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Abstract

In this paper, we introduce and study a system of generalized quasi-variational inequalities involving nonlinear, non-
convex and nondifferentiable terms in uniformly smooth Banach space. By means of the retraction mapping technique,
we prove the existence of solutions for this system of quasi-variational inequalities. Further, we suggest an iterative
algorithm for finding the approximate solution of this system and discuss the convergence criteria of the sequences
generated by the iterative algorithm under some suitable conditions.

Keywords: System of generalized quasi-variational inequalities, nonlinear, nonconvex and nondifferentiable term,
uniformly smooth Banach space, retraction mapping, iterative algorithm, convergence analysis
2020 MSC: 47H09, 47J20, 49J40

1 Introduction

Many problems in physics, mechanics, elasticity and engineering sciences can be formulated in variational inequal-
ities involving nonlinear, nonconvex and nondifferentiable term, see for example Baiocchi and Capelo [3], Duvaut and
Lions [§] and Kikuchi and Oden [II]. The proximal (resolvent) method used to study the convergence analysis of
iterative algorithms for variational inclusions, see [I0] 6], cannot be adopted for studying such classes of variational
inequalities due to the presence of nondifferentiable term.

There are some methods, for example projection method and auxiliary principle method which can be used to study
such classes of variational inequalities, see [6l [12], T4}, [15] and the relevent references cited therein. It is remarked that
most of the work, using projection method and auxiliary principle method, has been done in the setting of Hilbert
space. Alber and Yao [2], Chen et al.[5] studied some classes of co-variational inequality and co-complementarity
problems in Banach spaces. Therefore, the study of other classes of variational inequalities using projection method
and auxiliary principle method in the setting of Banach space remains an interesting problem. Chidume et al. [6]
studied some classes of variational inequalities involving nonlinear, convex and nondifferentiable term, using auxiliary
principle method in the setting of reflexive Banach space.

Motivated and inspired by the above achievements, in this paper, we study a new system of generalized quasi-
variational inequalities involving nonlinear, nonconvex and nondifferentiable term in uniformly smooth Banach space.
Using sunny retraction mapping, we establish that SGQVI is equivalent to some relations. Further, using these
relations, we suggest an iterative algorithm with errors for approximating the solution of the system and discuss the
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convergence of iterative sequence generated by the iterative algorithm. The results presented in this paper improve
and extend many known results in the literature, see for example [7].

2 Preliminaries and formulation of problem

We need the following definitions and results from the literature.

Let X be a real uniformly smooth Banach space equipped with norm ||.|| and X* be the topological dual space of
X. Let < .,. > be the dual pair between X and X*. Let CB(X) be the family of all closed and bounded subsets of
X, CC(X) be the family of all nonempty, closed and convex subsets of X. Let 2% be the power set of X.

Definition 2.1. A mapping J : X — 2% is said to be a normalized duality mapping, if it is defined by

J(@) ={f € X* a0, f) = 2] l|lzll = [ fx-}, forall zeX.

In the sequel, we shall denote a selection of normalized duality mapping J by j. It is well known that if X is
smooth, then J is single-valued and if X = H, a real Hilbert space, then J is an identity map.

Definition 2.2. [I7] A Banach space X is said to be smooth if, for every x € X with ||z|| = 1, there exists a unique
f € X* such that ||f|| = f(z) = 1.

The modulus of smoothness of X is the function px : [0,00) — [0, 00), defined by

z+y|| + ||z —
o) =sup { PRI 0y e g =yl = o -
Definition 2.3. [I7] A Banach space X is said to be

(i) uniformly smooth if lim L(U)
o—0 o

= ()7
(ii) g-uniformly smooth, for ¢ > 1, if there exists a constant ¢ > 0 such that px (o) < co?, o € [0, 00).

Note that if X is uniformly smooth, then J, becomes single-valued.

Lemma 2.4. [16] Let X be a uniformly smooth Banach space and let J : X — X* be the normalized duality mapping.
Then for all x,y € X, we have

(@) llz+yl? < llzl* + 2{y. J(z + y)),
(b) (& —y,Jo — Jy) < 2d°px (4]|z — y|l/d), where d = \/([[z]* + [ly][*)

Definition 2.5. A mapping h: X — X is said to be
(i) Lipschitz continuous if, there exists a constant Ly > 0 such that
[h(z) = h()|| < Lnlle =y, Va,y € X,

(ii) &-strongly accretive if,
(h(@) = h(y), T —y)) > €|z =y, Yo,y e X.

Definition 2.6. A mapping S : X x X x X — X is said to be Lipschitz continuous with respect to first argument
if, there exists a constant Lg > 0 such that

Hs(whﬂ?ml’s) - 5(2/173327903)“ < Lsllzy —will, Vo1, y1, 70,23 € X.
Similarly, we can define the Lipschitz continuity of S in second and third arguments.

Definition 2.7. [1,5, 9] Let K C X be a nonempty closed convex set. A mapping Gk : X — K is said to be
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(i) retraction if
G% = Gk,

(ii) nonexpansive retraction if

1Gx(2) = Gr @) < [lz—yl, Ve,yeX,
(ii) sunny retraction if
Gk (Ggz —t(r — Ggr)) = Ggz, Yx € X, t € R.
Lemma 2.8. [5, [0] A retraction Gk is sunny and nonexpansive if and only if
<x - Gg(x), J(Gg(z) — y)> >0, Vz,y € X.

