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Abstract

We consider a fractional-order prey-predator model with Holling type IV functional response and the effect of harvesting
on both populations. The sufficient condition for the existence, uniqueness, non-negativity and boundedness of the
solutions are discussed. Moreover, we found all possible equilibrium points and the local and global stability behavior
are investigated. Finally, numerical results are presented with some examples.
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1 Introduction

The study of dynamics of the prey-predator model gets more attention among researchers due to its global im-
portance and existence. Lotka and Volterra were the first to present this interaction mathematically [20, 34]. The
qualitative properties of the prey-predator model in population dynamics have been studied by many ecologists.
[12, 2, 24, 22]. Several factors impact the dynamics of prey-predator interactions: prey refuge, harvesting, disease,
delay, and many other factors. Among them, researchers are particularly interested in examining the impact of har-
vesting. Chakraborty et al. described the constant rate harvesting [6], Leard et al. and Lenzini et al. presented the
proportional harvesting [17, 18], Das et al. and Jana et al. discussed the nonlinear harvesting [8, 13], which are the
three different types of harvesting have been investigated by several researchers. Some authors considered the case
that any one of the species is harvested, while others considered both the prey and predator species are harvested
[13, 21, 28].

In ecology, the functional response of a prey-predator system is significant. A model with functional response help
to describe two important parameters: handling time and attack rate. The population dynamics models with different
functional responses have been widely studied in the ecological literature, especially prey-predator models with Holling
types, which were extensively examined by several authors [6, 8, 13, 21, 28, 11]. In 1968, Andrews [5] first derived a
function

H(u) =
mu

a+ bu+ u2
.
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The above function is said to be the Monod-Haldane function or Holling type IV function. This functional response
indicates the predator’s per capita predation rate decreasing due to the cooperative defense of prey species and high
prey densities. M. C. Kohnke et al. derived the prey-predator model with Holling type IV response with different
shapes [16]. In [32], J. Song et al. proposed the Leslie-Gower model with type IV functional response.

Researchers have become more interested in developing mathematical models involving fractional-order differential
equations in recent years [9, 7, 3, 31, 26, 27, 23]. Many methods exist to solve the fractional-order differential equations,
for example, laplace transform method [27], homotopy perturbation method [35], fourier transformation method [30],
fourier sine transformation method [1] and many others. Furthermore, due to memory effects, fractional-order systems
are more realistic in biological modeling than integer-order systems. Fractional operators are nonlocal and so they
are more suitable for modeling the system with memory effect. In the literature, various studies have been done on
the stability analysis of fractional-order system. M. Das et al. [9] discussed the fractional-order modified Holling
type IV functional response. R. Chinnathambi et al. [7], studied the fractional-order time-delay with Holling type IV
functional response and many others [14, 29, 3, 4]. In [19], X. Liu et al. discussed the integer-order predator-prey
model with Holling type IV response and also they found at an equilibrium point, the system stabilizes by varying the
harvesting efforts and initial value. By the above motivation, we consider the fractional-order prey-predator model
with group defense and harvesting on both populations.

The rest of this article is organized as follows: In Section 2, we formulate the fractional-order system. Some
preliminary results have been given in Section 3. The property of uniformly bounded of the system is shown in
Section 4. In Section 5, existence and uniqueness conditions are proved. Section 6, provided the stability behavior of
all feasible equilibrium points. In Section 7, we analyzed the global behavior of predator-free equilibrium point and
coexisting equilibrium point. We present numerical examples in Section 8 to validate our theoretical findings.

2 Fractional-order model

The following is the prey-predator model with Holling type IV functional response:

du

dt
= rx

(
1− u

K

)
− uv

a+ bu+ u2
− γ1u,

dv

dt
=

τuv

a+ bu+ u2
− dv − γ2v.

(2.1)

Here, u(t) is the prey density and v(t) is the predator density, r is the intrinsic growth rate of prey and K denotes
the environmental carrying capacity. Let d and τ be the death rate and maximum predation rate respectively, γ1 ≥ 0
and γ2 ≥ 0 decribes the harvesting efforts for both the species. We take these terms as H1γ1u and H2γ2v, where H1

and H2 denotes the catchability coefficients of the prey and predator respectively. For our convenience, we assume
that H1 and H2 as unity. The term uv

a+bu+u2 gives the Holling functional response of type IV , where a denotes the

half-saturation constant and b >
√
2a is the denominator of the functional response.

