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Abstract

Let Rn be the set of rational functions with prescribed poles. It is known that if r ∈ Rn, such that r(z) ̸= 0 in |z| < 1,
then

sup
|z|=1

|r
′
(z)| ≤ |B′

(z)|
2

sup
|z|=1

|r(z)|

and in case r(z) = 0 in |z| ≤ 1, then

sup
|z|=1

|r
′
(z)| ≥ |B′

(z)|
2

sup
|z|=1

|r(z)|,

where B(z) is the Blashke product. The main aim of this paper is to relax the condition that all poles of r(z) lie
outside the unit circle and instead assume their location anywhere off the unit circle in the complex plane C. The
results so obtained besides the above inequalities generalize some other well-known estimates for the derivative of
rational functions r ∈ Rn with prescribed poles and restricted zeros.
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1 Introduction

Let Pn be the class of all polynomials p(z) :=

n∑
j=0

cjz
j of degree at most n. Let D− denote the region inside U := {z :

|z| = 1} and D+ the region outside U. For aj ∈ C, j = 1, 2, . . . , n, we write

w(z) :=

n∏
j=1

(z − aj) ; B(z) :=
n∏

j=1

(
1− ajz

z − aj

)
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and

Rn = Rn(a1, a2, . . . , an) :=

{
p(z)

w(z)
: p ∈ Pn

}
.

Thus Rn is the set of all rational functions with poles a1, a2, . . . , an at most and with finite limit at ∞. We observe
that B(z) ∈ Rn.
A famous result due to Bernstien [4] states that if p ∈ Pn, then

max
z∈U

|p′(z)| ≤ nmax
z∈U

|p(z)|.

In case p(z) ̸= 0 for z ∈ D−, then it was conjectured by Erdös and latter proved by Lax [2] that

max
z∈U

|p′(z)| ≤ n

2
max
z∈U

|p(z)|,

whereas if p(z) ̸= 0 for z ∈ D+, then Turán [6] proved that

max
z∈U

|p′(z)| ≥ n

2
max
z∈U

|p(z)|.

In the literature [1, 3, 5, 7], there exist several improvements and generalisations of the above results. Li, Mohapatra
and Rodriguez [3] extended these inequalities to rational functions r ∈ Rn with prescribed poles a1, a2, . . . , an replac-
ing zn by Blashke product B(z). Among other things they proved the following results for rational functions with
restricted poles.

Theorem A. Suppose r ∈ Rn and all the zeros of r lie in U ∪ D+. Then for z ∈ U,

|r′(z)| ≤ 1

2
|B′(z)| sup

z∈U
|r(z)|.

Theorem B. Suppose r ∈ Rn, where r has exactly n poles at a1, a2, . . . , an and all the zeros of r lie in U ∪D−, then
for z ∈ U,

|r′(z)| ≥ 1

2
{|B′(z)| − (n−m)}|r(z)|,

where m is the number of zeros of r.

In the proofs of the above theorems and related results, it is assumed that either all the poles lie in D− or in D+.
However, in this paper we relax this condition and assume that the poles of r ∈ Rn lie anywhere off the unit circle in
the complex plane.

Assume that a = {aj}nj=1, n ≥ 1, |aj | ≠ 1, j = 1, 2, . . . , n is an arbitrary finite sequence. w(z) = w1(z)w2(z), where
w1(z) =

∏
aj∈D−(z − aj) and w2(z) =

∏
aj∈D+(z − aj). Here we note that

w1(z) ≡ 1, if a ⊂ D+

and
w2(z) ≡ 1 if a ⊂ D−.

Also

B1(z) :=
∏

aj∈D−

(
1− ajz

z − aj

)
and B2(z) :=

∏
aj∈D+

(
1− ajz

z − aj

)
are the Blaskhe products whose poles with multiplicity counted are the enteries of the sequence inside or outside the
unit circle.

2 Main results

Theorem 2.1. If r ∈ Rn has exactly n poles in C/U and all zeros of r lie in U ∪ D−, then for z ∈ U

|r
′
(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s)

}
|r(z)|, (2.1)

where s is the number of zeros of r(z). The result is sharp and equality holds for

r(z) = B1(z)B2(z) + λ, λ ∈ U.
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In particular, if r(z) has exactly n zeros in U ∪ D−, then we have the following result.

Corollary 2.2. Suppose r ∈ Rn, be such that r(z) ̸= 0 for z ∈ D+, having all poles off the unit circle, then for z ∈ U

|r
′
(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣}|r(z)|. (2.2)

Remark 2.3. If r ∈ Rn has all its poles in D+, then B1(z) ≡ 1 and B2(z) = B(z). Therefore, in this case Theorem
2.1 reduces to a result due to Li, Mohapatra and Rodriguez [3, Theorem 4].

