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Abstract

In this work, we define an iterative scheme for a generalized spectral problem associated with two operators defined
on a Banach space of infinite dimension. We show that under the norm convergence, the generalized approximated
eigenvalues and eigenvectors converge to the exact eigenpairs. As a numerical application, we tackle a generalized
eigenvalue problem associated with integral operators, where the accuracy and efficiency are illustrated in some
numerical examples.
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1 Introduction

Let X be a Banach space. The space BL(X) is the set of bounded linear operators from X into X. This space is
provided with the subordinate standard norm defined as, for T ∈ BL(X)

∥T∥BL(X) = sup{∥Tx∥ : x ∈ X, ∥x∥ = 1}.

Let T and S be two operators in BL(X), we recall that the generalized spectrum sp(T, S) is the set

sp(T, S) = {λ ∈ C : (T − λS) not invertible}.

Thus, the generalized resolving set re(T, S) is given as

re(T, S) = C \ sp(T, S).

Then the generalized point spectrum spp(T, S) is defined by

spp(T, S) = {λ ∈ C : ∃φ ∈ X \ {0}, Tφ = λSφ}.
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Let λ ∈ spp(T, S) be a generalized eigenvalue. We say that λ has a finite algebraic multiplicity, if there exists a
positive integer l such that

dimKer(T − λS)l <∞,

in this case, λ is called a generalized eigenvalue of finite type. If λ is a nonzero generalized eigenvalue of couple (T, S)
and Θ is a closed Jordan curve in re(T, S) isolating λ, then

P = − 1

2πi

∫
Θ

(T − zS)−1Sdz : X → X

defines the generalized spectral projection at λ and

Q = − 1

2πi

∫
Θ

(T − zS)−1(λ− z)−1dz : X → X

is the generalized reduced resolvent at λ (see the book [1]).

In recent papers [2], [3], [4], [6], [5] and [7] the authors have studied the numerical resolution of the generalized
spectral problems:

Find (φ, λ) ∈ X × C : Tφ = λSφ, φ ̸= 0. (1.1)

Problem (1.1) is approximated by a discreted version:

Find (φn, λn) ∈ Xn × C : Tnφn = λnSnφn, φn ̸= 0, (1.2)

where Xn is a subspace of X of finite dimension and Tn and Sn result from a projection method. Hence, the matrices
representing Tn and Sn are commonly full and the numerical solution of (1.2) is not feasible for large n because it
may become very expensive to get in computer time or storage.

The purpose of the present paper is to provide a method of attaining high precision without having to solve a
generalized matrix eigenvalue problem of a very large size. The idea of the method presented in this paper is to refine
iteratively the generalized eigenelements (λn, φn) obtained when solving (1.2) with a relatively small n.

Let φn be a generalized eigenvector of (Tn, Sn) corresponding to a simple generalized eigenvalue of finite type λn

and φ∗
n be the generalized eigenvector of (T ∗

n , S
∗
n) corresponding to it simple generalized eigenvalue λ̄n such that〈

φn, φ
∗
n

〉
= 1.

We define our Generalized Elementary Iteration (G.E.I) through the successive iterates:

(E) :



φ
(0)
n = φn, and for k = 1, 2, ...

λ
(k)
n =

〈
Tφ

(k−1)
n , φ∗

n

〉〈
Sφ

(k−1)
n , φ∗

n

〉 , 〈
Sφ(k−1)

n , φ∗
n

〉
̸= 0,

φ
(k)
n = φ

(k−1)
n +Qn

(
λ
(k)
n Sφ

(k−1)
n − Tφ

(k−1)
n

)
,

where Qn is defined as:

Qn = − 1

2πi

∫
Θ

(Tn − zSn)
−1(λ− z)−1dz : X → X.

We notice that when S = I, our method becomes the elementary iteration method defined in [8].

In the next section, we prove the convergence results and the errors analysis of the G.E.I by employing mathematical
induction. In the last section, we illustrate these results with a numerical application showing the accuracy and
efficiency of our algorithms.