In this paper, we consider the fractional-order prey-predator system with harvesting as the following form:

cDαu(t) = ru(1− u

K
)− uv

a+ bu+ u2
− γ1u,

cDαv(t) =
τuv

a+ bu+ u2
− dv − γ2v.

(2.2)

with the non-negative initial values u(0) = u0 and v(0) = v0, where 0 < α < 1 and r,K, a, b, d, τ, γ1, γ2 are non-negative.

3 Preliminary results

Definition 3.1. [26] The Caputo differential operator for α > 0 is given by

cDαf(t) =
1

Γ(m− α)

∫ t

0

fm(s)(t− s)m−α−1ds,

where Γ(.) is the Euler’s gamma function. For α ∈ (0, 1)

cDαf(t) =
1

Γ(1− α)

∫ t

0

f
′
(s)(t− s)−αds.
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Definition 3.2. A point Z∗ is an equilibrium point of the following system

cDαZ(t) = f(t, Z(t)), with Z(0) = Z0, (3.1)

if and only if, f(t, Z∗) = 0.

Lemma 3.3. [25] Assume 0 < α ≤ 1, f(t) and cDαf(t) ∈ C[a, b]. For t ∈ (a, b),

(a) If cDα f(t) ≥ 0 is a non-decreasing function ∀ a ≤ t ≤ b.

(b) If cDαf(t) ≤ 0 is a non-increasing function ∀ a ≤ t ≤ b.

Lemma 3.4. [15] Let u(t) be a continuous function on (0, T ] and also satisfy

cDαu(t) ≤ −au(t) + b, u(0) = u0 > 0, 0 < α < 1,

where a, b ∈ R2, a ̸= 0. Then

u(t) ≤

(
u0 −

b

a

)
Eα[−atα] +

b

a
.

Lemma 3.5. [27] Consider the system (3.1), where f : ℵ × (0, T ] → Rn, ℵ ⊂ Rn. If f(t,X) satisfies the locally
Lipschitz condition then there exist a unique solution of (3.1) on ℵ × (0, T ].

Theorem 3.6. [26] The equilibrtum points of the system (3.1) are locally asymptotically stable if all eigenvalues
λi (i = 1, ..., n) of the jacobian matrix j = ∂f

∂x which satisfy |arg(λi)| > απ
2 and it is unstable if all eigenvalues λi

(i = 1, ..., n) satisfy |arg(λi)| < απ
2 .

4 Non-negativity and boundedness of the solution

Here we show that the system (2.2) solutions are non-negative. Assume that Ω+ = {(u, v) ∈ Ω : u, v ∈ R+}.

Theorem 4.1. All solutions of system (2.2) which initiates in R2
+ are non-negative and uniformly bounded.

Proof . For any solution u(t) ∈ R+ we need to show that it is nonnegative. Assume u0 > 0 and v0 > 0 for t = 0 and
for all t ∈ R+. If u(t) > 0 is not true, then there exists t1 be a real number satisfying 0 ≤ t < t1, we have u(t) > 0 for
0 ≤ t < t1, u(t1) = 0 and u(t) < 0 for t > t1. According to the first equation of (2.2),

cDαu(t)
∣∣∣
u(t1)

= 0.

By Lemma 3.3, u(t+1 ) = 0, which contradicts our assumption u(t+1 ) < 0. Therefore, for all t ∈ (0, T ], we obtain u(t) ≥ 0.

Similarly, v(t) ≥ 0 ∀ t ∈ (0, T ]. Now, we formulate a function P (t) = u(t)+ v(t)
τ to show the boundedness of the solution.

cDαP (t) = (r − γ1)u− r
u2

K
− 1

τ
(d+ γ2)v

cDαP (t) + ηP (t) = (r − γ1)u− r
u2

K
− 1

τ
(d+ γ2)v + ηu+

η

τ
v

= (r + η − γ1)u− r
u2

K
+

(
η

τ
− d+ γ2

τ

)
v

cDαP (t) + ηP (t) ≤ k(r + η − γ1)
2

4r
.

By using the Lemma 3.4, we have

P (t) ≤
(
P (0)− k(r + η − γ1)

2

4r

)
Eα

[
− δtα

]
+

k(r + η − γ1)
2

4r
→ k(r + η − γ1)

2

4r
as t → ∞.

