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Abstract

In this study, we consider complex-valued cellular neural networks (CVCNNs) models on time scales. In contrast to
earlier research, we employ a straightforward approach to arrive at our theoretical conclusion rather than breaking
the model down into real-valued or complex-valued systems. Firstly, we use the Stepanov almost automorphy on time
scales, the theory of time scale calculations, the Banach fixed point theorem, and by constructing an appropriate
Lyapunov function to establish the existence, uniqueness, and Stepanov-stability of Stepanov almost automorphy
solution for this class of CVCNNs on time scales via a direct method. Finally, an example with simulations is given
to illustrate the feasibility of our results.
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1 Introduction

The neural networks (NNs) proposed by Chua and Yang [4] have attracted growing attention because of their
broad range of applications, for example, function approximation, pattern recognition, associative memory, computing
technology, nonlinear programming, and combinatorial optimization [5, 17, 18, 20]. On the one hand, the states,
connection weights, and activation functions of complex-valued neural networks are complex-valued generalizations of
real-valued neural networks. In general, complex-valued neural networks differ greatly from real-valued ones and exhibit
more complex properties. This becomes urgently necessary as a result of their real-world uses in quantum, ultrasonic,
and light-related physical networks [13, 26]. In reality, complex-valued neural networks (CVNNs) successfully handle
many problems that real-valued neural networks cannot. For example, the detection of symmetry problems and the
XOR problem may both be addressed by a single complex-valued neuron with orthogonal decision boundaries [15], but
not by a single real-valued neuron. As a result, it is critical to investigate the dynamical behaviors of complex-valued
cellular neural networks, particularly the stability problems of such networks. Recently, Zhang and Yu [27] studied
a class of complex-valued Cohen-Grossberg neural networks with time delays and got some stability results. In [22],
Song et al. investigated the global exponential stability of complex-valued neural networks with time-varying delays
and an impulsive impact. In [23], Wang and Huang used the Lyapunov function approach and mathematical analysis
methodology to achieve the stability criterion for complex-valued bidirectional associative memory (BAM) with time
delay . Pan et al. [19] used a conjugate system of CVNNs, the fixed point theorem, the contraction mapping principle,
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and a delay differential inequality to determine the global exponential stability of a class of CVNNs with time-
varying delays. The almost periodic dynamical behaviors for delayed complex-valued recurrent neural networks with
discontinuous activation functions are discussed in [25] using differential inclusions theory, diagonal dominant principle,
and nonsmooth analysis theory of the generalized Lyapunov function method. Recently, in [12], the authors discussed
the existence and exponential stability of periodic solutions for Neutral-Type Complex-Valued Neural Networks.

On the other hand, as is well known, both continuous-time and discrete-time neural networks play important
roles in theocratic research and applications. Furthermore, discrete-time neural networks are easier to compute and
numerically simulate than continuous-time neural networks. As a result, we must investigate not only continuous-time
neural networks but also discrete-time neural networks. Fortunately, Hilger’s [14] theory of time scales, which he
began in his PhD. thesis in 1988, can unify the continuous and discrete cases. The study of dynamic equations on
time scales can help to reconcile the differential equation and difference equation cases. In recent years, the time scale
theory has been widely discussed and rapidly developed [8]. Many authors have studied the dynamical behavior of
neural networks on time scales [2, 10, 11, 16].

Very recently, M. Es-saiydy et al. [9] introduced the concept of Stepanov almost automorphy on time scales, which
is a natural generalization of the concepts of almost periodic, almost automorphic, and Stepanov almost periodic, and
much more general and plays a very important role in better understanding the almost periodicity. On the other hand,
almost automorphy is a very important and powerful dynamic behavior of neural networks that has been extensively
studied by a number of researchers [7, 24, 28, 29].

To the best of our knowledge, no such work has been done on the Stepanov-almost automorphic solution of real-
valued RNNs or complex-valued CNNs on time scales. It is therefore a difficult and important problem in theory and
applications. Motivated by the above analysis and discussion, our main contributions in this work are as follows:

1) We investigate an oscillation space that is never considered by various kinds of neural networks.

2) The existence and uniqueness of Stepanov-almost automorphic solution for complex-valued cellular neural net-
works (CVCNNs) on time scales are proved.

3) The exponential stability of a Stepanov-almost automorphic solution is demonstrated.