2 Framework

We state in this section a set of theorems which will be needed in the proof of our main Theorem 2.3.
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Theorem 2.1. Assume that there exist two sequences of bonded operators (Tn)n≥1 and (Sn)n≥1 converging on the
norm to T and S respectively, i.e.

i) Tn
n−→ T ii) Sn

n−→ S.

If λ0 ∈ re(T, S), then for all large n, λ0 ∈ re(Tn, Sn), (
(
∥(Tn − λ0Sn)

−1∥
)
) is uniformly bounded independent on n

and
(λ0Sn − Tn)

−1Sn
n−→ (λ0S − T )−1S,

∥(λ0Sn − Tn)
−1Sn − (λ0S − T )−1S∥ ≤ C

(
∥Tn − T∥+ ∥S − Sn∥

)
.

Proof . Let λ0 ∈ re(T, S), we can see

Tn − λ0Sn = (T − λ0S)−
(
(T − Tn)− λ0(S − Sn)

)
=

[
I −

(
(T − Tn)− λ0(S − Sn)

)
(T − λ0S)

−1

]
(T − λ0S).

As, Tn
n−→ T and Sn

n−→ S then there is a positive integer n0 such that for all n ≥ n0∥∥∥((T − Tn)− λ0(S − Sn)
)
(T − λ0S)

−1
∥∥∥ ≤ 1

2
.

So, using Neumann Series Lemma, we can find that λ0 ∈ re(Tn, Sn) and

∥(Tn − λ0Sn)
−1∥ =

∥∥∥(T − λ0S)
−1

∞∑
k=0

[(
(T − Tn)− λ0(S − Sn)

)
(T − λ0S)

−1

]k∥∥∥
≤ 2∥(T − λ0S)

−1∥ = c.

Now, let n ≥ n0, then

∥(λ0Sn − Tn)
−1Sn − (λ0S − T )−1S∥ =

∥∥∥(λ0Sn − Tn)
−1(Sn − S) +(

(λ0Sn − Tn)
−1 − (λ0S − T )−1

)
S
∥∥∥

≤ c∥Sn − S∥+

∥S∥
∥∥∥(λ0Sn − Tn)

−1
(
(Tn − T )− λ0(Sn − S)

)
×

(λ0S − T )−1
∥∥∥

≤ c
(
∥Tn − T∥+ ∥Sn − S∥

)
+

∥S∥ c2

2
max{1, λ0}

(
∥Tn − T∥+ ∥Sn − S∥

)
≤ C

(
∥Tn − T∥+ ∥Sn − S∥

)
,

where C = c+ ∥S∥ c2

2
max{1, λ0}. □

Theorem 2.2. Let λ be a simple generalized eigenvalue of (T, S) and φ be a corresponding eigenvector.

i) Tn
n−→ T ii) Sn

n−→ S.

Then for n large enough, the couple (Tn, Sn) has a simple generalized eigenvalue λn such that

λn −→ λ.

Let φn be a generalized eigenvector of (Tn, Sn) corresponding to λn and φ∗
n be the generalized eigenvector of (T ∗

n , S
∗
n)

corresponding to it simple generalized eigenvalue λn such that〈
φn, φ

∗
n

〉
= 1.
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Then
〈
φ,φ∗

n

〉
̸= 0 for all large n. Further, if we note

φ(n) =
φ〈

φ,φ∗
n

〉 ,
then for all large n, we have

max

{
|λn − λ|,

∥φn − φ(n)∥
∥φn∥

}
≤ l

(
∥Tn − T∥+ ∥Sn − S∥

)
,

where l is a constant independent of n.

