
Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 1047–1062
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.22870.2425

Additive and quadratic set-valued k-functional inequalities and
their stability

Wuttichai Suriyacharoen∗, Wutiphol Sintunavarat

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand

(Communicated by Hamid Khodaei)

Abstract

The aims of this work are first solving set-valued functional inequalities involving additive and quadratic set-valued
mappings, and second investigations of their stability by using the fixed point method.
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1 Introduction

One of the well-known and elementary functional equations are equations of the following forms:

f(x+ y) = f(x) + f(y), (1.1)

2f

(
x+ y

2

)
= f(x) + f(y), (1.2)

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.3)

These equations are known ([5, Chapter 1, 4]), respectively, as additive, Jensen’s and quadratic functional equations.
The mappings satisfying the functional equations (1.1), (1.2) and (1.3) are called additive, Jensen, and quadratic
mappings, respectively.

In the article [9], Park treated the functional inequalities of the following forms:

∥f(x+ y)− f(x)− f(y)∥ ≤
∥∥∥∥ρ(2f (

x+ y

2

)
− f(x)− f(y)

)∥∥∥∥ , (1.4)∥∥∥∥2f (
x+ y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ∥ρ (f(x+ y)− f(x)− f(y))∥ , (1.5)
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where ρ is a fixed non–Archimedean number with |ρ| < 1. These above inequalities were generalized to∥∥∥∥∥∥f
 k∑

j=1

xj

−
k∑

j=1

f(xj)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ρ
kf

1

k

k∑
j=1

xj

−
k∑

j=1

f(xj)

∥∥∥∥∥∥ , (1.6)

∥∥∥∥∥∥kf
1

k

k∑
j=1

xj

−
k∑

j=1

f(xj)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ρ
f

 k∑
j=1

xj

−
k∑

j=1

f(xj)

∥∥∥∥∥∥ , (1.7)

where k ≥ 2 is a fixed integer and ρ is a fixed nonzero complex number with |ρ| < 1, in 2015 [10]. The stabilities of
functional inequalities (1.4), (1.5), (1.6), (1.7) are also established.

In another direction, there are many mathematicians have studied the stability theory of set–valued functional
equations in various types. For all closed convex subsets A,B in a Banach space, we here denoted by

A⊕B := A+B (1.8)

a closure of the set A + B := {a + b : a ∈ A, b ∈ B}. In 2019, Park et al. [11] introduced and solved the functional
inequalities, which respective are the set–valued equation forms of (1.4) and (1.5), as follows:

h(F (x+ y), F (x)⊕ F (y)) ≤ ρ · h
(
F

(
x+ y

2

)
⊕ F (x)⊕ F (y)

)
, (1.9)

h

(
F

(
x+ y

2

)
⊕ F (x)⊕ F (y)

)
≤ ρ · h(F (x+ y), F (x)⊕ F (y)), (1.10)

where ρ < 1 is a positive real number and h(A,B) is a Hausdorff distance between A and B. An analysis of their
stability was also investigated. In 2017, Lee et al. [7] introduced the set–valued functional equation of the following
form

f(x+ y)⊕ f(x− y) = 2f(x)⊕ 2f(y). (1.11)

They also proved the stability of this set–valued functional equation (1.11).

In the present work, we treat the following set–valued functional inequalities:

h(F (x+ y), F (x)⊕ F (y)) ≤ k1 · h(F (x+ y)⊕ F (x− y), 2F (x)), (1.12)

h(G(x+ y)⊕G(x− y), 2G(x)) ≤ k2 · h(G(x+ y), G(x)⊕G(y)), (1.13)

h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y))

≤ k3 · h(H(x+ y + z)⊕H(x+ y − z)⊕H(y + z − x)⊕H(z + x− y),

4[H(x)⊕H(y)⊕H(z)]), (1.14)

h(L(x+ y + z)⊕ L(x+ y − z)⊕ L(y + z − x)⊕ L(z + x− y), 4[L(x)⊕4 L(y)⊕ L(z)])

≤ k4 · h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)), (1.15)

where k1, k2, k3, and k4 are fixed positive real numbers with k1 <
√
2
2 , k2 < 1, k3 < 1

2 , and k4 < 2. The first two
functional inequalities (1.12), (1.13) are related to addtive mappings, while the remaining inequalities (1.14), (1.15)
are involved to quadratic mappings. By using fixed point method, moreover, an analysis of their stability is also
demonstrated.

As witnessed above inequalities (1.12), (1.13), (1.14), (1.15) are associated with the fixed constants k1, k2, k3 and k4,
we shall refer collectively to functional inequalities like (1.12) or (1.13) as an additive set–valued k–functional inequality,
and also call the functional inequalities like (1.14) or (1.15) as a quadratic set–valued k–functional inequality.

2 Preliminaries

In this section, we gather some elementary properties involving the set–valued functional equations as well as the
fundamental theorem in fixed point theory, which are needed in our main results.

