
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,876 |
تعداد دریافت فایل اصل مقاله | 7,656,353 |
Landscape view of recommender system techniques based on sentiment analysis | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 117، دوره 14، شماره 1، فروردین 2023، صفحه 1539-1546 اصل مقاله (437.19 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.7138 | ||
نویسندگان | ||
Rosul Ibrahim Kazem1؛ Enas Fadhil Abdullah* 2 | ||
1Department of Computer Science, Collage of Education, University of Kufa, Najaf, Iraq | ||
2Department of Computer Science, Collage of Education for Girls, University of Kufa, Najaf, Iraq | ||
تاریخ دریافت: 21 تیر 1401، تاریخ بازنگری: 29 مرداد 1401، تاریخ پذیرش: 21 مهر 1401 | ||
چکیده | ||
Over the last several years, sentiment analysis has emerged as one of the most popular applications of machine learning. It enables the identification of a user's attitude from a remark, document, or review. As a result of the development of Big Data, recommender systems (RS) are also finding more use in many aspects of day-to-day living. There are three basic kinds of RS: collaborative filtering, content-based, and hybrid. This article presents a quick description of the recommender systems supplemented with a sentiment analysis module. Sentiment Analysis systems may help recommender systems improve by assessing Web-based reviews. | ||
کلیدواژهها | ||
recommender systems؛ contextual meaning؛ sentiment analysis | ||
آمار تعداد مشاهده مقاله: 17,178 تعداد دریافت فایل اصل مقاله: 379 |