As an improvement of Theorem 2.1, we next prove the following result.

Theorem 2.4. If r ∈ Rn has exactly n poles in C/U and all zeros of r lie in U ∪ D−, then for z ∈ U

|r
′
(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣+ s− n+

|cs| − |c0|
|cs|+ |c0|

}
|r(z)|, (2.3)

where s is the number of zeros of r(z). The result is sharp and equality holds for

r(z) = B1(z)B2(z) + λ, λ ∈ U.

In particular, if r(z) has exactly n zeros in U ∪ D−, then we have the following result.

Corollary 2.5. Suppose r ∈ Rn, is such that r(z) ̸= 0 for z ∈ D+, then for z ∈ U

|r
′
(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣+ |cn| − |c0|

|cn|+ |c0|

}
|r(z)|. (2.4)

Remark 2.6. If r ∈ Rn, has all its poles in D+, then inequality (2.4) reduces to a result due to Wali and Shah [7,
Corollary 2].

Theorem 2.7. Suppose that r ∈ Rn has exactly n poles in C/U and all zeros of r lie in D+, then for z ∈ U

Re

(
zr

′
(z)

r(z)

)
≤ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s)−

(
|c0| − |cs|
|c0|+ |cs|

)}
,

where s is the number of zeros of r(z). The result is sharp and equality holds for

r(z) = B1(z)B2(z) + λ, λ ∈ U.

In particular, if r(z) has exactly n zeros in D+, then we have the following sharp result.

Corollary 2.8. Suppose that r ∈ Rn and all zeros of r lie in D+, then for z ∈ U

Re

(
zr

′
(z)

r(z)

)
≤ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣−( |c0| − |cn|

|c0|+ |cn|

)}
.

The result due to Wali and Shah [7, Lemma 2] is a special case of Theorem 2.7, if we assume that all poles lie in
D+, that is, B1(z) ≡ 1 and B2(z) = B(z).

3 Lemmas

Lemma 3.1. Suppose that r ∈ Rn, where r has exactly n poles all belong to C/U and all zeros of r lie in U ∪ D−,
then for all points on U such that r(z) ̸= 0,

Re

(
zr

′
(z)

r(z)

)
≥
∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n− s

2
, (3.1)

where s is the number of zeros of r(z).
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Proof . Since r ∈ Rn, we can write

r(z) =
p(z)

w(z)
. (3.2)

Let z1, z2, . . . , zs be the zeros of r(z), therefore zj , j = 1, 2, . . . , s are also zeros of p(z) and as such, we have

p(z) =

s∑
j=0

cjz
j = cs

s∏
j=1

(z − zj), zj ∈ U ∪ D−, j = 1, 2, . . . , s.

By assumption all poles of r(z) lie off the unit circle, therefore we can write (3.2) as

r(z) =
p(z)

w1(z)w2(z)
, (3.3)

where w1(z) =
∏

aj∈D−

(z − aj) and w2(z) =
∏

aj∈D+

(z − aj).

Assume that n1 poles with multiplicities counted lie inside U and remaining n − n1 = n2(say) poles lie outside U .
Also, we can write p(z) = p1(z)p2(z) such that degree of p1(z) ≤ degree of w1(z) and degree of p2(z) ≤ degree of
w2(z), so that

r(z) =
p1(z)

w1(z)
.
p2(z)

w2(z)

= r1(z)r2(z),

where r1 ∈ Rn1
and r2 ∈ Rn2

.
Now

r1(z) =
p1(z)

w1(z)

=
p1(z)B1(z)
n1∏
j=1

(1− ajz)

, aj ∈ D−.

Therefore, for z ∈ U

Re

(
zr

′

1(z)

r1(z)

)
= Re

(
zp

′

1(z)

p1(z)

)
+Re

(
zB′

1(z)

B1(z)

)
+

n1∑
j=1

Re

(
aj

z − aj

)
. (3.4)

Also we have

B1(z) =

n1∏
j=1

(
1− ajz

z − aj

)
.

Therefore, for z ∈ U

B′

1(z)

B1(z)
=

n1∑
j=1

{
−ajz + |aj |2 − 1 + ajz

(z − aj)(z − aj)

}
.

This further gives, for z ∈ U

zB′

1(z)

B1(z)
=

n1∑
j=1

|aj |2 − 1

|z − aj |2
, aj ∈ D−.

