥ ≤ B, the following estimate holds:

∥S2(u, v)∥ ≤ AB1.

Proof . Suppose that (H1) and (H2) are satisfied. Let (u, v) ∈ X, with ∥(u, v)∥ ≤ B.
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(i) Estimation of |S1
2(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :

|S1
2(u, v)(t, x)| =

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)(x− x1)
2g(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)(x− x1)
2g(t1, x1)|S1

1(u, v)(t1, x1)|dx1

∣∣∣∣dt1
≤ B1(1 + t)

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)(x− x1)
2g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2x2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2(1 + |x|+ x2)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1.

(ii) Estimation of | ∂∂tS
1
2(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :∣∣∣∣ ∂∂tS1

2(u, v)(t, x)

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫ x

0

(x− x1)
2g(t1, x1)S

1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

(x− x1)
2g(t1, x1)|S1

1(u, v)(t1, x1)|dx1

∣∣∣∣dt1
≤ B1(1 + t)

∫ t

0

∣∣∣∣ ∫ x

0

(x− x1)
2g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2|x|2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2(1 + |x|+ x2)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1.

(iii) Estimation of | ∂
∂xS

1
2(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :∣∣∣∣ ∂∂xS1

2(u, v)(t, x)

∣∣∣∣ = 2

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)(x− x1)g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)|x− x1|g(t1, x1)|S1
1(u, v)(t1, x1)|dx1

∣∣∣∣dt1
≤ 2B1(1 + t)

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)|x− x1|g(t1, x1)dx1

∣∣∣∣dt1
≤ 4B1(1 + t)2|x|

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2(1 + |x|+ x2)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1.
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(iv) Estimation of | ∂2

∂x2S
1
2(u, v)(t, x)|, (t, x) ∈ [0,∞)× R :∣∣∣∣ ∂2

∂x2
S1
2(u, v)(t, x)

∣∣∣∣ = 2

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)g(t1, x1)S
1
1(u, v)(t1, x1)dx1dt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)g(t1, x1)|S1
1(u, v)(t1, x1)|dx1

∣∣∣∣dt1
≤ 2B1(1 + t)

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)g(t1, x1)dx1

∣∣∣∣dt1
≤ 2B1(1 + t)2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ 8B1(1 + t)2(1 + |x|+ x2)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1.

Similarly, the same estimates (i)− (iv) can be proved for the operator S2
2 . Finally,

∥S2(u, v)∥ ≤ AB1.

This completes the proof. □

4 Applications of the sum of two operators method

4.1 Existence of at least one nonnegative solution

In the sequel, suppose that the constants B and A which appear in the conditions (H1) and (H2), respectively,
satisfy the following inequality:

(H3) AB1 < B, where B1 = max{2B,B2 +B + |α|B, 2B2 + |α|B}.

Our first main result for existence of classical solutions of the IVP (1.1) is as follows.

Theorem 4.1. Under hypotheses (H1), (H2) and (H3), the IVP (1.1) has at least one nonnegative solution (u, v) ∈
C1([0,∞), C2(R))× C1([0,∞), C2(R)).

Remark 4.2. When we say that (u, v) ∈ C1([0,∞), C2(R)) × C1([0,∞), C2(R)) is a nonnegative solution to the IVP
(1.1) we have in mind that it is a solution to the IVP (1.1) and u(t, x) ≥ 0, v(t, x) ≥ 0 for any (t, x) ∈ [0,∞)× R.

Remark 4.3. Below, we will use the notation (u, v)(t, x) to denote (u(t, x), v(t, x)).

Proof . Choose ϵ ∈ (0, 1), such that ϵB1(1 +A) < B. For (u, v) ∈ X = C1([0,∞), C2(R))× C1([0,∞), C2(R)), we will
write

(u, v) ≥ 0 if u(t, x) ≥ 0 and v(t, x) ≥ 0 for any (t, x) ∈ [0,∞)× R.