4) There are just a few publications in the literature on the dynamics of complex-valued cellular neural networks
on time scales.

Further, our methods proposed in this paper can be used to study the problems of almost periodic solutions and
Stepanov almost periodic solutions for other types of discrete-or continuous-CVCNNs such as complex-valued Hopfield
NNs, Cohen-Grossberg NNs, and complex-valued BAM.

This paper is organized as follows: In Section 2, the CVCNNs on time scales are presented, and we introduce some
necessary definitions and lemmas that are needed in later sections. In Section 3, we establish some sufficient conditions
for the existence and uniqueness of Stepanov almost automorphic solution for CVCNNs on time scales. In Section 4,
a numerical example with simulations is given to demonstrate the feasibility of our theoretical results.

2 Model description and Preliminaries

In this section, we shall first recall some fundamental definitions and lemmas, which are used in what follows.
Throughout this paper we fix p ≥ 1 and (X, ∥ . ∥) is a Banach space. We denote by N, Z, R, and C the set of positive
integers, the set of integers, the set of real, and the set of complex numbers respectively. The skew field of the complex
is determined by C := {x;x = xR + xI i}, where xR and xI are real numbers and the element i is the imaginaire
number.

In this paper, we consider the following complex-valued cellular neural networks (CVCNNs) with mixed time-
varying delays on time scales:

x∆l (t) = −al(t)xl(t) +
n∑

m=1

blm(t)fm(xm(t)) + Il(t), t ∈ T. (2.1)

Where l ∈ {1, 2, ..., n}, n corresponds to the number of units in neural networks, T is an almost periodic time scale;
C is a complex algebra; xl(t) ∈ C corresponds to the state of the lth unit at time t, al(t) = diag(a1(t), a2(t), ..., an(t))
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represents the rate with which the ith neuron will reset its potential to the resting state in isolation when they are
disconnected from the network and the external inputs at time t. fm : C → C is output transfer function, blm(.)
present the connection weights of the mth neuron on the l neuron. Il(.) denote the state bias of the lth neuron.

The initial condition of system (2.1) is of the form

xl(s) = ψl(s), s ∈ (−∞, 0]T,

where ψl is rd-continuous and ψl ∈ Lploc ((−∞, 0]T,C) l = 1, ..., n.

Remark 2.1. � If T = R, Then sys. (2.1) can be transformed into the form below :

x
′

l(t) = −al(t)xl(t) +
n∑

m=1

blm(t)fm(xm(t)) + Il(t), t ∈ R.

� If T = Z, then CVCNNs (2.1) reduces to:

xl(k + 1)− xl(k) = −al(k)xl(k) +
n∑

m=1

blm(k)fm(xm(k)) + Il(k), k ∈ Z.

2.1 Time scales

Definition 2.2 ([6]). An arbitrary nonempty closed subset T of the set of real numbers R is called a time scale.
The forward and backward jump operators σ, ψ : T −→ T and the graininess µ : T −→ R+ are defined, respectively,
by σ(t) = inf{s ∈ T : s > t}, ψ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t. A point t ∈ T is called left-dense
if t > inf T and ψ(t) = t, left-scattered if ψ(t) < t, right-dense if t < supT and σ(t) = t, and right-scattered if
σ(t) > t. A function f : T −→ R is called right-dense continuous or rd-continuous provided that it is continuous at all
right-dense points in T and its left-side limits exist (finite) at left-dense points in T. A function f : T −→ R is called
continuous if and only if it is both left-dense continuous and right-dense continuous. A function p : T −→ R is called
regressive provided if 1 + µ(t)p(t) ̸= 0 for all t ∈ T \ max(T). The set of all regressive and rd-continuous functions
p : T −→ R will be denoted by R = R(T) = R(T;R). We define the set R+ of all positively regressive elements by
R+ = R+(T) = R+(T;R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}. Let a, b ∈ T, with a ≤ b, [a, b], [a, b), (a, b], (a, b)
being the usual intervals on the real line. The intervals [a, a), (a, a], (a, a) are understood as the empty set, and we
use the following symbols :

[a, b]T = [a, b] ∩ T [a, b)T = [a, b) ∩ T (a, b]T = (a, b] ∩ T (a, b)T = (a, b) ∩ T.