Throughout this paper, let X be a real vector space, and Y a real Banach space. Let k1, k2, k3, and k4 be fixed

positive real numbers subjecting to k1 <
√
2
2 , k2 < 1, k3 < 1

2 , and k4 < 2. Denote generically, unless otherwise specified,
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by 2Y , Cb(Y ), Cc(Y ), and Ccb(Y ) the set of all subsets of Y , the set of all closed bounded subsets of Y , the set of all
closed convex subsets of Y , and the set of all closed convex bounded subsets of Y , respectively. Define the addition
and the scalar multiplication on 2Y as follows:

A+B := {x+ y : x ∈ A, y ∈ B} and λA := {λx : x ∈ A}, (2.1)

where A,B ∈ 2Y and λ ∈ R. Using the same notation as (1.8), it is easily checks that

λA+ λB = λ(A+B) and (λ+ µ)A ⊆ λA+ µA (2.2)

for all A,B ∈ 2Y and all λ, µ ∈ R. Furthermore, we have

(1) If C ∈ 2Y is convex, then

(λ+ µ)C = λC + µC (2.3)

for all λ, µ ∈ R+.
(2) If U, V,W ∈ Ccb(Y ), then

U ⊕W = V ⊕W implies U = V. (2.4)

For any pair F,G ∈ Cb(Y ), define the Hausdorff distance between F and G by

h(F,G) := inf{ λ > 0 : F ⊆ G+ λBY , G ⊆ F + λBY }, (2.5)

where BY is the unit closed ball in Y .

Since Y is a Banach space, it is proved that (Ccb(Y ),⊕, h) is a complete metric semigroup ([1, Chapter II]).
Moreover, (Ccb(Y ),⊕, h) is isometrically embedded in a Banach space ([2]). Some properties, which are directly
obtained from the Hausdorff distance, are revealed as follows.

Proposition 2.1 ([1]). For every A,B,C,D,E ∈ Ccb(Y ) and λ > 0, we have

(i) h(A⊕B,C ⊕D) ≤ h(A,C) + h(B,D);
(ii) h(λA, λB) = λh(A,B);
(iii) h(A,B) = h(A⊕ E,B ⊕ E).

We next give the definition of a generalized metric space as well as the fundamental theorem in the fixed point
theory which is related to the present work.

Definition 2.2 ([8]). Let X be a set. A function d : X×X → [0,∞] is called a generalized metric on X if d satisfies
the following conditions:

(D1) d(x, y) = 0 if and only if x = y;
(D2) d(x, y) = d(y, x) for all x, y ∈ X;
(D3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The ordered pair (X, d) is also called a generalized metric space.

Note that the distinction between the generalized metric and the metric is that the range of the former is permitted
to include the infinity. Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz condition
with a Lipschitz constant L if there exists a constant L ≥ 0 such that

d(Tx, Ty) ≤ L d(x, y) (2.6)

for all x, y ∈ X. If the Lipschitz constant L < 1, then the operator T is called a strictly contractive mapping.

The following result is the well–known fundamental theorem in the fixed point theory.

Theorem 2.3 ([3]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly contractive
mapping with a Lipschitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n, or there exists a positive integer n0 such that the following assertions hold:
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(1) d(Jnx, Jn+1x) < ∞ ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};

(4) d(y, y∗) ≤
(

1
1−α

)
d(y, Jy) for all y ∈ Y .

3 Additive and Quadratic Set–Valued k–Functional Inequalities

In this section, the function solutions satisfying the functional inequalities (1.12), (1.13), (1.14), and (1.15) are
determined. Our results are involved the use of additive and quadratic set–valued mappings which are defined as
follows.

Definition 3.1. Let f, g : X → (Ccb(Y ),⊕) be set–valued mappings.

(i) ([6], [11]) The additive set–valued functional equation is defined by

f(x+ y) = f(x)⊕ f(y) (3.1)

for all x, y ∈ X. Every solution of (3.1) is called a additive set–valued mapping.

(ii) ([7]) The quadratic set–valued functional equation is defined by

g(x+ y)⊕ g(x− y) = 2g(x)⊕ 2g(y) (3.2)

for all x, y ∈ X. Every solution of (3.2) is called a quadratic set–valued mapping.

Theorem 3.2. Let F,G : X → (Ccb(Y ),⊕) be set–valued mappings with G(0) = {0}. Then F and G satisfy the
following functional inequalities

h(F (x+ y), F (x)⊕ F (y)) ≤ k1h(F (x+ y)⊕ F (x− y), 2F (x)), (3.3)

h(G(x+ y)⊕G(x− y), 2G(x)) ≤ k2h(G(x+ y), G(x)⊕G(y)) (3.4)

for all x, y ∈ X, where k1 <
√
2
2 and k2 < 1 are fixed positive real numbers, if and only if F and G are additive

set–valued mappings.

Proof . To solve (3.3), putting x = y = 0 into (3.3), we have

h(F (0), 2F (0)) ≤ k1h(2F (0), 2F (0)) = 0 (3.5)

since F (0) is convex, yielding that F (0) = {0}. Next, setting x = y in (3.3), we get

(1− k1)h(F (2x), 2F (x)) ≤ 0. (3.6)

Since k1 <
√
2
2 , we must have h(F (2x), 2F (x)) = 0, and so

F
(x
2

)
=

1

2
F (x) (3.7)

for all x ∈ X.

Letting t = x+ y and s = x− y, the inequality (3.3) becomes

h

(
F (t),

1

2
F (t+ s)⊕ 1

2
F (t− s)

)
≤ k1h (F (t)⊕ F (s), F (t+ s)) (3.8)

by using (3.7), so that

h (2F (t), F (t+ s)⊕ F (t− s)) ≤ 2k1h (F (t)⊕ F (s), F (t+ s)) (3.9)
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for all t, s ∈ X. Using (3.3) and (3.9), we see that

h(F (x+ y), F (x)⊕ F (y)) ≤ 2k21h(F (x)⊕ F (y), F (x+ y)), (3.10)

and so

(1− 2k21)h(F (x+ y), F (x)⊕ F (y)) ≤ 0 (3.11)

for all x, y ∈ X. Since k1 <
√
2
2 , we get

h(F (x+ y), F (x)⊕ F (y)) = 0, (3.12)

yielding that

F (x+ y) = F (x)⊕ F (y) (3.13)

for all x, y ∈ X, as desired.

