
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,777 |
تعداد دریافت فایل اصل مقاله | 7,656,172 |
Electron Gas Hardness of Individual Carbon Nanotubes | ||
Progress in Physics of Applied Materials | ||
دوره 2، شماره 1 - شماره پیاپی 2، بهمن 2022، صفحه 27-34 اصل مقاله (1.36 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2022.26701.1026 | ||
نویسندگان | ||
mohamad mansouri* 1، 2؛ Hamid Rezagholipour Dizaji* 1؛ Mohammad Reza Saeidi3؛ Majid Vaezzadeh4 | ||
1Faculty of Physics, Semnan University, Semnan, Iran | ||
2Faculty of Physics, Khatam Al-Anbia (PBU) University, P.O. Box: 178181-3513, Tehran, Iran | ||
3Department of Physics, Shahed University, Box: 18651-33191, Tehran, Iran. | ||
4Faculty of Physics, Khaje Nasir Toosi University of Technology, Tehran, Iran | ||
تاریخ دریافت: 06 فروردین 1401، تاریخ بازنگری: 26 خرداد 1401، تاریخ پذیرش: 27 خرداد 1401 | ||
چکیده | ||
Experimental results show that there are uninterpreted physical phenomena in the resistivity behavior of carbon nanotubes (CNT) in terms of their diameter changes. In this paper, a model based on previously published empirical data is created. This model is used later to analysis the effect of repulsion on electron transport throughout CNT. The relationship between the resistivity and the diameter of CNT, with an introduced parameter named 'electron gas hardness' has theoretically investigated. The results show an acceptable theoretical model for the behavior of electrical resistivity to reduce the diameter of nanotubes and is predicted by physico-mathematical calculations. Furthermore, a detailed analysis of the temperature effects on the transport properties in CNT and how compare to electron-phonon interactions that have been shown to affect resistivity and a theoretical model of electrical resistivity to changes of two important parameters of diameter and temperature of carbon nanotubes, physical formulation and modeling is presented.These results are consistent with the experimental results and are generalized. | ||
کلیدواژهها | ||
Carbon Nanotubes؛ Electron Gas Repulsion؛ Chirality؛ Resistivity؛ Mean Free Time؛ Critical Diameter | ||
مراجع | ||
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58. [2] S. Iijima , T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603–605. [3] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363 (1993) 605–607. [4] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Editors. Carbon Nanotubes: Synthesis, Structure Properties and Applications. First Ed. Berlin, Germany: SpringerVerlag; (2001). [5] A. Kumar, K. Sharma, A. R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications, Springer: J Mater Sci, 55 (2019) 2682– 2724. [6] V.N. Popov, Carbon nanotubes: properties and application ,Elsevier; Mater Sci Eng R, 43 (2004) 61– 102. [7] SH-Y. Yue, T. Ouyang, M. Hu, Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio,Nature; Scientific Reports, 5,(2015) 15440. [8] B. Kumanek, D. Janas, Thermal conductivity of carbon nanotube networks: a review, Springer: J. Mater Sci, 54 (2019) 7397–7427. [9] M. Jafari, M. Vaezzadeh, M. Mansouri, A. Hajnorouzi, Investigation of thermal conductivity of single-wall carbon nanotubes, Thermal Science, 15, 2, (2011)565- 570. [10] P. R. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures, ASP; Journal of Nanoscience and Nanotechnology, 7 (2007) 1–29. [11] K. Saeed, I. Khan, Carbon nanotubes-properties and applications: a review, Carbon Letters, 14 (2013) 131- 144. [12] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. Hernandez, Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. R. Soc. Lond. A, 362 (2004) 2065-2098. [13] A. Abdulhameed, I.A. Halin, M.N. Mohtar, M.N. Hamidon, Optimization of Surfactant Concentration in Carbon Nanotube Solutions for Dielectrophoretic Ceiling Assembly and Alignment: Implications for Transparent Electronics. ACS omega, 7 (2022) 3680- 3688. [14] P. Avouris, Carbon Nanotube Electronics, Elsevier; Chemical Physics, 281 (2002) 429-445. [15] T. W. Odom, J-L Huang, P. Kim, C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 391 (1998) 62-64. [16] M. Jafari, L. Bohloli Oskoei, Dependence of Specific Heat on the Chirality and Diameter of Single-Walled Carbon Nanotubes, Iran J Sci Technol Trans Sci 41(2017) 557– 562. [17] M. Mansouri, H. Rezagholipour Dizaji, M. R. Saeidi, A. Mirzaheydari, Majid V aezzadeh, Interplay Between Competition Pinch Effect and Repulsion Force in Carbon Nanotubes, International Journal of Nanoscience, WSPC/175-IJN, (2022) 2250005 (8 pages). [18] M. Mansouri, M. Vaezzadeh, H. Rezagholipour Dizaji, , M. R. Saeidi, Effect of chirality surfaces overlap on individual carbon nanotubes resistivity. Applied Physics A, 128 (2022) 1-9. [19] S. Fujita, A. Suzuki, Electrical Conduction in Graphene and Nanotubes. First Ed. Weinheim, Germany: WileyVCH; (2013). [20] H. Qiu, J. Yang, Structure and Properties of Carbon Nanotubes. In: H. Peng, Q. Li, T. Chen, Editors. Industrial Applications of Carbon Nanotubes, 1st Ed. Shanghai: Elsevier; (2017) 47- 69. [21] J. Doh, S-I Park, Q. Yang, N. Raghavan, The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance, IOP Nanotechnology, 30 (2019) 465701. [22] A. Maffucci, S. A. Maksimenko, G. Miano, G. Y. Slepyan, Springer, Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization, Materials Science, 978 (2017) 101-128. [23] J. Guang, W. Haifang, Y. Lei, W. Xiang, P. Rongjuan ,Y. Tao, Z. Yuliang, G. Xinbiao, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Sci. Technol., 39 (2005) 1378- 1383. [24] K.