Proof . Let λ be a simple generalized eigenvalue of (T, S) and φ be a corresponding generalized eigenvector. If ε > 0
is small enough, then by Theorem 6 of [7], there is a positive integer n0 such that for each n ≥ n0, we have a unique
λn ∈ sp(Tn, Sn) satisfying |λn−λ| < ε. Further, λn is a simple eigenvalue of (Tn, Sn) corresponding to the generalized
eigenvector φn, where λn −→ λ.
Fix λ0 ∈ re(T, S), where for any Cauchy contour Θ associated with λ, λ0 /∈ Θ. We can prove that (λ0 − λ)−1 is a
simple eigenvalue of (λ0S − T )−1S corresponding to the eigenvector φ. Indeed,

φ ∈ Ker(T − λS) ⇒ (T − λS)φ = 0

⇒ (λ0S − T )−1(λ0S − T + T − λS)φ = φ

⇒ (λ0S − T )−1Su = (λ0 − λ)−1φ

⇒ φ ∈ Ker
(
(λ0S − T )−1S − (λ0 − λ)−1I

)
.

Further, we reverse the last process to find

Ker(T − λS) = Ker
(
(λ0S − T )−1S − (λ0 − λ)−1I

)
.

Now, as Tn
n−→ T and Sn

n−→ S then according to Theorem 2.1, we find that, for all large n, λ0 ∈ re(Tn, Sn). Hence,
with the same technics, we can also prove that (λ0 − λn)

−1 is a simple eigenvalue of (λ0Sn − Tn)
−1Sn corresponding

to the eigenvector φn, and that

Ker(Tn − λSn) = Ker
(
(λ0Sn − Tn)

−1Sn − (λ0 − λ)−1I
)
.

We constate. also that λn is a simple generalized eigenvalue of (T ∗
n , S

∗
n) corresponding to the generalized eigenvector

φ∗
n if, and only if (λ0 − λn)−1 is a simple eigenvalue of (λ0S

∗
n − T ∗

n)
−1S∗

n corresponding to the eigenvector φ∗
n.On the

other hand, by Theorem 2.1, we have

(λ0Sn − Tn)
−1Sn

n−→ (λ0S − T )−1S.

So, according to Theorem 3.10 of [5], which shows the convergence of the approximate eigenvectors towards the exact
eigenvectors, φn → φ, then we have

〈
φ,φ∗

n

〉
̸= 0. Thus

max

{
|(λ0 − λn)

−1 − (λ0 − λ)−1|,
∥φn − φ(n)∥
∥φn∥

}
≤ l1

(
∥(λ0Sn − Tn)

−1Sn − (λ0S − T )−1S∥
)
,

where l1 is a constant independent of n. So, we can find easily that,

max

{
|λn − λ|,

∥φn − φ(n)∥
∥φn∥

}
≤ l

(
∥Tn − T∥+ ∥Sn − S∥

)
,

where l is a constant independent of n. □ Now let’s analyse the Generalized Elementary Iteration (G.E.I) given as
follow

(E) :



φ
(0)
n = φn, and for k = 1, 2, ...

λ
(k)
n =

〈
Tφ

(k−1)
n , φ∗

n

〉〈
Sφ

(k−1)
n , φ∗

n

〉 , 〈
Sφ(k−1)

n , φ∗
n

〉
̸= 0,

φ
(k)
n = φ

(k−1)
n +Qn

(
λ
(k)
n Sφ

(k−1)
n − Tφ

(k−1)
n

)
.
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where Qn is defined as:

Qn = − 1

2πi

∫
Θ

(Tn − zSn)
−1(λ− z)−1dz : X → X.

Next, we build three essential relations about the G.E.I

First, using the proprieties of the operator projections Qn and Pn given in Theorem 1.1 page 50 of [1], where

Pn = − 1

2πi

∫
Θ

(Tn − zSn)
−1Sndz : X → X

and P ∗
n designates the adjoint of Pn. We have, for x ∈ X〈

Qnx, φ
∗
n

〉
=

〈
Qnx, P

∗
nφ

∗
n

〉
=

〈
PnQnx, φ

∗
n

〉
=

〈
0, φ∗

n

〉
= 0.