To solve (3.4), setting t = x+ y and s = x− y in (3.4), we obtain

h

(
G(t)⊕G(s), 2G

(
t+ s

2

))
≤ k2h

(
G(t), G

(
t+ s

2

)
⊕G

(
t− s

2

))
(3.14)

for all t, s ∈ X. Putting s = 0 in (3.14), by using G(0) = {0} and the convexity of range of G, we have

h

(
G(t), 2G

(
t

2

))
≤ k2h

(
G(t), 2G

(
t

2

))
(3.15)

and so

(1− k2)h

(
G(t), 2G

(
t

2

))
≤ 0 (3.16)

giving that

G(t) = 2G

(
t

2

)
(3.17)

for all t ∈ X, since k2 < 1. Taking (3.17) back into (3.14) and using (3.4), we see that

h(G(t)⊕G(s), G(t+ s)) ≤ k2h

(
G(t),

1

2
[G(t+ s)⊕G(t− s)]

)
=

k2
2
h (2G(t), G(t+ s)⊕G(t− s))

≤ k22
2
h (G(t+ s), G(t)⊕G(s)) ,

so that (
1− k22

2

)
h(G(t)⊕G(s), G(t+ s)) ≤ 0 (3.18)

for all t, s ∈ X. Since k2 < 1, the inequality (3.18) yields

h(G(t)⊕G(s), G(t+ s)) = 0, (3.19)

and the additivity of G henceforth follows immediately. The converse is obviously holds. □

Theorem 3.3. Let H,L : X → (Ccb(Y ),⊕) be set–valued mappings with H(0) = {0} and L(0) = {0}. Then H and
L satisfy the following functional inequalities

h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y))

≤ k3h(H(x+ y + z)⊕H(x+ y − z)⊕H(y + z − x)⊕H(z + x− y),

4[H(x)⊕H(y)⊕H(z)]), (3.20)

h(L(x+ y + z)⊕ L(x+ y − z)⊕ L(y + z − x)⊕ L(z + x− y), 4[L(x)⊕ L(y)⊕ L(z)])

≤ k4h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)) (3.21)

for all x, y, z ∈ X, where k3 < 1
2 and k4 < 2 are fixed positive real numbers, if and only if H and L are quadratic

set–valued mappings.
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Proof . If H and L are quadratic mappings, then the inequalities (3.20) and (3.21) clearly hold.

Conversely, to solve (3.20), taking x = z = 0 in (3.20) and using the convexity of range of H, we have

h(H(y)⊕H(−y), 2H(y)) ≤ k3h(3H(y)⊕H(−y), 4Hy)) (3.22)

which equivalent to

h(H(y)⊕H(−y), H(y)⊕H(y)) ≤ k3h(3H(y)⊕H(−y), 3H(y)⊕H(y)) (3.23)

for all y ∈ X. By virtue of Proposition 2.1 (iii), the inequality (3.23) goes over into

h(H(−y), H(y)) ≤ k3h(H(−y), H(y)), (3.24)

and so (1− k3)h(H(−y), H(y)) ≤ 0. Since k3 < 1
2 , we must have

H(y) = H(−y) (3.25)

for all y ∈ X. Putting z = 0 in (3.20) and using (3.25), one obtains

h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y)) ≤ k3h(2H(x+ y)⊕H(y − x)⊕H(x− y), 4[H(x)⊕H(y)])

= k3h(2H(x+ y)⊕ 2H(x− y), 4[H(x)⊕H(y)])

= 2k3h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y))

so that

(1− 2k3)h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y)) ≤ 0 (3.26)

for all x, y ∈ X. Since k3 < 1
2 , we get

h(H(x+ y)⊕H(x− y), 2H(x)⊕ 2H(y)) = 0 (3.27)

and the result follows.

To solve (3.21), taking y = z = 0 in (3.21), we get

h(2L(x)⊕ L(−x)⊕ L(x), 4L(x)) ≤ k4h(2Lx), 2L(x)) = 0 (3.28)

giving that h(L(−x), L(x)) = 0. Thus,

L(x) = L(−x) (3.29)

for all x ∈ X. Letting z = 0 in (3.21) and using (3.29), we see that

2h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)) ≤ k4h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)) (3.30)

so that

(2− k4)h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)) ≤ 0 (3.31)

for all x, y ∈ X. Since k4 < 2, we have

h(L(x+ y)⊕ L(x− y), 2L(x)⊕ 2L(y)) = 0 (3.32)

and hence

L(x+ y)⊕ L(x− y) = 2L(x)⊕ 2L(y) (3.33)

for all x, y ∈ X, proving that L is a quadratic. □

4 Stability

In this section, we investigate first the stability of the additive set–valued k–functional inequalities (1.12) and
(1.13), and second of the quadratic set–valued k–functional inequalities (1.14) and (1.15).