-T. Lau, D. Hui, The revolutionary creation of new advanced materials—carbon nanotube composites, Elsevier Composites: part B, 33 (2002) 263-277. [25] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Journal of the American Chemical Society, 126 (2004) 14679-14679. [26] A. Aqel, K.M.M. Abou, El-Nour, R. A.A. Ammar, A. AlWarthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arabian Journal of Chemistry, 5 (2012) 1–23. [27] S. Arai, T. Osaki, M. Hirota, M. Uejima, Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition, Elsevier; Materials Today Communications,7 (2016) 101-107. [28] M. Meyyappan, Carbon Nanotubes Science & Applications, 1st Edition, CRC Press, (2005). [29] S. Jalili , M. Jafari, J. Habibian, Effect of Impurity on Electronic Properties of Carbon Nanotubes, J. Iran. Chem. Soc., 5, 4 (2008) pp. 641-645. [30] J-C. Charlier, X. Blasé, S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys., 79 (2007) 677-732. [31] A. K. Jagadeesan, K. Thangavelu, V. Dhananjeyan, Carbon Nanotubes: Synthesis, Properties and Applications, 21st Ed, London, Intech Open (2020). [32] L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C.H. Olk, C. V.Haesendonck, Y. Bruynseraede, J-P. Issi, Electrical resistance of a carbon nanotube bundle, J. Mater. Res, 9 (1994) 927-932. [33] S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer, Carbon Nanotube Quantum Resistors, Science, 280 (1998) 1744-1746. [34] S. Sanvito, Y-K. Kwon, D. Tománek, C J. Lambert, Fractional Quantum Conductance in Carbon Nanotubes, Phys Rev Lett, 84 (2000) 1974-1977. [35] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. Hee Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273 (1996) 483-487. [36] P. G. Collins, M. S. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 292 (2001)706-709. [37] H. Dai, E.W. Wong, C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes, Science, 272 (1996) 523-526. [38] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H. F. Ghaemi, T.Thio, Electrical conductivity of individual carbon nanotubes, Nature, 382 (1996) 54-56. [39] Z. Zhen, H. Zhu, Structure and Properties of Graphene, 1st Ed., Elsevier, Academic Press, (2018) 1-26. [40] L. Barletti, Springer open, Hydrodynamic equations for an electron gas in graphene, J. Math. Phys., 6 (2016) 1- 17. [41] J.S Bunch. Mechanical and Electrical Properties of Graphene Sheets, [Ph.D. dissertation]. Ithaca, New York: USA. Cornell; (2008). [42] M. S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Elsevier; Carbon, 33 (1995) 883- 891. [43] P. A. Gowri Sankar, K.U. kumar, Mechanical and Electrical Properties of Single Walled Carbon Nanotubes: A Computational Study, European Journal of Scientific Research, 60 (2011) 342-358. [44] R. Saito, M. Fujita, G. Dresselhaus, M. S Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204-2206. [45] G. Dresselhaus, M.S. Dresselhaus, R. Saito, Physical Properties Of Carbon Nanotubes,1st Ed, London: Imperial college perss, (1998) 35-53. [46] M.S. Purewal, Electron Transport in Single-Walled Carbon Nanotubes, 1st Ed. New York: Engineering and Applied Science, (2008). [47] David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics Extended, 10 set Ed., Wiley, Chapter 26, (2013). [48] M.R. Ward, Electrical Engineering Science, Published by McGraw-Hill Book Co, New York, (1971) 36–40. [49] CRC Handbook of Chemistry and Physics, 65th Edition, CRC Press, Inc., Boca Raton, FL, pp. F-114 - F-120, (1984-85). [50] C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A.R. M. Verschueren, S. J. Tans, C. Dekker, Temperature-dependent resistivity of single-wall carbon nanotubes, Europhys. Lett, 4 6 (1998) 683-688. [51] J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas R. E. Smalley, Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Physical Review B, 8 (1997) 55. [52] G-M. Zhao, Is Room Temperature Superconductivity in Carbon Nanotubes Too Wonderful to Believe?, arXiv: cond-mat, [cond-mat. supr-con], (2003) 0307770v3. [53] R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature 388 (1997) 255. | ||
آمار تعداد مشاهده مقاله: 254 تعداد دریافت فایل اصل مقاله: 231 |