Since the right-hand side of above equation is a negative real number, therefore we can write for z ∈ U

zB′

1(z)

B1(z)
= −

∣∣∣∣∣zB
′

1(z)

B1(z)

∣∣∣∣∣ = −|B
′

1(z)|. (3.5)
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This after using in equation (3.4), gives

Re

(
zr

′

1(z)

r1(z)

)
= Re

(
zp

′

1(z)

p1(z)

)
− |B

′

1(z)|+
n1∑
j=1

Re

(
aj

z − aj

)

= Re

(
zp

′

1(z)

p1(z)

)
− |B

′

1(z)| −
n1

2

+

n1∑
j=1

Re

(
aj

z − aj
+

1

2

)

= Re

(
zp

′

1(z)

p1(z)

)
− |B′

1(z)|
2

− n1

2
. (3.6)

Again

r2(z) =
p2(z)

w2(z)

=
p2(z)B2(z)
n∏

j=n1+1

(1− ajz)

, aj ∈ D+.

This gives

Re

(
zr

′

2(z)

r2(z)

)
= Re

(
zp

′

2(z)

p2(z)

)
+Re

(
zB′

2(z)

B2(z)

)
+

n∑
j=n1+1

Re

(
aj

z − aj

)
. (3.7)

Also we have

B2(z) =

n∏
j=n1+1

(
z − aj
1− ajz

)
.

This gives, for z ∈ U

zB′

2(z)

B2(z)
=

n∑
j=n1+1

|aj |2 − 1

|z − aj |2
, aj ∈ D+.

Therefore,

zB′

2(z)

B2(z)
=

∣∣∣∣∣zB
′

2(z)

B2(z)

∣∣∣∣∣ = |B
′

2(z)| for z ∈ U. (3.8)

This after using in equation (3.7), gives

Re

(
zr

′

2(z)

r2(z)

)
= Re

(
zp

′

2(z)

p2(z)

)
+ |B

′

2(z)|+
n∑

j=n1+1

Re

(
aj

z − aj

)
.

= Re

(
zp

′

2(z)

p2(z)

)
+ |B

′

2(z)| −
(n− n1)

2

+

n∑
j=n1+1

Re

(
aj

z − aj
+

1

2

)

= Re

(
zp

′

2(z)

p2(z)

)
+

|B′

2(z)|
2

− (n− n1)

2

= Re

(
zp

′

2(z)

p2(z)

)
+

|B′

2(z)|
2

− n2

2
. (3.9)
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From equation (3.6) and (3.9), we get

Re

(
zr′1(z)

r1(z)

)
+Re

(
zr′2(z)

r2(z)

)
= Re

(
zp

′

1(z)

p1(z)

)
+Re

(
zp

′

2(z)

p2(z)

)

+
|B′

2(z)|
2

− |B′

1(z)|
2

− n

2
. (3.10)

Equivalently,

Re

(
zr

′
(z)

r(z)

)
= Re

(
zp

′
(z)

p(z)

)
+

|B′

2(z)| − |B′

1(z)|
2

− n

2
. (3.11)

Now for zj ∈ U ∪ D−, j = 1, 2, . . . , s, we have for all z ∈ U, such that z ̸= zj j = 1, 2, . . . , s.∣∣∣∣∣ z

z − zj

∣∣∣∣∣ ≥
∣∣∣∣∣ z

z − zj
− 1

∣∣∣∣∣.
Therefore,

Re

(
z

z − zj

)
≥ 1

2
, j = 1, 2 . . . , s.

This in particular gives for those points z ∈ U, such that p(z) ̸= 0 and z ̸= zj , j = 1, 2, . . . , s

Re

(
zp

′
(z)

p(z)

)
=

s∑
j=1

Re

(
z

z − zj

)
,

≥
s∑

j=1

1

2

=
s

2
. (3.12)

Combining (3.11) and (3.12), we get for r(z) ̸= 0 and z ∈ U

Re

(
zr

′
(z)

r(z)

)
≥
∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n− s

2
.

□

4 Proofs of Theorems

Proof of Theorem 2.1. Suppose r(z) ̸= 0 for z ∈ U, therefore it follows from Lemma 3.1

Re

(
zr

′
(z)

r(z)

)
≥
∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n− s

2
.

Using the fact that ∣∣∣∣∣zr
′
(z)

r(z)

∣∣∣∣∣ ≥ Re

(
zr

′
(z)

r(z)

)
,

we get for z ∈ U,

|r′(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s)

}
|r(z)|. (4.1)
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In case r(z) = 0, for z ∈ U, inequality (4.1) is trivially satisfied. Hence the result holds for all z ∈ U. To show equality
in (4.1), we consider the rational function r(z) = B1(z)B2(z) + λ, λ ∈ U. So that

|r
′
(z)| = |B1(z)B

′

2(z) + B2(z)B
′

1(z)|

=

∣∣∣∣∣zB
′

2(z)

B2(z)
+

zB′

1(z)

B1(z)

∣∣∣∣∣
=
∣∣∣|B′

2(z)| − |B
′

1(z)|
∣∣∣.

Therefore, it can be easily seen that equality in (2.1) holds for such type of rational functions. This completes the
proof of Theorem 2.1.