Additive and quadratic set-valued k-functional inequalities and their stability 1053

4.1 Stability of Additive Set–Valued k–Functional Inequalities

Theorem 4.1. Let φ : X2 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y) ≤ 2Lφ
(x
2
,
y

2

)
(4.1)

for all x, y ∈ X. If f : X → (Ccb(Y ),⊕, h) is a mapping satisfying f(0) = {0} and

h (f(x+ y), f(x)⊕ f(y)) ≤ k1h(f(x+ y)⊕ f(x− y), 2f(x)) + φ(x, y) (4.2)

for all x, y ∈ X, then there exists a unique additive set–valued mapping F : X → (Ccb(Y ),⊕, h) such that

h (f(x), F (x)) ≤
(

1

2(1− k1)(1− L)

)
φ(x, x) (4.3)

for all x ∈ X. Moreover, if there exists positive real numbers r < 1 and M such that

diam f(x) ≤ M ∥x∥rX
for all x ∈ X, then F (x) is a singleton set.

Proof . Putting y = x into (4.2) and using the convexity of range of f with f(0) = {0}, we have

h (f(2x), 2f(x)) ≤ k1h(f(2x), 2f(x)) + φ(x, x) (4.4)

for all x ∈ X, and so

h

(
f(x),

1

2
f(2x)

)
≤

(
1

2(1− k1)

)
φ(x, x) (4.5)

for all x ∈ X. Constructing the set
S := {g : X → Ccb(Y ) | g(0) = {0}}

with the generalized metric

d(g, h) := inf{µ ∈ (0,∞) | h(g(x), f(x)) ≤ µ · φ(x, x) ∀x ∈ X},

where, as usual, inf ∅ = +∞. Then it is easily shows that the pair (S, d) is a complete generalized metric space; see
also [4]. Define a linear mapping J : S → S by

Jg(x) =
1

2
g (2x) (4.6)

for all x ∈ X and for each g ∈ S. Then for given g, f ∈ G with d(g, f) = ε, we have

h(g(x), f(x)) ≤ εφ(x, x)

and so

h(Jg(x), Jf(x)) = h

(
1

2
g (2x) ,

1

2
f(2x)

)
=

1

2
h(g(2x), f(2x)) ≤ ε

2
φ(2x, 2x) ≤ εLφ(x, x)

yielding that d(Jg, Jf) ≤ εL, and we arrived at

d(Jg, Jf) ≤ Ld(g, f) (4.7)

for all g, f ∈ S. This means that J is a contractive mapping with a contractive constant L < 1. Moreover, the
inequalities (4.5) and (4.6) give

h(f(x), Jf(x)) ≤
(

1

2(1− k1)

)
φ(x, x), (4.8)

and so

d(f, Jf) ≤ 1

2(1− k1)
. (4.9)

Theorem 2.3 henceforth now applicable and implies that there exists a mapping F : X → (Ccb(Y ),⊕, h) satisfying the
following assertions:
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(i) F is a fixed point of J , i.e., F (x) = JF (x) = 1
2F (2x) and so

F (2x) = 2F (x) (4.10)

for all x ∈ X. Moreover, the mapping F is unique in the set

K := {g ∈ S : d(f, g) < ∞}. (4.11)

This means that F is a unique mapping satisfying (4.10) and

h(f(x), F (x)) ≤ Cφ(x, x)

for some C ∈ (0,∞) and all x ∈ X;

(ii) d(Jnf, F ) → 0 as n → ∞. This gives

F (x) = lim
n→∞

(
1

2

)n

f (2nx) (4.12)

for all x ∈ X;

(iii) d(f, F ) ≤
(

1
1−L

)
d(f, Jf). This implies that

d(f(x), F (x)) ≤ 1

2(1− k1)(1− L)
(4.13)

for all x ∈ X, and the desired (4.3) follows.

To show that a mapping F is an additive set–valued mapping, using (4.1), (4.2), (4.12), and Proposition 2.1 we
obtain

h(F (x+ y), F (x)⊕ F (y)) = h

(
lim

n→∞

1

2n
f(2n(x+ y)), lim

n→∞

1

2n
f(2ny)⊕ lim

n→∞

1

2n
f(2ny)

)
= lim

n→∞

1

2n
h(f(2nx+ 2ny), f(2nx)⊕ f(2ny))

≤ lim
n→∞

1

2n
[k1h(f(2

nx+ 2ny)⊕ f(2nx− 2ny), 2f(2nx)) + φ(2nx+ 2ny)]

≤ k1h

(
lim

n→∞

1

2n
f(2nx+ 2ny)⊕ lim

n→∞

1

2n
f(2nx− 2ny), 2 lim

n→∞

1

2n
f(2nx)

)
+ lim

n→∞

1

2n
φ(2nx, 2ny)

≤ k1h(F (x+ y)⊕ F (x− y), 2F (x)) + lim
n→∞

1

2n
· 2n · Ln · φ

(x
2
,
y

2

)
and so

h(F (x+ y), F (x)⊕ F (y)) ≤ k1h(F (x+ y)⊕ F (x− y), 2F (x))

for all x ∈ X. Theorem 3.2 hence now implies that F is an additive.

Moreover, let r,M ∈ R+ with r < 1 and diam f(x) ≤ M ∥x∥rX . Then

diam

(
1

2n
f(2nx)

)
≤ 1

2n
M ∥2nx∥rX = 2−n(1−r)M ∥x∥rX .