That is to say, every solutions of the system (2.2) initiating in Ω+ are remains in σ = {(u, v) ∈ Ω+ : u + v
τ ≤

k(r+η−γ1)
2

4r + ϵ, ϵ > 0}. □
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5 Existence and uniqueness of the solution

In this section, we investigate the existence of model (2.2) and also which is unique in ℵ × (0, T ], where ℵ =
{(u, v) ∈ R2 : max { |u|, |v| } ≤ κ}.

Let V = (u, v) and V = (u1, v1) be two points in ℵ. Consider the mapping χ : ℵ → R2 defined by χ(V) =
(χ1(V), χ2(V)), where

χ1(V) = ru

(
1− u

K

)
− uv

a+ bu+ u2
− γ1u,

χ2(V) =
τuv

a+ bu+ u2
− dv − γ2v.

For any V,V ∈ ℵ be arbitrary, it follows that

∥χ(V)− χ(V)∥ = |χ1(V)− χ1(V)|+ |χ2(V)− χ2(V)|

=
∣∣∣ru(1− u

K

)
− uv

a+ bu+ u2
− γ1u− ru1

(
1− u1

K

)
+

u1v1
a+ bu1 + u2

1

+ γ1u1

∣∣∣
+
∣∣∣ τuv

a+ bu+ u2
− dv − γ2v −

τu1v1
a+ bu1 + u2

1

+ dv1 + γ2v1

∣∣∣
≤
∣∣∣r(u− u1)−

r

K
(u2 − u2

1)−

[
uv(a+ bu1 + u2

1)− u1v1(a+ bu+ u2)

(a+ bu+ u2)(a+ bu1 + u2
1)

]
− γ1(u− u1)

∣∣∣
+

[
τuv(a+ bu1 + u2

1)− τu1v1(a+ bu+ u2)

(a+ bu+ u2)(a+ bu1 + u2
1)

]− d(v − v1)− γ2(v − v1)

]

≤

[
r − 2κr

K
+ γ1 +

κ(1 + τ)(a+ κ2)

(a+ bκ+ κ2)2
+ d+ γ2

]
|u− u1|

+

[
κ(1 + τ)(a+ bκ+ κ2)

(a+ bκ+ κ2)2

]
|v − v1|

=

[
r +

2κr

K
+ κ(1 + τ)(a+ κ2) + γ1

]
|u− u1|

+

[
κ(1 + τ)(a+ bκ+ κ2) + d+ γ2

]
|v − v1|

≤ K∥V− V∥.

where K = max {r + 2κr
K + κ(1 + τ)(a + κ2) + γ1, κ(1 + τ)(a + bκ + κ2) + d + γ2}. Thus, χ(V) satisfies Lipschitz

condition, it follows from Lemma 3.5 with initial condition V0 = (u0, v0) has a unique solution V(t). As a result, the
following theorem is established:

Theorem 5.1. The fractional-order model (2.2) with any nonnegative initial value (u0, v0) has a unique solution
V(t) ∈ ℵ ∀ t > 0.

6 Local stability of equilibria

By solving the following equation we can find the equilibrium points of the system (2.2){
cDαu(t) = 0,
cDαv(t) = 0,

that is,

ru(1− u

K
)− uv

a+ bu+ u2
− γ1u = 0,

τuv

a+ bu+ u2
− dv − γ2v = 0.

The equilibrium points are as follows:
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(i) E0(0, 0),

(ii) E1

(
K
(
1− γ1

r

)
, 0

)
exist if γ1 < r,

(iii) E∗
i (u

∗
i , v

∗
i ) (i= 1, 2), where (u∗

i , v
∗
i ) is given by the equation

(d+ γ2)u
2 + [(d+ γ2)b− τ ]u+ (d+ γ2)a = 0. (6.1)

u∗
i =

τ − (d+ γ2)b±
√

[(d+ γ2)b− τ ]2 − 4(d+ γ2)2a

2(d+ γ2)
(i = 1, 2),

v∗i = (a+ bu∗
i + u∗2

i )

[
r

(
1− u∗

i

K

)
− γ1

]
(i = 1, 2).

(6.2)

E∗
i (i= 1, 2) exists under the following conditions,

ξ =
τ

2
√
a+ b

− d, ρ1 = r

(
1− u∗

1

K

)
, ρ2 = r

(
1− u∗

2

K

)
. (6.3)

where ρ2 < ρ1.

Now, we have

(i) If 0 < γ2 < ξ then, we have

(a) two coexisting equilibrium points for 0 < γ1 < ρ2,

(b) unique coexisting equilibrium point for ρ2 ≤ γ1 < ρ1,

(c) no coexisting equilibrium point for γ1 ≥ ρ1.