Definition 2.3 ([6]). A time scale T is called invariant under translations if

Π = {τ ∈ R : t± τ ∈ T; ∀t ∈ T} ≠ ∅.

Definition 2.4 ([6]). For f : T → X and s ∈ T \ {maxT}, f∆(t) ∈ X is the delta derivative of f at s if for ε > 0,
there is a neighborhood V of s such that for t ∈ V,

∥ f (σ(s))− f(t)− f∆(s) (σ(s)− t) ∥< ε | σ(s)− t | .

Moreover, f is delta differentiable on T provided that f∆(s) exists for s ∈ T.

Definition 2.5 ([6]). If p ∈ R, then we define the exponential function by :

êp(t, s) = exp

{∫ t

s

ξµ(τ)(p(τ))∆τ

}
,

for s, t ∈ T, with the cylinder transformation

ξm(z) =

{
log(1+hz)

h , if h ̸= 0,

z, if h = 0.
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Definition 2.6 ([6]). If p, q ∈ R, then we define a circle plus addition by

(p⊕ q)(t) := p(t) + q(t) + p(t)q(t)µ(t),

for all t ∈ T. For p ∈ R, define a circle minus p by

⊖p = − p

1 + µp
.

Lemma 2.7 ([6]). Let p, q ∈ R, and t, s, r ∈ T. Then,

1) ê0(t, s) = 1 and êp(t, t) = 1;

2) êp(σ(t), s) = (1 + p(t)µ(t))êp(t, s);

3) êp(t, s) =
1

êp(s,t)
= ê⊖p(s, t);

4) êp(t, r)êp(r, s) = êp(t, s);

5) (êp(t, s))
∆ = p(t)êp(t, s);

6) If a, b, c ∈ T. Then, ∫ b

a

êp(c, σ(t))p(t)∆t = êp(c, a)− êp(c, b).

7) For t0 ∈ T, ê⊖λ(t0, .) is increasing on (−∞, t0]T.

Lemma 2.8 ([6]). Assume p ∈ R, and t0 ∈ T. If 1 + µ(t)p(t) > 0 for all t ∈ T, then, êp(t, t0) > 0 for all t ∈ T.

Definition 2.9 ([3]). f : T → X is a ∆−measurable function if there exists a simple function sequence {fk : k ∈ N}
such that, fk(s) → f(s) a.e. in T.

Definition 2.10 ([3]). f : T → X is a ∆−integrable function if there exists a simple function sequence {fk : k ∈ N}
such that fk(s) → f(s) a.e. in T and,

lim
k→∞

∫
T
∥ fk(s)− f(s) ∥ ∆s = 0.

Then, the integral of f is defined as ∫
T
f(s)∆s = lim

k→∞

∫
T
fk(s)∆s.

Definition 2.11 ([3]). For p ≥ 1, f : T → X is called locally Lp ∆−integrable if f is ∆−measurable and for any
compact ∆−measurable set E ⊂ T, the ∆−integral∫

E

∥ f(s) ∥p ∆s <∞.

The set of all Lp ∆−integrable functions is denoted by Lploc (T;X) .

Theorem 2.12. (Hölder’s inequality)[1]. Let a, b ∈ T. For rd-continuous f, g : [a, b] → R we have∫ b

a

| f(t)g(t) | ∆t ≤

(∫ b

a

| f(t) |p ∆t

) 1
p
(∫ b

a

| g(t) |q ∆t

) 1
q

,

where p > 1 and q = p
p−1 .

Theorem 2.13. (Minkowski’s Inequality)[1]. Let a, b ∈ T. For rd-continuous f, g : [a, b] → R we have∫ b

a

| (f + g)(t) | ∆t ≤

(∫ b

a

| f(t) |p ∆t

) 1
p

+

(∫ b

a

| g(t) |q ∆t

) 1
q

,

where p > 1 and q = p
p−1 .
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2.2 Stepanov almost automorphic functions on T

This subsection is devoted to definitions, the important properties of Stepanov almost automorphic functions on
time scales introduced by M. Es-saiydy and M. Zitane [9].

Definition 2.14 ([9]). We say that f : T → C is almost automorphic if from every sequence {An}∞n=1 ⊂ Π, we can
extract a subsequence {τn}∞n=1 such that :

g(t) = lim
n→∞

f(t+ τn)

is well defined for each t ∈ T and
lim
n→∞

g(t− τn) = f(t)

for each t ∈ T. Denote by AA (T,C) the set of all such functions.