Since 2−(1−r) < 1,

lim
n→∞

diam

(
1

2n
f(2nx)

)
≤ lim

n→∞
2−n(1−r)M ∥x∥rX = 0

showing that F (x) = limn→∞
1
2n f (2nx) is a singleton set, and Theorem 4.1 is proved. □
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Corollary 4.2. Let 0 < p < 1 and θ ≥ 0 be real numbers. If f : X → (Ccb(Y ),⊕, h) is a mapping satisfying
f(0) = {0} and

h (f(x+ y), f(x)⊕ f(y)) ≤ k1h(f(x+ y)⊕ f(x− y), 2f(x)) + θ (∥x∥pX + ∥y∥pX) (4.14)

for all x, y ∈ X, then there exists a unique additive set–valued mapping F : X → (Ccb(Y ),⊕, h) such that

h (f(x), F (x)) ≤
(

2θ

(1− k1) (2− 2p)

)
∥x∥pX (4.15)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam f(x) ≤ M ∥x∥pX

for all x ∈ X, then F (x) is a singleton set.

Proof . Define φ(x, y) := θ (∥x∥pX + ∥y∥pX). Then

φ
(x
2
,
x

2

)
= θ

(∥∥∥x
2

∥∥∥p
X
+
∥∥∥x
2

∥∥∥p
X

)
=

1

2p
φ(x, x),

and so
φ(x, x) = 2pφ

(x
2
,
x

2

)
= 2 · 2p−1 · φ

(x
2
,
x

2

)
.

Choosing L = 2p−1, then

h(f(x), F (x)) ≤
(

1

2(1− k1)(1− L)

)
φ(x, x) =

(
2θ

(1− k1)(2− 2p)

)
∥x∥pX

for all x ∈ X, as desired. □

Theorem 4.3. Let φ : X2 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y) ≤ L

2
φ (2x, 2y) (4.16)

for all x, y ∈ X. If f : X → (Ccb(Y ),⊕, h) is a mapping satisfying f(0) = {0} and

h (f(x+ y), f(x)⊕ f(y)) ≤ k1h(f(x+ y)⊕ f(x− y), 2f(x)) + φ(x, y) (4.17)

for all x, y ∈ X, then there exists a unique additive set–valued mapping F : X → (Ccb(Y ),⊕, h) such that

h (f(x), F (x)) ≤
(

L

2(1− k1)(1− L)

)
φ(x, x) (4.18)

for all x ∈ X. Moreover, if there exists positive real numbers r < 1 and M such that

diam f(x) ≤ M ∥x∥rX

for all x ∈ X, then F (x) is a singleton set.

Proof . Setting y = x in (4.17), we obtain

h(f(2x), 2f(x)) ≤ k1h(f(2x), 2f(x)) + φ(x, x),

since range of f is convex, and so

h
(
f(x), 2f

(x
2

))
≤

(
1

1− k1

)
φ
(x
2
,
x

2

)
(4.19)

for all x ∈ X. Using the same arguments as in the proof of Theorem 4.1, constructing the set

S := {g : X → Ccb(Y ) | g(0) = {0}}



1056 Suriyacharoen, Sintunavarat

with its generalized metric

d(g, h) := inf{µ ∈ (0,∞) | h(g(x), f(x)) ≤ µ · φ(x, x) ∀x ∈ X},

where, as usual, inf ∅ = +∞. Then the pair (S, d) is a complete generalized metric space; see also [4]. Also, define a
linear mapping Ĵ : S → S by

Ĵg(x) = 2g
(x
2

)
(4.20)

for all x ∈ X and for each g ∈ S. Then it is easily verify that Ĵ is a contractive mapping; indeed, if d(g, f) = ε, then
one can show that d(Ĵg, Ĵf) ≤ Ld(g, f) by using (4.16) and (4.20). Moreover, the inequalities (4.16) and (4.19) give

d(f, Ĵf) ≤ L

2(1− k1)
. (4.21)

The rest of the proof of the theorem is similar to that of Theorem 4.1. □

Corollary 4.4. Let p > 1 and θ ≥ 0 be real numbers. If f : X → (Ccb(Y ),⊕, h) is a mapping satisfying f(0) = {0}
and

h (f(x+ y), f(x)⊕ f(y)) ≤ k1h(f(x+ y)⊕ f(x− y), 2f(x)) + θ (∥x∥pX + ∥y∥pX) (4.22)

for all x, y ∈ X, then there exists a unique additive set–valued mapping F : X → (Ccb(Y ),⊕, h) such that

h (f(x), F (x)) ≤
(

2θ

(1− k1)(2p − 2)

)
∥x∥pX (4.23)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam f(x) ≤ M ∥x∥pX

for all x ∈ X, then F (x) is a singleton set.

Proof . Taking φ(x, y) := θ (∥x∥pX + ∥y∥pX) and choosing L = 21−p, we have

h(f(x), F (x)) ≤
(

L

2(1− k1)(1− L)

)
φ(x, x) =

(
2θ

(1− k1)(2p − 2)

)
∥x∥pX

for all x ∈ X, as desired. □

Using the same arguments as in the proofs of Theorems 4.1 and 4.3, and using Theorem 3.2, it is easily verify that
the following results hold whose analogous proofs are omitted.