Further, since 〈
φ(0)
n , φ∗

n

〉
=

〈
φn, φ

∗
n

〉
= 1

and for k = 1, 2, ...〈
φ(k)
n , φ∗

n

〉
=

〈
φ(k−1)
n , φ∗

n

〉
+
〈
Qn

(
λ(k)
n Sφ(k−1)

n − Tφ(k−1)
n

)
, φ∗

n

〉
=

〈
φ(k−1)
n , φ∗

n

〉
,

we get the first relation
(E1) :

〈
φ(k)
n , φ∗

n

〉
= 1 for all k = 0, 1, 2, ...

We note that (E1) is equivalent to
Pnφ

(k)
n = φn, for all k = 0, 1, 2, ...

Next, for all x ∈ X, we have〈
Tnx, φ

∗
n

〉
=

〈
x, T ∗

nφ
∗
n

〉
=

〈
x, λnS

∗
nφ

∗
n

〉
=

〈
λnSnx, φ

∗
n

〉
,

therefore 〈(
Tn − λnSn

)
x, φ∗

n

〉
= 0,

and as

λ =

〈
Tφ(n), φ

∗
n

〉〈
Sφ(n), φ∗

n

〉 ,
then using the notation

x̃ =
x〈

Sx, φ∗
n

〉 ,
we obtain,

λ(k)
n − λ =

〈
Tφ

(k−1)
n , φ∗

n

〉〈
Sφ

(k−1)
n , φ∗

n

〉 − 〈
Tφ(n), φ

∗
n

〉〈
Sφ(n), φ∗

n

〉
=

〈
T
(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
=

〈
(T − Tn)

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
+

〈
Tn

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
=

〈
(T − Tn)

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
+ λn

〈
Sn

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
=

〈
(T − Tn)

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
+ λn

〈
(Sn − S)

(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
+λn

(〈
Sφ̃(k−1)

n , φ∗
n

〉
−
〈
Sφ̃(n), φ

∗
n

〉)
=

〈(
(T − Tn)− λn(S − Sn)

)(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
+λn

(〈Sφ(k−1)
n , φ∗

n

〉〈
Sφ

(k−1)
n , φ∗

n

〉 − 〈
Sφ(n), φ

∗
n

〉〈
Sφ(n), φ∗

n

〉)
=

〈(
(T − Tn)− λn(S − Sn)

)(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
.
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Thus, we get the second relation

(E2) : λ(k)
n − λ =

〈(
(T − Tn)− λn(S − Sn)

)(
φ̃(k−1)
n − φ̃(n)

)
, φ∗

n

〉
.

Finally for k = 1, 2, ... we have

φ(k)
n = φ(k−1)

n +Qn

(
λ(k)
n Sφ(k−1)

n − Tφ(k−1)
n

)
= φ(k−1)

n +Qn

(
(λ(k)

n S − λnSn)φ
(k−1)
n + (Tn − T )φ(k−1)

n

)
−Qn

(
(Tn − λnSn)φ

(k−1)
n

)
.

Then, by Theorem 1.1 page 50 of [1] (relation(12)),

Qn(Tn − λnSn)φ
(k−1)
n = (I − Pn)φ

(k−1)
n

= φ(k−1)
n − Pnφ

(k−1)
n

= φ(k−1)
n − φn.

Therefore,
φ(k)
n = φn +Qn

(
(λ(k)

n S − λnSn)φ
(k−1)
n + (Tn − T )φ(k−1)

n

)
,

but since Tφ(n) = λSφ(n), we have also

φ(n) = Pnφ(n) + (I − Pn)φ(n)

= φn +Qn

(
(Tn − λnSn)φ(n)

)
= φn +Qn

(
(Tn − T )φ(n) + (λS − λnSn)φ(n) + (T − λS)φ(n)

)
= φn +Qn

(
(Tn − T )φ(n) + (λS − λnSn)φ(n)

)
.

So, the third relation

(E3) :



for k = 1, 2, ...