We set,

K =

{
inf
{
| τ |; τ ∈ T, τ ̸= 0

}
, if T ̸= R,

1, if T = R.

Let f ∈ Lploc(T,C), for 1 ≤ p <∞. Define :

� ∥ . ∥Sp : Lploc(T,C) → R+ as : ∥ f ∥Sp= supt∈T

(
1
K

∫ t+K
t

| f(s) |pC ∆s

) 1
p

.

� Crd (T;C) = {f : T → C : f is rd-continuous} .

� BCrd (T;C) = {f : T → C : f is bounded and rd-continuous} .

� Lploc (T;C) = {f : T → C : f is locally Lp ∆− integrable} .

� BSp (T;C) = {f ∈ Lploc (T;C) :∥ f ∥Sp<∞} .

Definition 2.15 ([2]). Let f ∈ BSp(T,C) and F ∈ BSp(T× C,C).

1) We say that f : T → C is Stepanov-like almost automorphic if for every sequence {An}∞n=1 ⊂ Π, we can extract
a subsequence {τn}∞n=1 such that

∥ g(t)− f(t+ τn) ∥Sp→ 0, as n→ ∞,

is well defined for each t ∈ T and

∥ g(t− τn)− f(t) ∥Sp→ 0, as n→ ∞,

for each t ∈ T. Denote by SpAA (T,C) the set of all such functions.

2) A function F : T × C → C, (t, x) → F (t, x) is said to be Stepanov-like almost automorphic if t → F (t, x) is
Stepanov almost automorphic in t ∈ T uniformly for each x ∈ C. Denote by SpAA (T× C,C) the collection of
such functions.

Lemma 2.16 ([2]). 1) If h, g ∈ SpAA(T,C), then h+ g ∈ SpAA(T,C).

2) If h ∈ SpAA(T,C) and g ∈ SpAP (T,C), then hg ∈ SpAA(T,C).

Proposition 2.17 ([2]). (SpAA(T,C), ∥ . ∥Sp) is a Banach space.
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3 Stepanov almost automorphic solution of (2.1) on time scales

In this section, we will study the existence and uniqueness of Stepanov almost automorphic solution of the system
(2.1) on time scales. Now, we will list a few hypotheses that will be used for the rest of this paper.

(A1) : For all 1 ≤ l,m ≤ n, the functions alm(.), blm(.), Il(.) ∈ SpAA(T,C). And there exist positive constant Lfl such
that for any u, v ∈ C, the activity function fl ∈ Crd(C,C) satisfy

| fl(u)− fl(v) |C≤ Lfl | u− v |C .

Furthermore, we suppose that fl(0) = 0.

(A2) : ϖ = max1≤l≤n

{
r

1
q

l (q)r
1
p

l (p)×
[∑n

m=1 b
∗
lmL

f
m

]}
< 1.

As a convenience, we have introduced these notations which simplify the writing of the equations:

b∗lm = sup
t∈T

| blm(t) |C, µ̄ = sup
t∈T

µ(t),

al = inf
t∈T

al(t) a∗l = sup
t∈T

al(t) > 0 ǎl = inf
t∈T

al + inf
t∈T

al l = 1, ..., n,

rl(q) =
2 + alµ̄q

alq
, ϱI = max

l=1,...,n
r

1
q

l (q)r
1
p

l (p) ∥ I ∥Sp , d∗ =
ϖϱI
1−ϖ

.

Lemma 3.1. If a function g ∈ Crd(C,C) satisfies condition (A1) and x1 ∈ SpAA(T,C), then g ◦ x1 ∈ SpAA(T,C).

Proof . Since x1 ∈ SpAA(T,C), then for every sequence {An}∞n=1 ⊂ Π, we can extract a subsequence {τn}∞n=1 such
that

sup
t∈T

(
1

K

∫ t+K

t

| x1(s+ τn)− φ(s) |pC ∆s

) 1
p

→ 0, as n→ ∞.