Theorem 4.5. Let φ : X2 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y) ≤ 2Lφ
(x
2
,
y

2

)
(4.24)

for all x, y ∈ X. If g : X → (Ccb(Y ),⊕, h) is a mapping satisfying g(0) = {0} and

h (g(x+ y)⊕ g(x− y), 2g(x)) ≤ k2h(g(x+ y), g(x)⊕ g(y)) + φ(x, y) (4.25)

for all x, y ∈ X, then there exists a unique additive set–valued mapping G : X → (Ccb(Y ),⊕, h) such that

h (g(x), G(x)) ≤
(

1

2(1− k2)(1− L)

)
φ(x, x) (4.26)

for all x ∈ X. Moreover, if there exists positive real numbers r < 1 and M such that

diam g(x) ≤ M ∥x∥rX

for all x ∈ X, then G(x) is a singleton set.
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Corollary 4.6. Let 0 < p < 1 and θ ≥ 0 be real numbers. If g : X → (Ccb(Y ),⊕, h) is a mapping satisfying
g(0) = {0} and

h (g(x+ y)⊕ g(x− y), 2g(x)) ≤ k2h(g(x+ y), g(x)⊕ g(y)) + θ (∥x∥pX + ∥y∥pX) (4.27)

for all x, y ∈ X, then there exists a unique additive set–valued mapping G : X → (Ccb(Y ),⊕, h) such that

h (g(x), G(x)) ≤
(

2θ

(1− k2)(2− 2p)

)
∥x∥pX (4.28)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam g(x) ≤ M ∥x∥pX

for all x ∈ X, then G(x) is a singleton set.

Theorem 4.7. Let φ : X2 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y) ≤ L

2
φ (2x, 2y) (4.29)

for all x, y ∈ X. If g : X → (Ccb(Y ),⊕, h) is a mapping satisfying g(0) = {0} and

h (g(x+ y)⊕ g(x− y), 2g(x)) ≤ k2h(g(x+ y), g(x)⊕ g(y)) + φ(x, y) (4.30)

for all x, y ∈ X, then there exists a unique additive set–valued mapping G : X → (Ccb(Y ),⊕, h) such that

h (g(x), G(x)) ≤
(

L

2(1− k2)(1− L)

)
φ(x, x) (4.31)

for all x ∈ X. Moreover, if there exists positive real numbers r < 1 and M such that

diam g(x) ≤ M ∥x∥rX

for all x ∈ X, then G(x) is a singleton set.

Corollary 4.8. Let p > 1 and θ ≥ 0 be real numbers. If g : X → (Ccb(Y ),⊕, h) is a mapping satisfying g(0) = {0}
and

h (g(x+ y)⊕ g(x− y), 2g(x)) ≤ k2h(g(x+ y), g(x)⊕ g(y)) + θ (∥x∥pX + ∥y∥pX) (4.32)

for all x, y ∈ X, then there exists a unique additive set–valued mapping G : X → (Ccb(Y ),⊕, h) such that

h (g(x), G(x)) ≤
(

2θ

(1− k2)(2p − 2)

)
∥x∥pX (4.33)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam g(x) ≤ M ∥x∥pX

for all x ∈ X, then G(x) is a singleton set.

4.2 Stability of Quadratic Set–Valued k–Functional Inequalities

We now arrive at the investigations of the stability of inequalities (1.14), (1.15) involving the quadratic mappings.

Theorem 4.9. Let φ : X3 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y, z) ≤ 4Lφ
(x
2
,
y

2
,
z

2

)
(4.34)
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for all x, y, z ∈ X. If n : X → (Ccb(Y ),⊕, h) is a mapping satisfying n(0) = {0} and

h (n(x+ y)⊕ n(x− y), 2n(x)⊕ 2n(y))

≤ k3h(n(x+ y + z)⊕ n(x+ y − z)⊕ n(y + z − x)⊕ n(x+ z − y), 4[n(x)⊕ n(y)⊕ n(z)]) + φ(x, y, z) (4.35)

for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping H : X → (Ccb(Y ),⊕, h) such that

h (n(x), H(x)) ≤
(

1

4(1− 2k3)(1− L)

)
φ(x, x, 0) (4.36)

for all x ∈ X. Moreover, if there exists positive real numbers r < 2 and M such that

diam n(x) ≤ M ∥x∥rX
for all x ∈ X, then H(x) is a singleton set.

Proof . Letting y = x and z = 0 in (4.35), by the convexity of range of n and n(0) = {0}, we have

h (n(2x), 4n(x)) ≤ k3h(2n(2x), 8n(x)) + φ(x, x, 0), (4.37)

and so

(1− 2k3)h(n(2x), 4n(x)) ≤ φ(x, x, 0) (4.38)

for all x ∈ X. That is,

h (n(2x), 4n(x)) ≤
(

1

1− 2k3

)
φ(x, x, 0) (4.39)

for all x ∈ X. Constructing the set
S := {g : X → Ccb(Y ) | g(0) = {0}}

with its generalized metric

d(g, h) := inf{µ ∈ (0,∞) | h(g(x), f(x)) ≤ µ · φ(x, x, 0) ∀x ∈ X},

where, as usual, inf ∅ = +∞. Then it is easy to show that the pair (S, d) is a complete generalized metric space; see
also [4]. Next, define a linear mapping J : S → S by

Jg(x) =
1

4
g (2x) (4.40)

for all x ∈ X and for each g ∈ S. Then for given g, f ∈ S with d(g, f) = ε, we have

h(g(x), f(x)) ≤ εφ(x, x, 0)

and so

h(Jg(x), Jf(x)) = h

(
1

4
g (2x) ,

1

4
f(2x)