φ
(k)
n − φ(n) = Qn

[ (
Tn − T

)
(φ

(k−1)
n − φ(n))

+
(
λ
(k)
n S − λnSn

)
φ
(k−1)
n −

(
λS − λnSn

)
φ(n)

]
= Qn

[ (
(Tn − T )− λn(Sn − S)

)
(φ

(k−1)
n − φ(n))

+(λ
(k)
n − λ)Sφ

(k−1)
n + (λ− λn)S (φ

(k−1)
n − φ(n))

]
.

These equations (E1), (E2) and (E3) are essential in convergence proofs and error estimating of the G.E.I sheme
(E)

Theorem 2.3. Let assume that,

i) Tn
n−→ T, ii) Sn

n−→ S. (2.1)

For each large n, we chose φn such that the sequence (∥φn∥) is bounded and also bounded from zero. Then there is a
positive integer n1 such that for all n ≥ n1 and for all k = 1, 2, ...

max
{
|λ(k)

n − λ|, ∥φ(k)
n − φ(n)∥

}
≤

(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k+1

,

where β is a constant independent of n and k.

Proof . By Theorem 2.2, we can find that the sequence (∥φ(n)∥) and (∥φ∗
n∥) are bounded. Further, since the sequence

(∥φn∥) is bounded and also bounded from zero. Also, the sequences (∥Tn∥) and (∥Sn∥) are bounded. Hence there are
constants

∥φn∥ ≤ γ, ∥φ∗
n∥ ≤ p, ∥Qn∥ ≤ a, |λn| ≤ c, ∥S∥ = s, |

〈
Sφ(n), φ

∗
n

〉
| = α.
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Let γ1 = max{1, γ}, c1 = max{1, c}, and β1 = max
{ 2

α
,
2(γsp)

α2

}
.

Now, by (2.1) and according to Theorem 2.2, there is a positive integer n0, and there is a constant l such that for
all n ≥ n0

max{|λn − λ|, ∥φn − φ(n)∥} ≤ lγ1
(
∥Tn − T∥+ ∥Sn − S∥

)
.

Let
β = max{lγ1, β1, a(c1 + (1 + q)c1pβ1s+ lγ1)s}.

We choose n1 ≥ n0 such that

β
(
∥Tn − T∥+ ∥Sn − S∥

)
≤ α

2(s p+ 1)(1 + α)
.

Then, we fix n ≥ n1, we prove by induction on k that

max{|λ(k)
n − λ|, ∥φ(k)

n − φ(n)∥} ≤
(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k+1

, for k = 0, 1, 2...

Since λ
(0)
n = λn, φ

(0)
n = φn and lγ1 ≤ β and for n1 ≥ n0, we find that the expected inequality remains if k = 0.

Next, we assume that the expected inequality is true for a given k ≥ 0, then we demonstrate that is true with k
replaced by k + 1.

Using the equation (E2), we have

|λ(k)
n − λ| ≤

(
∥Tn − T∥+ |λn|∥Sn − S∥

)
∥φ̃(k−1)

n − φ̃(n)∥∥φ∗
n∥, (2.2)