(ii) For γ2 > ξ, we have no coexisting equilibrium point.

(iii) For γ2 = ξ, we have unique coexisting equilibrium point if 0 < γ1 < ξ = r
(
1−

√
a

K

)
, where the special coexisting

equilibrium point is X∗

(
√
a, (2a+ b

√
a)
[
r
(
1−

√
a

K

)
− γ1

])
.

Next, we check the local stability behavior of all feasible equilibrium points by using the standard linearization
method. The jacobian matrix of the model (2.2) is provided by

J(u, v) =

r
(
1− 2u

K

)
+ (u2−a)v

(a+bu+u2)2 − γ1 − u
(a+bu+u2)

(a−u2)vτ
(a+bu+u2)2

uτ
(a+bu+u2) − d− γ2

 . (6.4)

Theorem 6.1. The trivial equilibrium point E0 of system (2.2) is locally asymptotically stable if r < γ1.

Proof . For E0 = (0, 0), the jacobian matrix is given by

J(E0) =

(
r − γ1 0

0 −d− γ2

)
.

Hence, we obtain λ1 = r − γ1 and λ2 =−m − γ2. It is clear that |arg(λ1)| = π > απ
2 for r < γ1, otherwise we get

|arg(λ1)| = 0 < απ
2 and also |arg(λ2)| = π, which leads to |arg(λ2)| > απ

2 for 0 < α < 1. Therefore, we conclude that
E0 is locally asymptotically stable by Theorem 3.6. □
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Theorem 6.2. The predator-free equilibrium point E1 of system (2.2) is locally asymptotically stable if r > γ1 and

ζ < γ2, where ζ = τKr(r−γ1)
ar2+bkr(r−γ1)+k2(r−γ1)2

−m.

Proof . For E1, the jacobian matrix is as follows:

J(E1) =

(
−(r − γ1)

Kr(γ1−r)
ar2+bKr(r−γ1)+k2(r−γ1)2

0 τKr(r−γ1)
ar2+bKr(r−γ1)+K2(r−γ1)2

− d− γ2

)
.

Hence, the eigenvalues are λ1 = −(r − γ1) and λ2 = τKr(r−γ1)
ar2+bKr(r−γ1)+K2(r−γ1)2

− m − γ2. If r > γ1, we have

|arg(λ1)| = π > απ
2 , otherwise |arg(λ1)| = 0 < απ

2 and if ζ < γ2, then |arg(λ2)| = π > απ
2 , otherwise |arg(λ2)| = 0 <

απ
2 for 0 < α < 1. Therefore, by Theorem 3.6, we conclude that E1 is locally asymptotically stable. □

Theorem 6.3. The coexisting equilibrium point E∗
1 (u

∗
1, v

∗
1) of system (2.2) is locally asymptotically stable if any one

of the following conditions holds:

(i) if A11 < 0 and A2
11 ≥ 4A12A21.

(ii) if A11 > 0 and A2
11 < 4A12A21.

(iii) if A11 < 0 and A2
11 < 4A12A21.

(iv) if A11 = 0 and A2
11 < 4A12A21.

Proof . For E∗
i (u

∗
i , v

∗
i )(i = 1, 2), the jacobian matrix is as follows:

J(E∗
i ) =

(
A11 A12

A21 A22

)
(i= 1, 2).

A11 = r
(
1− 2u∗

i

K

)
+

(u∗2

i − a)(d+ γ2)
[
u
(
1− u∗

i

K

)
− γ1

]
τu∗

i

− γ1,

A12 =
γ2 +m

τ
,

A21 =
(a− u∗2

i )(d+ γ2)
[
r
(
1− u∗

i

K

)
− γ1

]
u∗
i

,

A22 = 0.

The determinant (Det) and trace (Tr) of J(E∗
i ) (i = 1, 2) are

Det = A12A21 =
(a− u∗2

i )(d+ γ2)
3v∗i

τ2u∗2

i

.

T r = A11 = r(1− 2u∗
i

K
) +

(u∗2

i − a)v∗i
(a+ bu∗

i + u∗2

i )2
− γ1.

(6.5)

Therefore, the eigen values are

λ1 =
1

2

(
A11 +

√
A2

11 − 4A12A21

)
,

λ2 =
1

2

(
A11 −

√
A2

11 − 4A12A21

)
.