)
=

1

4
h(g(2x), f(2x)) ≤ ε

4
φ(2x, 2x, 0) ≤ εLφ(x, x, 0)

yielding that d(Jg, Jf) ≤ εL. We now arrived at

d(Jg, Jf) ≤ Ld(g, f) (4.41)

for all g, f ∈ S, showing that J is a contractive mapping with a contractive constant L < 1. Moreover, the inequalities
(4.39) and (4.40) give

h(n(x), Jn(x)) ≤
(

1

4(1− 2k3)

)
φ(x, x, 0), (4.42)

and so

d(n, Jn) ≤ 1

4(1− 2k3)
. (4.43)

Theorem 2.3 thus now ensures that there exists a mapping H : X → (Ccb(Y ),⊕, h) satisfying the following assertions:
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(i) H is a fixed point of J , i.e., H(x) = JH(x) = 1
4H(2x) and so

H(2x) = 4H(x) (4.44)

for all x ∈ X. Moreover, the mapping H is unique in the set

K := {g ∈ S : d(f, g) < ∞}. (4.45)

This means that H is a unique mapping, which satisfies (4.44), in which there exists C ∈ (0,∞) such that

h(n(x), H(x)) ≤ Cφ(x, x, 0)

for all x ∈ X;

(ii) d(Jkn,H) → 0 as k → ∞. This gives

H(x) = lim
k→∞

(
1

4

)k

n
(
2kx

)
(4.46)

for all x ∈ X;

(iii) d(n,H) ≤
(

1
1−L

)
d(n, Jn). This implies that

d(n(x), H(x)) ≤ 1

4(1− 2k3)(1− L)
(4.47)

for all x ∈ X, and the desired (4.36) follows.

The rest of the proof of the theorem is similar to that of Theorem 4.1. □

Corollary 4.10. Let 0 < p < 2 and θ ≥ 0 be real numbers. If n : X → (Ccb(Y ),⊕, h) is a mapping satisfying
n(0) = {0} and

h (n(x+ y)⊕ n(x− y), 2n(x)⊕ 2n(y))

≤ k3h(n(x+ y + z)⊕ n(x+ y − z)⊕ n(y + z − x)⊕ n(x+ z − y), 4[n(x)⊕ n(y)⊕ n(z)])

+ θ (∥x∥pX + ∥y∥pX + ∥z∥pX) (4.48)

for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping H : X → (Ccb(Y ),⊕, h) such that

h (n(x), H(x)) ≤
(

2θ

(1− 2k3)(4− 2p)

)
∥x∥pX (4.49)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam n(x) ≤ M ∥x∥pX

for all x ∈ X, then H(x) is a singleton set.

Proof . Taking φ(x, y, z) := θ (∥x∥pX + ∥y∥pX + ∥x∥pX) and choosing L = 2p−2, the assertion follows immediately. □

Theorem 4.11. Let φ : X3 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y, z) ≤ L

4
φ (2x, 2y, 2z) (4.50)

for all x, y, z ∈ X. If n : X → (Ccb(Y ),⊕, h) is a mapping satisfying n(0) = {0} and

h (n(x+ y)⊕ n(x− y), 2n(x)⊕ 2n(y))

≤ k3h(n(x+ y + z)⊕ n(x+ y − z)⊕ n(y + z − x)⊕ n(x+ z − y), 4[n(x)⊕ n(y)⊕ n(z)])

+ φ(x, y, z) (4.51)
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for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping H : X → (Ccb(Y ),⊕, h) such that

h (n(x), H(x)) ≤
(

L

4(1− 2k3)(1− L)

)
φ(x, x, 0) (4.52)

for all x ∈ X. Moreover, if there exists positive real numbers r < 2 and M such that

diam n(x) ≤ M ∥x∥rX

for all x ∈ X, then H(x) is a singleton set.

Proof . Putting y = x and z = 0 into (4.51), we obtain

h
(
n(x), 4n

(x
2

))
≤

(
1

1− 2k3

)
φ
(x
2
,
x

2
, 0
)

(4.53)

for all x ∈ X. Using the same arguments as in the proof of Theorem 4.9, constructing the set

S := {g : X → Ccb(Y ) | g(0) = {0}}

with its generalized metric

d(g, h) := inf{µ ∈ (0,∞) | h(g(x), f(x)) ≤ µ · φ(x, x, 0) ∀x ∈ X},

where, as usual, inf ∅ = +∞. Then the pair (S, d) is a complete generalized metric space; see also [4]. Also, define a
linear mapping Ĵ : S → S by

Ĵg(x) = 4g
(x
2

)
(4.54)

for all x ∈ X and for each g ∈ S. Then it is easily show that Ĵ is a contractive mapping with the contractive constant
L < 1; indeed, if d(g, f) = ε, then one can show that d(Ĵg, Ĵf) ≤ Ld(g, f). Moreover, the inequalities (4.50) and
(4.53) give

d(n, Ĵn) ≤ L

4(1− 2k3)
. (4.55)

The rest of the proof of the theorem is similar to that of Theorem 4.1. □

Corollary 4.12. Let p > 2 and θ ≥ 0 be real numbers. If n : X → (Ccb(Y ),⊕, h) is a mapping satisfying

h (n(x+ y)⊕ n(x− y), 2n(x)⊕ 2n(y))

≤ k3h(n(x+ y + z)⊕ n(x+ y − z)⊕ n(y + z − x)⊕ n(x+ z − y), 4[n(x)⊕ n(y)⊕ n(z)])

+ θ (∥x∥pX + ∥y∥pX + ∥z∥pX) (4.56)

for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping H : X → (Ccb(Y ),⊕, h) such that

h (n(x), H(x)) ≤
(

2θ

(1− 2k3)(2p − 4)

)
∥x∥pX (4.57)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam n(x) ≤ M ∥x∥pX

for all x ∈ X, then H(x) is a singleton set.