We set φ1(.) := g ◦ φ, therefore,

sup
t∈T

(
1

K

∫ t+K

t

| g ◦ x1(s+ τn)− φ1(s) |pC ∆s

) 1
p

= sup
t∈T

(
1

K

∫ t+K

t

| g ◦ x1(s+ τn)− g ◦ φ(s) |pC ∆s

) 1
p

,

≤ Lg sup
t∈T

(
1

K

∫ t+K

t

| x1(s+ τn)− φ(s) |pC ∆s

) 1
p

.

Then,

sup
t∈T

(
1

K

∫ t+K

t

| g ◦ x1(s+ τn)− φ1(s) |pC ∆s

) 1
p

→ 0, as n→ ∞.

In conclusion, g ◦ x1 ∈ SpAA(T,C). □

Theorem 3.2. Let ψ = (ψ1, ..., ψn) ∈ SpAA(T,C). Under assumptions (A1)-(A4), the nonlinear operator defined by:

(Πψ)l(t) =

∫ t

−∞
ê⊖al(t, σ(s))Jl(s)∆s, l = 1, ..., n.

Where

Jl(t) =

n∑
m=1

blm(t)fm(ψm(t)) + Il(t)

maps SpAA(T,C) into itself.
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Proof . It’s easy to see that (Πψ)l is well defined and continuous. Again from Lemma (3.1), we have Jl(.) belongs to
SpAA(T,C). Now, we will prove that

(Fψ)l(t) =

∫ t

−∞
ê⊖al(t, σ(s))Jl(s)∆s ∈ SpAA(T,C).

Since Jl(.) ∈ SPAA(T,C), then for every sequence {An}∞n=1 ⊂ Π, we can extract a subsequence {τn}∞n=1 such that

sup
t1∈T

(
1

K

∫ t1+K

t1

| Jl(t+ τn)− φl(t) |pC ∆t

) 1
p

→ 0, as n→ ∞.

We set (Uψ)l(t) =
∫ t
−∞ ê⊖al(t, σ(s))φl(s)∆s. Thus,

|(Fψ)l(t+ τn)− (Uψ)l(t) |C

=

∣∣∣∣∫ t

−∞
ê⊖al(t, σ(s))Jl(s+ τn)∆s−

∫ t

−∞
ê⊖al(t, σ(s))φl(s)∆s

∣∣∣∣
C
,

≤
∫ t

−∞
ê⊖al(t, σ(s))

∣∣Jl(s+ τn)− φl(s)
∣∣
C∆s,

≤
∫ 0

−∞
ê⊖al(0, σ(s))

∣∣Jl(t+ s+ τn)− φl(t+ s)
∣∣
C∆s,

≤ r
1
q

l (q)

(∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(s))

∣∣Jl(t+ s+ τn)− φl(t+ s)
∣∣p
C∆s

) 1
p

.

Fubini’s theorem implies that

sup
t1∈T

(
1

K

∫ t1+K

t1

∣∣∣∣(Fψ)l(t+ τn)− (Uψ)l(t)
∣∣∣∣p
C
∆t

) 1
p

≤ sup
t1∈T

(
1

K

∫ t1+K

t1

r
p
q

l .

∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(s))

∣∣∣∣Jl(s+ t+ τn)− φl(s+ t)

∣∣∣∣p
C
∆s∆t

) 1
p

,

≤ r
1
q

l (q).

(∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(s)) sup

t̄∈T

1

K

∫ t̄+K

t̄

∣∣∣∣Jl(t+ τn)− φl(t)

∣∣∣∣p
C
∆t∆s

) 1
p

,

≤ r
1
q

l (q).r
1
p

l (p).

(
sup
t̄∈T

1

K

∫ t̄+K

t̄

∣∣∣∣Jl(t+ τn)− φl(t)

∣∣∣∣p
C
∆t∆s

) 1
p

,

< max
1≤l≤n

r
1
q

l (q)r
1
p

l (p)

(
sup
t̄∈T

1

K

∫ t̄+K

t̄

∣∣∣∣Jl(t+ τn)− φl(t)

∣∣∣∣p
C
∆t∆s

) 1
p

.

Therefore,

sup
t1∈T

(
1

K

∫ t1+K

t1

∣∣∣∣(Fψ)l(t+ τn)− (Uψ)l(t)
∣∣∣∣p
C
∆t

) 1
p

→ 0, as n→ ∞.