(6.6)

Case (i) If A11 < 0 and A2
11 ≥ 4A12A21, then both the eigen values λ1, λ2 are negative. Therefore, we obtain the

condition |arg(λ1)| = π > απ
2 and |arg(λ2)| = π > απ

2 . Hence, by Theorem 3.6, E∗
1 (u

∗
1, v

∗
1) is asymptotically stable.
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Case (ii) If A11 > 0 and A2
11 < 4A12A21, then we have both λ1 and λ2 are pair of complex conjugate roots:

λ1,2 =
1

2

(
A11 ± i

√
4A12A21 −A2

11

)
where (i =

√
−1).

We have |arg(λ1,2)| = tan−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣. Therefore, E∗
1 (u

∗
1, v

∗
1) is asymptotically stable,

if tan−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣ > απ
2 in the interval 0 < α < 2

π tan
−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣.
Case (iii) If A11 < 0 and A2

11 < 4A12A21, then |arg(λ1,2)| = π − tan−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣. We obtain the condition

|arg(λ1,2)| > απ
2 . Then E∗

1 (u
∗
1, v

∗
1) is asymptotically stable if π − tan−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣ > απ
2 in the interval 0 < α <

2− 2
π tan

−1

∣∣∣∣√4A12A21−A2
11

A11

∣∣∣∣.
Case (iv) If A11 = 0 and A2

11 < 4A12A21, then |arg(λ1,2)| = π
2 . We obtain the condition |arg(λ1,2)| > απ

2 . Hence,
by Theorem 3.6, the equilibrium point E∗

1 (u
∗
1, v

∗
1) is asymptotically stable. □

Theorem 6.4. The coexisting equilibrium point E∗
1 (u

∗
1, v

∗
1) is unstable if A11 ≥ 0 and A2

11 ≥ 4A12A21.

Proof . If A11 ≥ 0 and A2
11 ≥ 4A12A21, then one of the eigenvalues λ1 > 0 or λ2 > 0. Therefore, we obtain the

condition |arg(λ1,2)| < απ
2 . Hence, by Theorem 3.6, the E∗

1 (u
∗
1, v

∗
1) is unstable. □

7 Global stability of equilibria

We establish the global behavior of the system (2.2) at the equilibrium points E1 and E∗
1 (u

∗
1, v

∗
1) in this section.

Lemma 7.1. [33] Let u(t) be a continuously differentiable function. Then, for any time instant t > 0,

cDα

(
u(t)− ω − ω log

u(t)

ω

)
≤

(
1− ω

u(t)

)
cDαu(t), u(t), ω ∈ R+, (7.1)

where o < α < 1.

Theorem 7.2. The predator-free equilibrium point E1 is globally asymptotically stable if 2r − γ1 < 0 and K <
1
τ (d+ γ2).

Proof . The positive definite Lyapunov function is defined as follows:

W(u, v) = u−K
(
1 + log

u

K

)
+

v

τ
. (7.2)

By using the Lemma 7.1, we get

cDαW(u, v) ≤
(
1− u

K

)
cDαu(t) +

1

τ
cDαv(t)

= (u−K)

[
− (u−K)r

K
− v

a+ bu+ u2
− γ1

]
+

uv

a+ bu+ u2
− d

τ
y − γ2

τv

≤ −ru2

K
− rK + 2ru+

vK

a+ bu+ u2
− γ1u+ γ1K − d

τ
v − γ2

τv

=
−ru2

K
+ (2r − γ1)u+

(
K − 1

τ
(d+ γ2)τ

)
v + (γ1 − r)K

cDαW(u, v) ≤ 0.

Since γ1 − r < 0 for the existence of E1.
cDαW(u, v) ≤ 0 if 2r − γ1 < 0 and K < 1

τ (d + γ2). Hence E1 is globally
asymptotically stable. □
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Theorem 7.3. The coexisting equilibrium point E∗
1 (u

∗
1, v

∗
1) is globally asymptotically stable if

v∗(b+(u+u∗))

(a+bu+u2)(a+bu∗+u∗2 )
< r

K .