□

Proof of Theorem 2.4. Suppose r(z) ̸= 0 for z ∈ U. Let z1, z2, . . . , zs be the zeros of r(z), so that zj , j = 1, 2, . . . , s
are also zeros of p(z) and we can write

p(z) =

s∑
j=0

cjz
j = cs

s∏
j=1

(z − zj), zj ∈ D−, j = 1, 2, . . . , s.

Therefore from (3.11), we have for z ∈ U

Re

(
zr

′
(z)

r(z)

)
=

s∑
j=1

Re

(
z

z − zj

)
+

∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n

2
. (4.2)

Now for zj ∈ D−, we have for z ∈ U

Re

(
z

z − zj

)
= Re

(
eiθ

eiθ − |zj |eiΦ

)

= Re

(
cos θ + i sin θ

(cos θ + i sin θ)− |zj |(cosΦ + i sinΦ)

)

= Re

(
cos θ + i sin θ

(cos θ − |zj | cosΦ) + i(sin θ − |zj | sinΦ)

)

=
1− |zj | cos(θ − Φ)

1 + |zj |2 − 2|zj | cos(θ − Φ)

≥ 1

1 + |zj |
,

if

1 + |zj |(1− |zj | cos(θ − Φ)) ≥ 1 + |zj |2 − 2|zj | cos(θ − Φ).

That is, if

(|zj | − |zj |2)(1 + cos(θ − Φ)) ≥ 0.

Equivalently

|zj | ≤ 1,

which is true.
Therefore, for zj ∈ U ∪ D−

Re

(
z

z − zj

)
≥ 1

1 + |zj |
. (4.3)
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This gives from (4.2)

Re

(
zr

′
(z)

r(z)

)
≥

s∑
j=1

1

1 + |zj |
+

∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n

2

=

s∑
j=1

1− |zj |
2(1 + |zj |)

+

∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− (n− s)

2
.

Using the fact that, if ⟨xi⟩∞1 is a sequence of real numbers, such that 0 ≤ xi ≤ 1, i = 1, 2, . . . , n, then

n∑
i=1

1− xi

1 + xi
≥

1−
n∏

i=1

xi

1 +

n∏
i=1

xi

,

we get by using Vitali’s rule

Re

(
zr

′
(z)

r(z)

)
≥ 1

2

{1−
s∏

j=1

|zj |

1 +

s∏
j=1

|zj |
+
∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s)

}

=
1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s) +

|cs| − |c0|
|cs|+ |c0|

}
. (4.4)

Finally, using the fact that ∣∣∣∣∣zr
′
(z)

r(z)

∣∣∣∣∣ ≥ Re

(
zr

′
(z)

r(z)

)
,

we get for z ∈ U and r(z) ̸= 0

|r
′
(z)| ≥ 1

2

{∣∣|B′

2(z)| − |B
′

1(z)|
∣∣− (n− s) +

|cs| − |c0|
|cs|+ |c0|

}
|r(z)|. (4.5)

In case r(z) = 0, for z ∈ U, inequality (4.5) is trivially satisfied. Hence the result holds for all z ∈ U. This completes
the proof of Theorem 2.4.

□

Proof of Theorem 2.7. Since r ∈ Rn, therefore

r(z) =
p(z)

w(z)
.

Let z1, z2, . . . , zs be the zeros of r(z), therefore zj , j = 1, 2, . . . , s are also zeros of p(z) and we can write

p(z) =

s∑
j=0

cjz
j = cs

s∏
j=1

(z − zj), zj ∈ D+, j = 1, 2, . . . , s.

Proceeding as in Lemma 3.1 and noting that zj ∈ D+, we have

Re

(
zr

′
(z)

r(z)

)
= Re

(
zp

′
(z)

p(z)

)
+

∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n

2

≤
s∑

j=1

1

1 + |zj |
+

∣∣|B′

2(z)| − |B′

1(z)|
∣∣

2
− n

2

=
1

2

{
s∑

j=1

1− |zj |
1 + |zj |

+
∣∣|B′

2(z)| − |B
′

1(z)|
∣∣+ s− n

}
.
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Using the fact that, if ⟨xi⟩∞1 is a sequence of real numbers, such that xi ≥ 1, then

n∑
i=1

1− xi

1 + xi
≤

1−
n∏

i=1

xi

1 +

n∏
i=1

xi

,

we get

Re

(
zr

′
(z)

r(z)

)
≤ 1

2

{1−
s∏

j=1

|zj |

1 +

s∏
j=1

|zj |
+
∣∣|B′

2(z)| − |B
′

1(z)|
∣∣+ s− n

}

=
1

2

{
|cs| − |c0|
|cs|+ |c0|

+
∣∣|B′

2(z)| − |B
′

1(z)|
∣∣+ s− n

}
.

This completes the proof of Theorem 2.7.
□
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