Which means that (Fψ)l(.) ∈ SpAA(T,C). □

Theorem 3.3. Assume that the conditions (A1)-(A2) are satisfied. Then, system (2.1) has a unique Sp-almost
automorphic solution in the region H = {ψ : ψ ∈ SpAA(T,C), ∥ ψ − ψ0 ∥Sp≤ d∗} .

Proof . First step : At first, we show that (Πψ)l is a self-mapping from H to H. Let ψ ∈ H, by using Hölder’s and
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Minkowski’s inequality we can obtain

| (Λψ)l(t)− ψ0(t) |C=

∣∣∣∣∣
∫ t

−∞
ê⊖al(t, σ(z))×

[ n∑
m=1

blm(z)fm (ψm(z))

]
∆z

∣∣∣∣∣
C

,

≤ r
1
q

l (q)×
[ ∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(z))

∣∣∣∣∣
n∑

m=1

blm(z + t)fm (ψm(z + t))

∣∣∣∣∣
p

C

∆z

] 1
p

.

Then

∥ (Πψ)l(t)− ψ0(t) ∥Sp= sup
t1∈T

[
1

K

∫ t1+K

t1

∣∣∣∣∣
∫ t

−∞
ê⊖al(t, σ(z))×

( n∑
m=1

blm(z)fm (ψm(z))

]
∆z

∣∣∣∣∣
p

C

∆t

] 1
p

,

≤ r
1
q

l (q) sup
t1∈T

[ ∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(z))× 1

K

∫ t1+K

t1

∣∣∣∣∣
n∑

m=1

blm(z + t)fm (ψm(z + t))∆s

∣∣∣∣∣
p

C

∆(z + t)∆z

] 1
p

,

≤ r
1
q

l (q) sup
t2∈T

[ ∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(z))× 1

K

∫ t2+K

t2

∣∣∣∣∣
n∑

m=1

blm(t̂)fm
(
ψm(t̂)

) ∣∣∣∣∣
p

C

∆t̂∆z

] 1
p

.

≤ r
1
q

l (q)r
1
p

l (p)×

(
sup
t2∈T

[
1

K

∫ t2+K

t2

n∑
m=1

| blm(t̂) |pC| fm
(
ψm(t̂)

)
|pC ∆t̂

] 1
p

)
,

≤ max
1≤l≤n

{
r

1
q

l (q)r
1
p

l (p)

[ n∑
m=1

b∗lmL
f
m

]}
× ∥ ψ ∥Sp ,

≤ ϖ ∥ ψ ∥Sp .

On the other hand,

∥ ψ0(t) ∥Sp = sup
t1∈T

(
1

K

∫ t1+K

t1

∣∣∣∣∫ t

−∞
ê⊖al(t, σ(z))Il(z)

∣∣∣∣p
C
∆z∆t

) 1
p

,

≤ r
1
q

l (q) sup
t1∈T

(∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(z))

1

K

∫ t1+K

t1

| Il(z + t) |pC ∆t∆z

) 1
p

,

≤ r
1
q

l (q) sup
t2∈T

(∫ 0

−∞
ê⊖(

alp

2 )
(0, σ(z))

1

K

∫ t2+K

t2

| Il(t̄) |pC ∆t̄∆z

) 1
p

,

≤ r
1
q

l (q)r
1
p

l (p) ∥ I ∥Sp< ϱI . (Hölder’s inequality)

So, for any ψ ∈ H we have

∥ ψ ∥Sp≤∥ ψ − ψ0 ∥Sp + ∥ ψ0 ∥Sp≤ ϖϱI
1−ϖ

+ ϱI =
ϱI

1−ϖ
.

Hence,

∥ (Πψ)l(t)− ψ0(t) ∥Sp≤ ϖϱI
1−ϖ

,

which implies that (Πψ)l ∈ H.
Second step : we shall prove that (Πψ)l is a contraction mapping. In fact, For ψ, ϕ ∈ H, we get

∥ (Πψ)l(t)− (Πϕ)l(t) ∥Sp

= sup
t1∈T

[
1

K

∫ t1+K

t1

∣∣∣∣∣
∫ t

−∞
ê⊖al(t, σ(z))

( n∑
m=1

blm(z)(fm(ψm(z))− fm(ϕm(z)))

)
∆z

∣∣∣∣∣
p

C

∆t

] 1
p

≤ max
1≤l≤n

{
r

1
q

l (q)r
1
p

l (p)

[ n∑
m=1

b∗lmL
f
m

]}
× ∥ ψ − ϕ ∥Sp ,

≤ ϖ ∥ ψ − ϕ ∥Sp< 1.