Let
˜̃̃
Y denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, ˜̃Y =

˜̃̃
Y be the closure

of
˜̃̃
Y , Ỹ =

˜̃
Y ∪ {(u0, v0)},

Y = {(u, v) ∈ Ỹ : (u, v) ≥ 0, ∥(u, v)∥ ≤ B}.

Note that Y is a compact set in X. For (u, v) ∈ X, define the operators T and S as follows.

T (u, v)(t, x) = −ϵ(u, v)(t, x), (t, x) ∈ [0,∞)× R,

S(u, v)(t, x) = (u, v)(t, x) + ϵ(u, v)(t, x) + ϵS2(u, v)(t, x), (t, x) ∈ [0,∞)× R,
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where S2 is the operator given by formula (3.3). For (u, v) ∈ Y and by using Lemma 3.4, it follows that

∥(I − S)(u, v)∥ = ∥ϵ(u, v)− ϵS2(u, v)∥

≤ ϵ∥(u, v)∥+ ϵ∥S2(u, v)∥

≤ ϵB1 + ϵAB1

= ϵB1(1 +A)

< B.

Thus, S : Y → X is continuous and (I−S)(Y ) resides in a compact subset of X. Now, suppose that there is (u, v) ∈ X
such that ∥(u, v)∥ = B and

(u, v) = λ(I − S)(u, v)

or
1

λ
(u, v) = (I − S)(u, v) = −ϵ(u, v)− ϵS2(u, v),

or (
1

λ
+ ϵ

)
(u, v) = −ϵS2(u, v)

for some λ ∈
(
0, 1

ϵ

)
. Hence, ∥S2(u, v)∥ ≤ AB1 < B,

ϵB <

(
1

λ
+ ϵ

)
B =

(
1

λ
+ ϵ

)
∥(u, v)∥ = ϵ∥S2(u, v)∥ < ϵB,

which is a contradiction. Hence and Theorem 2.1, it follows that the operator T + S has a fixed point (u∗, v∗) ∈ Y .
Therefore, for (t, x) ∈ [0,∞)× R,

(u∗, v∗)(t, x) = T (u∗, v∗)(t, x) + S(u∗, v∗)(t, x)

= −ϵ(u∗, v∗)(t, x) + (u∗, v∗)(t, x) + ϵ(u∗, v∗)(t, x) + ϵS2(u
∗, v∗)(t, x),

whereupon
0 = S2(u

∗, v∗)(t, x), (t, x) ∈ [0,∞)× R.

From here and from Lemma 3.2, it follows that (u∗, v∗) is a solution to the IVP (1.1). This completes the proof. □

4.2 Existence of at least two nonnegative solutions

In the sequel, suppose that the constants B and A which appear in the conditions (H1) and (H2), respectively,
satisfy the following inequality:

(H4) AB1 < L
5 , where B1 = max{2B,B2 + B + |α|B, 2B2 + |α|B} and L is a positive constant that satisfies the

following conditions:

r < L < R1 ≤ B, R1 >

(
2

5m
+ 1

)
L,

with r and R1 are positive constants and m > 0 is large enough.

Our second main result for existence and multiplicity of classical solutions of the IVP (1.1) is as follows.

Theorem 4.4. Under Hypotheses (H1), (H2) and (H4), the IVP (1.1) has at least two nonnegative solutions
(u1, v1), (u2, v2) ∈ C1([0,∞), C2(R))× C1([0,∞), C2(R)).
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Proof . Set X = C1([0,∞), C2(R))× C1([0,∞), C2(R)) and let

P̃ = {(u, v) ∈ X : (u, v) ≥ 0 on [0,∞)× R}.