where 
φ̃
(k−1)
n =

φ
(k−1)
n〈

Sφ
(k−1)
n , φ∗

n

〉 ,
φ̃(n) =

φ(n)〈
Sφ(n), φ∗

n

〉 .
On the other hand, we have

∥φ̃(k−1)
n − φ̃(n)∥ ≤ ∥ φ

(k−1)
n〈

Sφ
(k−1)
n , φ∗

n

〉 − φ(n)〈
Sφ

(k−1)
n , φ∗

n

〉∥+ ∥φ(n)∥
∣∣∣ 1〈
Sφ

(k−1)
n , φ∗

n

〉 − 1〈
Sφ(n), φ∗

n

〉∣∣∣
≤

∥φ(k)
n − φ(n)∥

|
〈
Sφ

(k−1)
n , φ∗

n

〉
|
+ ∥φ(n)∥

|
〈
S(φ

(k−1)
n − φ(n)), φ

∗
n

〉
|

|
〈
Sφ

(k−1)
n , φ∗

n

〉
||
〈
Sφ(n) , φ∗

n

〉
|

≤
[ 1

|
〈
Sφ

(k−1)
n , φ∗

n

〉
|
+

∥S∥∥φ(n)∥∥φ∗
n∥

|
〈
Sφ

(k−1)
n , φ∗

n

〉
||
〈
Sφ(n) , φ∗

n

〉
|

]
∥φ(k)

n − φ(n)∥. (2.3)

Proving now that |
〈
Sφ

(k−1)
n , φ∗

n

〉
| ≠ 0 and that

1

|
〈
Sφ

(k−1)
n , φ∗

n

〉
|
≤ 2

α
.

Indeed, we remark that

∥
〈
Sφ(k−1)

n , φ∗
n

〉
| − |

〈
Sφ(n), φ

∗
n

〉
∥ ≤ ∥S∥∥φ∗

n∥∥φ(k−1)
n − φ(n)∥

≤ ∥S∥∥φ∗
n∥

(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k

≤ p s
( α

2(s p+ 1)(1 + α)

)k
≤ p s

( α

2(s p+ 1)(1 + α)

)
≤ α

2
.
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Since |
〈
Sφ(n), φ

∗
n

〉
| = α ̸= 0, then |

〈
Sφ

(k−1)
n , φ∗

n

〉
| ≠ 0 and

|
〈
Sφ(n), φ

∗
n

〉
| ≤ |

〈
Sφ(k−1)

n , φ∗
n

〉
|+ α

2
= |

〈
Sφ(k−1)

n , φ∗
n

〉
|+ 1

2
|
〈
Sφ(n), φ

∗
n

〉
|,

which implies that
1

|
〈
Sφ

(k−1)
n , φ∗

n

〉
|
≤ 2

α
.

According to (2.3), we have

∥φ̃(k−1)
n − φ̃(n)∥ ≤

( 2
α
+ 2

γps

α2

)
∥φ(k−1)

n − φ(n)∥ ≤ β1∥φ(k−1)
n − φ(n)∥,

and then by inserting the previous inequality in (2.2), we obtain

|λ(k)
n − λ| ≤ cpβ1

(
∥Tn − T∥+ ∥Sn − S∥

)
∥φ(k−1)

n − φ(n)∥ ≤
(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k+1

.

Next, by the equation (E3), we have

∥φ(k)
n − φ(n)∥ ≤ ∥Qn∥

(
∥Tn − T∥+ |λn|∥Sn − S∥

)
∥φ(k−1)

n − φ(n)∥
+ |λ(k)

n − λ|∥S∥∥φ(k−1)
n ∥+ |λn − λ|∥S∥∥φ(k−1)

n − φ(n)∥.

Note that
|λn − λ| ≤ lγ1

(
∥Tn − T∥+ |λn| ∥Sn − S∥

)
,

and
|λ(k)

n − λ| ≤ cpβ1

(
∥Tn − T∥+ ∥Sn − S∥

)
∥φ(k−1)

n − φ(n)∥,

and since

∥φ(k−1)
n − φ(n)∥ ≤

(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k+1

≤ 1,

which implies that
∥φ(k−1)

n ∥ ≤ ∥φ(k−1)
n − φ(n)∥+ ∥φ(n)∥ ≤ (1 + q).

Hence,

∥φ(k)
n − φ(n)∥ ≤ a(c1 + (1 + q)c1pβ1s+ c1γ1s)

(
∥Tn − T∥+ ∥Sn − S∥

)
∥φ(k−1)

n − φ(n)∥

≤
(
β
(
∥Tn − T∥+ ∥Sn − S∥

))k+1

.