Hence, we obtain that (Πψ)l is a contraction mapping. Then, system (2.1) has a unique Sp-almost automorphic
solution in the region H. □
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Remark 3.4. There have been no outcomes on the almost automorphic solution, Stepanov almost periodic ones, and
Stepanov almost automorphic solution for complex-valued cellular neural networks on time scales until now.

4 Stepanov exponential stability

In this section, we applied with a suitable Lyapunov function so that some sufficient criteria are achieved to
guarantee the Sp−exponential stability of the Stepanov almost automorphic solution on time scales.

Lemma 4.1 ([21]). For any x, y ∈ C, if M ∈ Cn×n is a positive-definite Hermitian matrix, then

x̄y + ȳx ≤ x̄Mx+ ȳM−1y.

Definition 4.2. The dynamical networks (2.1) is said to be Sp-globally exponentially stable, if there exist positive
constants α with ⊖α ∈ R+ and C > 0 such that

∥ L(t)− u(t) ∥Sp≤ Cê⊖α(t, 0), ∀t ∈ (0,∞)T.

Where u(.) = (u1(.), u2(.), ..., un(.)) is a Stepanov-like almost automorphic solution of CVCNNs (2.1) on T and
L(.) = (v1(.), v2(.), ..., vn(.)) is an arbitrary solution of CVCNNs (2.1) on T.

Theorem 4.3. Suppose that assumptions (A1)-(A2) hold, and ϖ < 1. Then the unique Stepanov-like almost auto-
morphic solution of system (2.1) is Sp−globally exponentially stable on T whenever

(A3) : Θl =
1

a∗l
− ǎl

n∑
m=1

a∗l

(
b∗lmL

f
l

)2
< 0.

Proof .

Let u(.) be the Sp-almost automorphic solution on T and let y(.) be an arbitrary solution of sys.(2.1), X(.) =
u(.)− v(.), F (X(.)) = f(u(.))− f(v(.)). Let x ∈ [0,∞), we define the function x 7→ El(x) as follows:

El(x) = x+
1

a∗l
− ǎl + exp(x(µ̄))

n∑
m=1

a∗l

(
b∗lmL

f
l

)2
< 0.

By (A3), we have El(0) < 0. Since the function El(.) is continuous on [0,∞). Then, we can choose the positive constant
0 < α < min1≤l≤n al, such that El(α) < 0.
Now, construct a Lyapunov function as follows :

L(t) =

n∑
l=1

| Xl(t) |2C êα(t, 0) + exp(α(µ̄))

n∑
l=1

n∑
m=1

a∗l

(
b∗lmL

f
l

)2 ∫ t

0

| Xl(z) |2C êα(σ(z), 0)∆z.

Computing the ∆−derivative of L(.), we get

L∆(t) = αêα(t, 0)

n∑
l=1

| Xl(t) |2C +êα(t, 0)

n∑
l=1

X∆
l (t)Xl(t) + exp(α(µ̄))

n∑
l=1

n∑
m=1

a∗l

(
b∗lmL

f
l

)2
×
[
êα(t, 0) | Xl(t) |2C − exp(−α)êα(t, 0) | Xl(t) |2C

]
According to Lemma (4.1) we get

L∆(t) ≤ αêα(t, 0)

n∑
l=1

| Xl(t) |2C −êα(t, 0)
n∑
l=1

ǎl | Xl(t) |2C

+ êα(t, 0)

n∑
l=1

( n∑
m=1

blm(t)Fm(Xm(t− ξm(t)))blm(t)Fm(Xm(t))a∗l +
Xl(t)Xl(t)

a∗l

)

+ exp(αµ̄)

n∑
l=1

n∑
m=1

a∗l

(
b∗lmL

f
l

)2(
exp(α)êα(t, 0) | Xl(t) |2C −êα(t, 0) | Xl(t) |2C

)

≤ êα(t, 0)

n∑
l=1

(
α+

1

a∗l
− ǎl + exp(α(µ̄))

n∑
m=1

a∗l

(
b∗lmL

f
l

)2)
| Xl(t) |2C,

< 0.
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Otherwise,
∑n
l=1 | Xl(t) |2C≤ ê⊖α(t, 0)L(0), with ⊖ α ∈ R+, l = 1, ..., n.