With P we will denote the set of all equi-continuous families in P̃ . For (u, v) ∈ X, define the operators T1 and S3 as
follows. For (t, x) ∈ [0,∞)× R,

T1(u, v)(t, x) = (1 +mϵ)(u, v)(t, x)−
(
ϵ
L

10
, ϵ

L

10

)
,

S3(u, v)(t, x) = −ϵS2(u, v)(t, x)−mϵ(u, v)(t, x)−
(
ϵ
L

10
, ϵ

L

10

)
,

where ϵ is a positive constant, m > 0 is large enough and the operator S2 is given by formula (3.3). Note that any
fixed point (u, v) ∈ X of the operator T1 + S3 is a solution to the IVP (1.1). Now, let us define

U1 = Pr = {(u, v) ∈ P : ∥(u, v)∥ < r},

U2 = PL = {(u, v) ∈ P : ∥(u, v)∥ < L},

U3 = PR1
= {(u, v) ∈ P : ∥(u, v)∥ < R1},

Ω = PR2
= {(u, v) ∈ P : ∥(u, v)∥ ≤ R2}, with R2 = R1 +

A

m
B1 +

L

5m
.

1. For (u1, v1), (u2, v2) ∈ Ω, we have

∥T1(u1, v1)− T1(u2, v2)∥ = (1 +mϵ)∥(u1, v1)− (u2, v2)∥,

whereupon T1 : Ω → X is an expansive operator with a constant h = 1 +mϵ > 1.

2. For (u, v) ∈ PR1
and by using Lemma 3.4 we get

∥S3(u, v)∥ ≤ ϵ∥S2(u, v)∥+mϵ∥(u, v)∥+ ϵ
L

10

≤ ϵ

(
AB1 +mR1 +

L

10

)
.

Therefore, S3(PR1) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1) is equi-
continuous. Consequently, S3 : PR1 → X is completely continuous.

3. Let (u1, v1) ∈ PR1 . Set

(u2, v2) = (u1, v1) +
1

m
S2(u1, v1) +

(
L

5m
,
L

5m

)
.

By Lemma 3.4, we have

|S1
2(u1, v1)(t, x)| ≤ AB1,

|S2
2(u1, v1)(t, x)| ≤ AB1, (t, x) ∈ [0,∞)× R.

By (H4), we have AB1 < L
5 . Hence,

|S1
2(u1, v1)(t, x)| <

L

5
,

|S2
2(u1, v1)(t, x)| <

L

5
, (t, x) ∈ [0,∞)× R.
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Thus, u2, v2 ≥ 0 on [0,∞)× R and

∥(u2, v2)∥ ≤ ∥(u1, v1)∥+
1

m
∥S2(u1, v1)∥+

L

5m

≤ R1 +
A

m
B1 +

L

5m

= R2.

Therefore, (u2, v2) ∈ Ω and

−ϵm(u2, v2) = −ϵm(u1, v1)− ϵS2(u1, v1)− ϵ

(
L

10
,
L

10

)
− ϵ

(
L

10
,
L

10

)
or

(I − T1)(u2, v2) = −ϵm(u2, v2) + ϵ

(
L

10
,
L

10

)
= S3(u1, v1).

Consequently, S3(PR1
) ⊂ (I − T1)(Ω).

4. Assume that for any (w0, z0) ∈ P∗ = P \ {0} there exist λ > 0 and (u, v) ∈ ∂Pr ∩ (Ω + λ(w0, z0)) or (u, v) ∈
∂PR1

∩ (Ω + λ(w0, z0)) such that

S3(u, v) = (I − T1)((u, v)− λ(w0, z0)).

Then

−ϵS2(u, v)−mϵ(u, v)− ϵ

(
L

10
,
L

10

)
= −mϵ((u, v)− λ(w0, z0)) + ϵ

(
L

10
,
L

10

)
or

−S2(u, v) = λm(w0, z0) +

(
L

5
,
L

5

)
.

Hence,

∥S2(u, v)∥ =

∥∥∥∥λm(w0, z0) +

(
L

5
,
L

5

)∥∥∥∥ >
L

5
.

This is a contradiction.

5. Let ε1 = 2
5m . Assume that there exist (u1, v1) ∈ ∂PL and λ1 > 1 + ε1 such that λ1(u1, v1) ∈ PR1

⊂ Ω and

S3(u1, v1) = (I − T1)(λ1(u1, v1)). (4.1)

Since (u1, v1) ∈ ∂PL and λ1(u1, v1) ∈ PR1
, it follows that(

2

5m
+ 1

)
L < λ1L = λ1∥(u1, v1)∥ ≤ R1.

