
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,797 |
تعداد دریافت فایل اصل مقاله | 7,656,294 |
Integration as a generalization of the integral operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 21، دوره 14، شماره 6، شهریور 2023، صفحه 273-280 اصل مقاله (382.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.23562.2558 | ||
نویسندگان | ||
Nosrat Baloochshahriyari1؛ Alireza Janfada* 1؛ Madjid Mirzavaziri* 2 | ||
1Department of Mathematics, University of Birjand, Birjand, Iran | ||
2Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad | ||
تاریخ دریافت: 11 خرداد 1400، تاریخ بازنگری: 10 فروردین 1401، تاریخ پذیرش: 19 فروردین 1401 | ||
چکیده | ||
Let $\mathfrak{A}$ be an algebra. A \textit{derivation} on $\mathfrak{A}$ is a linear mapping $\delta:\mathfrak{A}\to\mathfrak{A}$ such that $\delta(ab)=\delta(a)b+a\delta(b)$ for every $a,b\in\mathfrak{A}$. As a dual to this notion, we consider a linear mapping $\Delta:\mathfrak{A}\to\mathfrak{A}$ with the property $\Delta(a)\Delta(b)=\Delta(\Delta(a)b+a\Delta(b))$ for every $a,b\in\mathfrak{A}$ and we call it an \textit{integration}. In this paper, we give some examples, counterexamples and facts concerning integrations on algebras. Furthermore, we state and prove a characterization for integrations on finite dimensional matrix algebras. | ||
کلیدواژهها | ||
Derivation؛ integration؛ C*-algebra؛ matrix algebra | ||
مراجع | ||
[1] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731—742. [2] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006. [3] H. Hasse and F.K. Schmidt, Noch eine Begrudung der theorie der hoheren Differential quotienten in einem algebraischen Funtionenkorper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937), 215–237. [4] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. [5] N.P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), 91—98. [6] R.V. Kadison, Derivations of operator algebras, Ann. Math. 83 (1966), 280–293. [7] R.V. Kadison, Local derivations, J. Algebra 130 (1990), 494–509. [8] D.R. Larson and A.R. Sourour, Local derivations and local automorphisms of B(X), Proc. Sympos. Pure Math. Part 2 51 (1990), 187–194. [9] R.J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 5 (1973), 505–510. [10] M. Mirzavaziri, Characterization of higher derivations on algebras, Commun. Alg. 38 (2010), no. 3, 981–987. [11] M. Mirzavaziri and M.S. Moslehian, A Kadison-Sakai-type theorem, Bull. Aust. Math. Soc. 79 (2009), no. 2, 249—257. [12] M. Mirzavaziri, K. Naranjani, and A. Niknam, Innerness of higher derivations, Banach J. Math. Anal. 4 (2010), no. 2, 121–128. [13] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21—30. [14] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin, 1971. [15] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, Heidelberg, New York, 2003. | ||
آمار تعداد مشاهده مقاله: 16,124 تعداد دریافت فایل اصل مقاله: 270 |