It follows that
n∑
l=1

| Xl(t) |pC≤ ê⊖pα(t, 0)L(0)
p, p ≥ 2.

Hence,

n∑
l=1

1

K

∫ t−ξ̄+K

t−ξ̄
| Xl(z) |pC ∆z ≤

n∑
l=1

1

K

∫ t+K

t

| Xl(z) |pC ∆z ≤
∫ t+K

t

ê⊖pα(t, 0)L(0)
p

K
.

Consequently,

n∑
l=1

1

K

∫ t+K

t

| Xl(z) |pC ∆z ≤ L(0)pê⊖αp(t, 0)

K

(exp(−αpK)− 1)

⊖αp
.

According to the previous inequality, we can obtain

max
l=1,...,n

sup
t1∈T

(
1

K

∫ t1+K

t1

| Xl(z) |pC ∆z

) 1
p

≤ L(0)ê⊖α(t, 0)

K
1
p

(
(exp(−αpK)− 1)

⊖αp

) 1
p

.

We claim that

∥ X ∥Sp≤ L(0)ê⊖α(t, 0)

K
1
p

(
(exp(−αpK)− 1)

⊖αp

) 1
p

≤ Cê⊖α(t, 0).

Where C = L(0)

K
1
p

(
(exp(−αpK)−1)

⊖αp

) 1
p

. Therefore, the unique Stepanov-like almost automorphic solution of CVCNNs

(2.1) is Sp-globally exponentially stable on time scales. This completes the proof. □

Remark 4.4. To the best of our knowledge, the Stepanov almost automorphic solution on time scales for complex
valued-neural networks has not yet yielded any results. The inquiry techniques employed in this paper may also be
utilized to examine Stepanov almost periodic and almost automorphic on time scale solution for certain other types
of neural networks, such as the renowned class of Lotka-Volterra neural networks. As a consequence, the obtained
results are fundamentally novel.

5 Numerical Example

In this section, we give an example to illustrate the feasibility and effectiveness of our results derived in the previous
sections.

Example 5.1. Let us consider the following model of CVCNNs for T = R and n = 2:

x′l(t) = −al(t)xl(t) +
2∑

m=1

blm(t)fm(xm(t)) + Il(t), t > 0. (5.1)

Let p = q = 2, and the coefficients are taken as follows:

� fm(xm(.)) = 1
7

(
i sin(xIm(.)) cos(xIm(.)− xRm(.))

)
,

� a1(.) = 8 + 2i cos(
√
2t), a2(.) = 7 + i sin(t),

� Il(t) =
2+exp(it)

|2+exp(it)+exp(i
√
5t)| ,

� blm = 1
30

 sin

(
1

2+sin(t)+sin(
√
7t)

)
i cos(

√
3t)

sin(
√
3t) + i cos(πt) sin(t)

 .
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Then, we have

� a1 = 6, a2 = 6, ǎ1 = 10, ǎ2 = 8, a∗1 = 13, a∗2 = 7,

� Lfm = 1
7 ,

� b∗lm = 1
30

[
1 1
2 1

]
,

� d∗lm = 1
20

[
2 2
3 3

]
.

Hence, by a simple calculation we get

� ϖ ≃ max{0.8231; 0.7045} = 0.8231,

� Θl = (−3.0147, −4.0098) < 0.

Therefore, all of the conditions of Theorems (3.3) and (4.3) are satisfied. Then, system (5.1) has a unique Sp-almost
automorphic solution which is Sp-globally exponential stable.

Figure 1: Behavior of the state variables xR
1 and xI

1 of (5.1) on T = R.

Figure 2: Behavior of the state variables xR
2 and xI

2 of (5.1) on T = R.
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Conclusion

In this research, we presented a class of complex-valued cellular neural networks on time scales. Also, we provide
certain necessary criteria on the existence, uniqueness, and global exponential stability of Stepanov almost automorphic
solution for complex-valued cellular neural networks based on Banach’s fixed point theorem and the theory of calculus
on time scales. Finally, an example with simulations has been provided to show the efficacy of our outcomes. To our
knowledge, this is the first time that the Stepanov almost automorphic solution for complex-valued cellular neural
networks on time scales has been studied.
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