Moreover,

−ϵS2(u1, v1)−mϵ(u1, v1)− ϵ

(
L

10
,
L

10

)
= −λ1mϵ(u1, v1) + ϵ

(
L

10
,
L

10

)
,

or

S2(u1, v1) +

(
L

5
,
L

5

)
= (λ1 − 1)m(u1, v1).

From here,

2
L

5
≥
∥∥∥∥S2(u1, v1) +

(
L

5
,
L

5

)∥∥∥∥ = (λ1 − 1)m∥(u1, v1)∥ = (λ1 − 1)mL

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.
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Therefore, all conditions of Theorem 2.5 hold. Hence, the IVP (1.1) has at least two solutions (u1, v1) and (u2, v2) so
that

∥(u1, v1)∥ = L < ∥(u2, v2)∥ ≤ R1

or
r ≤ ∥(u1, v1)∥ < L < ∥(u2, v2)∥ ≤ R1.

□

4.3 Existence of at least three nonnegative solutions

In this section, we will use the notations of the proof of Theorem 4.4. Suppose

(H5) ϵmr > 2L
5 .

Our third main result for existence and multiplicity of classical solutions of the IVP (1.1) is as follows.

Theorem 4.5. Under Hypotheses (H1), (H2), (H4) and (H5), the IVP (1.1) has at least two nonnegative solutions
(u1, v1), (u2, v2), (u3, v3) ∈ C1([0,∞), C2(R))× C1([0,∞), C2(R)).

Proof .

1. Assume that there are λ ≥ 1 + ϵ , (u, v) ∈ ∂U1 and λ(u, v) ∈ Ω so that

S3(u, v) = (I − T1)(λu, λv).

Then

−ϵS2(u, v)−mϵ(u, v)−
(
ϵ
L

10
, ϵ

L

10

)
= −mϵλ(u, v) +

(
ϵ
L

10
, ϵ

L

10

)
or

S2(u, v) = (λ− 1)m(u, v)−
(
L

5
,
L

5

)
.

Hence,

∥S2(u, v)∥ =

∥∥∥∥m(λ− 1)(u, v)−
(
L

5
,
L

5

)∥∥∥∥
≥ (λ− 1)m∥(u, v)∥ −

∥∥∥∥(L

5
,
L

5

)∥∥∥∥
≥ ϵm∥(u, v)∥ − L

5

= ϵmr − L

5

>
L

5
,

which is a contradiction. Thus, the condition (i) of Theorem 2.6 holds.
2. Now, assume that there are λ ≥ 1 + ϵ , (u, v) ∈ ∂U3 and λ(u, v) ∈ Ω so that

S3(u, v) = (I − T1)(λu, λv).

As above,

∥S2(u, v)∥ ≥ (λ− 1)m∥(u, v)∥ −
∥∥∥∥(L

5
,
L

5

)∥∥∥∥
≥ ϵm∥(u, v)∥ − L

5

= ϵmR1 −
L

5

> ϵmr − L

5

>
L

5
,

which is a contradiction. Hence, the condition (iii) of Theorem 2.6 holds.
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3. Assume that for any (w0, z0) ∈ P∗ there exist λ ≥ 0 and (u, v) ∈ ∂PL ∩ (Ω + λ(w0, z0)) such that

S3(u, v) = (I − T1)((u, v)− λ(w0, z0)).

Then

−ϵS2(u, v)−mϵ(u, v)− ϵ

(
L

10
,
L

10

)
= −mϵ((u, v)− λ(w0, z0)) + ϵ

(
L

10
,
L

10

)
or

−S2(u, v) = λm(w0, z0) +

(
L

5
,
L

5

)
.

Hence,

∥S2(u, v)∥ =

∥∥∥∥λm(w0, z0) +

(
L

5
,
L

5

)∥∥∥∥ >
L

5
.