Thus the expected inequality is true for k and the induction is complete. □

3 Numerics

In this section, we study the following generalized spectral problem:

Find (φ, λ) ∈ X × C : φ+ Tφ = λSφ,

where T and S are two integral operators defined on X = C([0, a]). So, T and S are given by:

Tu(x) =

∫ a

0

k1(x, y)u(y)dy, Su(x) =

∫ a

0

k2(x, y)u(y)dy, u ∈ C([0, a]).

We assume that in the following, the functions k1 and k2 are continuous.

Let (xi)1≤i≤n a grid in [0, a],

hn =
a

n− 1
, xi = (i− 1)hn, 1 ≤ i ≤ n.
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Then we establish the canonical basis of the hat functions on (xi)1≤i≤n as

ei(x) =

 1− |x− xi|
hn

for xi−1 ≤ x ≤ xi+1,

0 otherwise,

e1(x) =

{ x2 − x

hn
for x1 ≤ x ≤ x2,

0 otherwise,

en(x) =

{ x− xn−1

hn
for xn−1 ≤ x ≤ xn,

0 otherwise.

We put,

w1,i(x) =

∫ a

0

k1(x, y)ei(y)dy, w2,i(x) =

∫ a

0

k2(x, y)ei(y)dy, 1 ≤ i ≤ n.

Thus, we consider the matrices An, Bn ∈ Cn×n such that

An(i, j) = w1,i(xj), Bn(i, j) = w2,i(xj).

Apply Kantorovich’s projection method (see [8]), i.e. we change the formula of the operators T and S by πnT and
πnS respectively. So, we get for all x ∈ [0, a]

un(x) +

n∑
i=1

(

∫ a

0

k1(xi, y)un(y)dy)ei(x)

= λn

n∑
i=1

(

∫ a

0

k2(xi, y)un(y)dy)ei(x).

Multiplying first by k1(xj , x) then by k2(xj , x), and integrating over [0, a], so these equations lead to the implementation
matrix of generalized eigenvalue problem as:[

An + In×n On×n

Bn In×n

] [
β1

β2

]
= λn

[
On×n An

On×n Bn

] [
β1

β2

]
,

where, β1, β2 ∈ Cn. The generalized eigenvector un associated to λn is given by:

un(x) =

n∑
i=1

(λnβ2(i)− β1(i))ei(x).

Kantorovich’s projection method is norm-convergent as proved in [8].

The developed scheme (E) requires the evaluation of T and S at certain points of X; In particular T and S are
not used for this purpose, and approximate operators Tm and Sm are preferred, where m is large enough than n. The
implementation of refinement scheme (E) involves the following matrices P and R. For n,m ∈ N, where m > n, we
define a grid (yi)1≤i≤m on [0, a] as previously,

hm =
a

m− 1
, yi = (i− 1)hm, 1 ≤ i ≤ m.

Let (ei,m)1≤i≤m be the canonical basis of the hat functions given on (yi)1≤i≤m . We assume that the two grids
(xi)1≤i≤n and (yi)1≤i≤n are uniform, i.e., the number

r0 =
m− 1

n− 1

is a positive integer.

Let us now define the extension matrix P ∈ Cm×n, for all k = 1, ...,m and for j = 1, ..., n

P (k, j) = en,j(yk),
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then we define the restriction matrix R ∈ Cn×m, for all k = 1, ...,m and for j = 1, ..., n

R(j, k) =

{
1 if k = (j − 1)r0 + 1,
0 else.

Finally, let us denote by
DT = AmP, CT = RAm, DS = BmP, CS = RBm.

Algorithm

▷ Construction of An, Bn, Am, Bm, DT , DS , CT and CS .

▷ β = (β1, β2) and λ ←− solutions of[
An + In×n On×n

Bn In×n

] [
β1

β2

]
= λn

[
On×n An

On×n Bn

] [
β1

β2

]
.