Proof . First, we define the Lyapunov function as follows:

W(u, v) = u− u∗
(
1 + log

u

u∗

)
+

1

τ

(
v − v∗

(
1 + log

v

v∗

))
. (7.3)

Using Lemma 7.1, we can show that

cDαW(u, v) ≤

(
u− u∗

u

)
cDαu(t) +

1

τ

(
v − v∗

v

)
cDαv(t)

=

(
u− u∗

u

)[
ru
(
1− u

K

)
− uv

a+ bu+ u2
− γ1u

]
+

1

τ

(
v − v∗

v

)[
τ

uv

a+ bu+ u2
− dv − γ2v

]

≤ (u− u∗)

[
− r

K
(u− u∗)−

[
(va+ bvu∗ + vu∗2

)− (av∗ + buv∗ + u2v∗)

(a+ bu+ u2)(a+ bu∗ + u∗2)

]]

+ (v − v∗)

[
(au+ buu∗ + uu∗2

)− (au∗ + buu∗ + u2u∗)

(a+ bu+ u2)(a+ bu∗ + u∗2)

]

≤ r

K
(u− u∗)2 − bu∗(u− u∗)(v − v∗)

(a+ bu+ u2)(a+ bu∗ + u∗2)
+

bv∗(u− u∗)2

(a+ bu+ u2)(a+ bu∗ + u∗2)

+
v∗(u− u∗)2(v − v∗)

(a+ bu+ u2)(a+ bu∗ + u∗2)
− u∗(u+ u∗)(u− u∗)(v − v∗)

(a+ bu+ u2)(a+ bu∗ + u∗2)

≤

[
v∗(b+ (u+ u∗))

(a+ bu+ u2)(a+ bu∗ + u∗2)
− r

K

]
(u− u∗)2

−

[
u∗(b+ (u+ u∗))

(a+ bu+ u2)(a+ bu∗ + u∗2)

]
(u− u∗)(v − v∗)

cDαW(u, v) ≤ 0.

Therefore, cDαW(u, v) ≤ 0 if v∗(b+(u+u∗))

(a+bu+u2)(a+bu∗+u∗2 )
< r

K , Hence E∗
1 (u

∗
1, v

∗
1) is globally asymptotically stable. □

8 Numerical Simulations

The numerical simulations for the system (2.2) are performed by generalized Adams-Bashforth-Moulton Predictor
Corrector method [10]. We provide some examples to verify the analytical results of our formulated model through
MATLAB.

Example 1. We take r = 2, K = 45, d = 0.1, τ = 4, a = 0.95, b = 0.9, γ1 = 1.93, γ2 = 1 and the initial
time u0 = 0.5, v0 = 0.9 with step size 2−6. The dynamical behavior of the positive interior equilibrium point E∗

1 is
presented in Figure 1, 2, 3. When the value of α is decreasing, limit cycle disappears and coexisting equilibrium point
becomes stable.

Example 2. In Figure 4, We verified the global stability of the positive equilibrium point E∗
1 with the parameters

set r = 2, K = 20, d = 0.1, τ = 4, a = 0.9, b = 0.9, γ1 = 1.9, γ2 = 1. Here, we have taken the value α = 0.90.
Therefore, Theorem 7.3 is satisfied with this set of parameters.

9 Conclusion

A Caputo fractional-order predator-prey system with Holling response function of type IV and harvesting on
species was investigated. Also, we derived the sufficient condition for existence and uniqueness, non-negativity and
boundedness of the solution. This model (2.2) has three positive equilibrium points and we have investigated the local
behavior of all possible positive equilibrium points. In further, the global stability of the predator-free equilibrium
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Figure 1: Numerical simulations showing the trajectory and phase portrait of the system (2.2) with value α = 1 around the equilibrium
point E∗

1 .
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Figure 2: Numerical simulations showing the trajectory and phase portrait of the system (2.2) with value α = 0.99 around the equilibrium
point E∗
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Figure 3: Numerical simulations showing the trajectory and phase portrait of the system (2.2) with value α = 0.95 around the equilibrium
point E∗
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Figure 4: Global behavior of the system (2.2) at E∗
1 . From the figure we observed that the trajectories with different initial conditions

converge to the E∗
1 (0.38, 0.08) (shown in different colors) and is globally asymptotically stable.
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point E1 and the coexisting equilibrium point E∗
1 were derived by formulating certain Lyapunov functions. Finally,

numerical simulations have been used to verify these theoretical findings. From the numerical simulations we observed
that, if we decrease the value α, the coexisting equilibrium point E∗

1 gradually changes from unstable to locally
asymptotically stable and for the integer-order case (α = 1) the system is unstable which is shown in the Figure 1.
Several prey species have defensive capabilities in real life due to the effect of the type IV functional response. As
a result, the number of prey species rises for a long time, limiting the growth of predators. At last, the predator
approaches extermination when the prey population stabilize at the equilibrium point.
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