This is a contradiction. Form here, the condition (ii) of Theorem 2.6 holds.

Now, by Theorem 2.6, it follows that the IVP (1.1) has at least three classical solutions. □

5 An illustrative example

Below, we will illustrate our main results. Let

h(s) = log
1 + s11

√
2 + s22

1− s11
√
2 + s22

, l(s) = arctan
s11

√
2

1− s22
, s ∈ R, s ̸= ±1.

Then

h′(s) =
22
√
2s10(1− s22)

(1− s11
√
2 + s22)(1 + s11

√
2 + s22)

,

l′(s) =
11
√
2s10(1 + s22)

1 + s44
, s ∈ R, s ̸= ±1.

Therefore,

−∞ < lim
s→±∞

(1 + s+ s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s+ s2)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + s+ s2 + s3 + s4 + s5 + s6)

(
1

44
√
2
log

1 + s11
√
2 + s22

1− s11
√
2 + s22

+
1

22
√
2
arctan

s11
√
2

1− s22

)
≤ C1,

s ∈ R. Note that lim
s→±1

l(s) = π
2 and by [12] (pp. 707, Integral 79), we have

∫
dz

1 + z4
=

1

4
√
2
log

1 + z
√
2 + z2

1− z
√
2 + z2

+
1

2
√
2
arctan

z
√
2

1− z2
.

Let

Q(s) =
s10

(1 + s44)(1 + s+ s2)2
, s ∈ R,

and
g1(t, x) = Q(t)Q(x), t ∈ [0,∞), x ∈ R.
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Then there exists a constant C2 > 0 such that

8(1 + t)2
(
1 + |x|+ x2

) ∫ t

0

∣∣∣∣ ∫ x

0

g1(t1, x1)dx1

∣∣∣∣∣dt1 ≤ C2, (t, x) ∈ [0,∞)× R.

Let

g(t, x) =
A

C2
g1(t, x), (t, x) ∈ [0,∞)× R.

Then

8(1 + t)2
(
1 + |x|+ x2

) ∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞)× R,

i.e., (H2) holds. Now, consider the initial value problem

ut − uux − vx + 2uxx = 0, t ∈ (0,∞), x ∈ R,

vt − (uv)x − 2vxx = 0, t ∈ (0,∞), x ∈ R,

u(0, x) = 1
1+x2+x4+3x6 , x ∈ R,

v(0, x) = 1
1+3x2 , x ∈ R,

(5.1)

so that (H1) holds, with B = 10, for example. Here, α = 2, take

B = 10, and A =
1

104
.

Then
B1 = max{2B,B2 +B + |α|B, 2B2 + |α|B} = max{20, 130, 220} = 220

and

AB1 =
220

104
< B.

So, Condition (H3) is fulfilled. Thus, the conditions (H1), (H2) and (H3) are satisfied. Hence, by Theorem 4.1, it
follows that IVP (5.1) has at least one nonnegative solution (u, v) ∈ C1([0,∞), C2(R))× C1([0,∞), C2(R)).

In the sequel, take

R1 = B = 10, L = 5, α = 2, r = 4, m = 1050, A = ϵ =
1

104
.

Clearly,

r < L < R1 ≤ B, ϵ > 0, R1 >

(
2

5m
+ 1

)
L, AB1 <

L

5
.

i.e., (H4) holds. Thus, the conditions (H1), (H2), and (H4) are satisfied. Hence, by Theorem 4.4, it follows that the
IVP (5.1) has at least two nonnegative solutions (u1, v1), (u2, v2) ∈ C1([0,∞), C2(R))× C1([0,∞), C2(R)). Moreover,

ϵrm = 4 · 1050 · 1

104
> 2 =

2L

5
,

i.e., (H5) holds. Thus, the conditions (H1), (H2), (H4) and (H5) are satisfied. Hence, by Theorem 4.5, it follows that
the IVP (5.1) has at least three nonnegative solutions (u1, v1), (u2, v2), (u3, v3) ∈ C1([0,∞), C2(R))×C1([0,∞), C2(R)).
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