• u
(0)
n = −β1 + λnβ2

▷ u
(0)
m = (λnD

S −DT )u
(0)
n

▷ E(0)
n,m ←−

∥u(0)
m +Amu

(0)
m − λnBmu

(0)
m ∥

∥u(0)
m ∥

▷ λ(k)
n =

v′ · [λnC
S − CT ]DTu

(0)
n + 1

v′ · [λnCS − CT ]DSu
(0)
n

• b(k)n = (λnC
S − CT )(λ(k)

n DS −DTu(0)
n )u(0)

n

• b(k)m = (λnBm −Am)(λ(k)
n DS −DTu(0)

n )u(0)
n

▷ w
(k)
n ←− solution of

{ (
In +An − λnBn

)
w

(k)
n = b

(k)
n ,

w
(k)
n · v′ = 0

• u
(k)
m = u

(0)
m + (λnD

S −DT )w
(k)
n + b

(k)
m

▷ E(k)
n,m ←−

∥u(k)
m +Amu

(k)
m − λ

(k)
n Bmu

(k)
m ∥

∥u(k)
m ∥

• u0
n = u

(k)
n + w

(k)
n .

For the numerical results, we use the kernels

k1(x, y) = (x+ y)2, k2(x, y) = y2(x+ y)2.

We applied our algorithm on the second approximated generalized eigenvalue λn,2 which are ordered in ascending
order of the absolute values. We note (see Tab. 1) that the convergence is established, where we have chose n = 10
and m = 100.

4 Final remarks

As a general conclusion, through this work, we laid the first stone for constructing a generalized iterative scheme
for the generalized spectrum problem related to two bounded operators in an infinite Banach space. However, as
an open problem, we are trying to address the same generalized iterative schema but for more general unbounded
operators (T, S), and also in a two-dimensional or three-dimensional spatial context.
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Table 1: The numerical results, where n = 10 and m = 100

n=10 Ek
n,m

m=100

k=0 0.1318271192004 e-02 k=5 0.1161093961081 e-02
k=1 0.1300527287167 e-02 k=6 0.1105596608060 e-02
k=2 0.1276578541196 e-02 k=7 0.1040187537319e-02
k=3 0.01245814226672 e-02 k=8 0.963895915666 e-03
k=4 0.1207564368813 e-02 k=9 0.875656398268 e-03

References

[1] I. Gohberg, S. Goldbery and M.A. Kaashoek, Classes of Linear Operators Vol I, Springer Basel AG, Birkhuser
Basel, 1990.

[2] A. Khellaf, W. Merchela and H. Guebbai, New sufficient conditions for the computation of generalized eigenvalues,
Russian Math. 65 (2021), 65–68.

[3] H. Guebbai, Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger’s
operators. Lobachevskii J. Math. 34 (2013), 45–60.

[4] A. Khellaf, H. Guebbai, S. Lemita and M. Z. Aissaoui, Eigenvalues computation by the generalized spectrum
method of Schrödinger’s operator, Comput. Appl. Math. 37 (2018), 5965–5980.

[5] A. Khellaf, S. Benarab, H. Guebbai, W. Merchela, A class of strongly stable approximation for unbounded op-
erators, Vestnik Tambovskogo Univer. Seriya: Estest. Tekh. Nauki-Tambov Univ. Rep. Ser. Nat. Tech. Sci. 24
(2019), 218–234 .

[6] A. Khellaf, New sufficient conditions in the generalized spectrum approach to deal with spectral pollution, Vestnik
Tambovskogo Univer. Seriya: Estest. Tekh. Nauki-Tambov Univ. Rep. Ser. Nat. Tech. Sci. 23 (2018), 595–604.

[7] A. Khellaf and H. Guebbai, A Note on genralized spectreum approximation, Lobachevskii J. Math. 39 (2018),
1388–1395.

[8] M. Ahues, A. Largillier and B.V Limaye, Spectral computations for bounded operators, Appl. Math. 18, Chapman
and Hall-CRC, Boca Raton 2001.


	Introduction
	Framework
	Numerics
	Final remarks