Proof . Taking φ(x, y, z) := θ (∥x∥pX + ∥y∥pX + ∥x∥pX) and choosing L = 22−p, the assertion follows immediately. □

Using the same arguments as in the proofs of Theorems 4.9 and 4.11, and using Theorem 3.3, it is easily verify
that the following results clearly hold whose analogous proofs are omitted.
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Theorem 4.13. Let φ : X3 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y, z) ≤ 4Lφ
(x
2
,
y

2
,
z

2

)
(4.58)

for all x, y, z ∈ X. If ℓ : X → (Ccb(Y ),⊕, h) is a mapping satisfying ℓ(0) = {0} and

h(ℓ(x+ y + z)⊕ ℓ(x+ y − z)⊕ ℓ(y + z − x)⊕ ℓ(z + x− y), 4[ℓ(x)⊕4 ℓ(y)⊕ ℓ(z)])

≤ k4h(ℓ(x+ y)⊕ ℓ(x− y), 2ℓ(x)⊕ 2ℓ(y)) + φ(x, y, z) (4.59)

for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping L : X → (Ccb(Y ),⊕, h) such that

h (ℓ(x), L(x)) ≤
(

1

4(2− k4)(1− L)

)
φ(x, x, 0) (4.60)

for all x ∈ X. Moreover, if there exists positive real numbers r < 2 and M such that

diam ℓ(x) ≤ M ∥x∥rX

for all x ∈ X, then L(x) is a singleton set.

Corollary 4.14. Let p < 2 and θ ≥ 0 be real numbers. If f : X → (Ccb(Y ),⊕, h) is a mapping satisfying ℓ(0) = {0}
and

h(ℓ(x+ y + z)⊕ ℓ(x+ y − z)⊕ ℓ(y + z − x)⊕ ℓ(z + x− y), 4[ℓ(x)⊕4 ℓ(y)⊕ ℓ(z)])

≤ k4h(ℓ(x+ y)⊕ ℓ(x− y), 2ℓ(x)⊕ 2ℓ(y)) + θ (∥x∥pX + ∥y∥pX + ∥z∥pX) (4.61)

for all x, y, z ∈ X, then there exists a unique additive set–valued mapping L : X → (Ccb(Y ),⊕, h) such that

h (ℓ(x), L(x)) ≤
(

2θ

(2− k4)(4− 2p)

)
∥x∥pX (4.62)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam ℓ(x) ≤ M ∥x∥pX

for all x ∈ X, then L(x) is a singleton set.

Theorem 4.15. Let φ : X3 → [0,∞) be a fixed function for which there exists L < 1 such that

φ(x, y, z) ≤ L

4
φ (2x, 2y, 2z) (4.63)

for all x, y, z ∈ X. If ℓ : X → (Ccb(Y ),⊕, h) is a mapping satisfying ℓ(0) = {0} and

h(ℓ(x+ y + z)⊕ ℓ(x+ y − z)⊕ ℓ(y + z − x)⊕ ℓ(z + x− y), 4[ℓ(x)⊕4 ℓ(y)⊕ ℓ(z)])

≤ k4h(ℓ(x+ y)⊕ ℓ(x− y), 2ℓ(x)⊕ 2ℓ(y)) + φ(x, y, z) (4.64)

for all x, y, z ∈ X, then there exists a unique quadratic set–valued mapping L : X → (Ccb(Y ),⊕, h) such that

h (ℓ(x), L(x)) ≤
(

L

4(2− k4)(1− L)

)
φ(x, x, 0) (4.65)

for all x ∈ X. Moreover, if there exists positive real numbers r < 2 and M such that

diam ℓ(x) ≤ M ∥x∥rX

for all x ∈ X, then L(x) is a singleton set.



1062 Suriyacharoen, Sintunavarat

Corollary 4.16. Let p > 2 and θ ≥ 0 be real numbers. If ℓ : X → (Ccb(Y ),⊕, h) is a mapping satisfying ℓ(0) = {0}
and

h(ℓ(x+ y + z)⊕ ℓ(x+ y − z)⊕ ℓ(y + z − x)⊕ ℓ(z + x− y), 4[ℓ(x)⊕4 ℓ(y)⊕ ℓ(z)])

≤ k4h(ℓ(x+ y)⊕ ℓ(x− y), 2ℓ(x)⊕ 2ℓ(y)) + θ (∥x∥pX + ∥y∥pX + ∥z∥pX) (4.66)

for all x, y, z ∈ X, then there exists a unique additive set–valued mapping F : X → (Ccb(Y ),⊕, h) such that

h (ℓ(x), L(x)) ≤
(

2θ

(2− k4)(2p − 4)

)
∥x∥pX (4.67)

for all x ∈ X. Moreover, if there exists positive real numbers p and M such that

diam ℓ(x) ≤ M ∥x∥pX

for all x ∈ X, then L(x) is a singleton set.
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