Definition 2.9. The Hausdorff metric D(-,-) on CB(X) is defined by

D(S,T) = max {sup inf d(u,v), sup inf d(u, v)} , S, T € CB(X),
ueS veT veT ueS
where d(-,-) is the induced metric on X.

Definition 2.10. 4 A set-valued mapping 7' : X — C'B(X) is said to be ~-D-Lipschitz continuous, if there exists a
constant v > 0 such that

D(T'(x), T(y)) <Alle —yll, Va,yeX.
Theorem 2.11. [13] Let T': X — C'B(X) be a set-valued mapping on X and (X, d) be a complete metric space.

(i) For any given p > 0 and for any given z,y € X and u € T'(z), there exists v € T'(y) such that
d(u,v) < (1+p)D(T(z),T(y)).

(ii) ¥ T: X — C(X), then (i) holds for u = 0.

Now, we formulate our main problem.

Let X; be a uniformly smooth Banach space. Let for each i = {1,2,3}, T; : X1 x Xox X3 — X, ki, fi, 00+ Xs = X,
be single-valued mappings, B;1, Bi2, Biz : X; = CB(X;) and K; : X; — CC(X;) be set-valued mappings. We consider
the following system of generalized quasi-variational inequalities (SGQVI): Find (z1, z2, 23, u11, U12, U13, U21, U22, U23, U31, U32, U33
such that for each 7 € {1,2,3}, (l‘l,IEQ,Ig) € X; X Xo x X3,uy1 € Bﬂ(xl),um S BQ(JZQ),UB € Big(irg), such that
fi(z;) € K;(z;) and

<k1(f1(x1)), Ji(yr — fl(zl))> + p1bi(x1,91) — prba(z, fi(z1))

> </€1($1)J1(y1 - f1(3€1))> - p1<T1(u11au127U13) — g1, i(y1 — f1(x1))>,
<k2(f2($2))7 Jo(y2 — f2($2))> + paba(x2,y2) — poba(xe, f2(z2))
(2.1)

> </€2($2), Ja(y2 — f2($2))> - P2<T2(u21,u22vuzs) — g2, J2(y2 — fz(x2))>»

<k’3(f3($3))7 J3(ys — f3(1‘3))> + p3b3(w3,y3) — p3bz(xs, f3(3))

> </€3(353), J3(ys — f3($3))> - p3<T3(u31, u32,u33) — g3, J3(yz — f3(9€3))>

for all y; € K;(x;), where p; > 0 are constants, g; € X; and b;(.,.) : X; x X; — R are nonlinear, nonconvex and
nondifferentiable forms satisfying the following conditions:

Condition 2.12.
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(i) bi(.,.) is linear in the first argument.

(ii) there exists a constant p > 0 such that
bi(wi, yi) < pallzill lysll, Vs, yi € Xi.

(iii)
bi(ws, yi) — bi(ws, ;) < bi(zs,yi — vi), Vi ys € X,

Remark 2.13.

(i) Condition 2.12(i)-(ii) imply that
=bi(@i,yi) < pallill ill, Vaiyi € X

Hence, we have
|bi(zi,y:)| < pillall lyall, Vi, v € X

(ii) Also Condition 2.12(i)-(iii) imply that
i (@i, i) — i, y)| < pallsll Nys — vill, Vi, 93,95 € X

That is, b;(x;,y;) are continuous with respect to the second argument.
Special cases:
I. If in problem (2.1), X; = X is a real reflexive Banach space, X* is a topological dual space of X, D is a nonempty
convex subset of X, T; =T : X* x X* - X* k; =0,g, =g € X*,fi =f € X, B11,B12 : X - CB(X*),u1; €
Bi1(z),u12 € Bia(x), then problem (2.1) reduces to the following problem: find « € X, such that

(T, uiz) = 9.y = £(2)) + pbla.y) — pbla, f(2)) > 0, ¥y € D. (2:2)

This type of problem (2.2) has been considered and studied by Ding and Yao [7].

3 Existence of solution

First, we give the following technical lemma:

Lemma 3.1. Let p;, \; be positive parameters and let Condition 2.12 hold. Then the following statements are
equivalent:

(a) SGQVI (2.1) has a solution x; € X; with f;(z;) € K;(z;),

(b) there exist z; € X; such that f;(z;) € K;(z;) and
(i = Qul@), Ty = fil)) 2 0 Wy € Kilw), (3.)
where ; : X; — X, is defined by

<Qi(xi)7 Ji(yi)> = (4, Ji(ys)) — <ki(fi<xi))a Ji(yi>> + <k’z‘(ﬂfi), Ji(yi)>
_Pi<Ti(Uil7ui27ui3) — i Jz(yz)> = pibi(zi,yi), Vo, vy € X, (3.2)

(c) there exist z; € X; such that f;(z;) € K;(z;) and
fi(xi) = Gk, (1) [fz(xz) — Nz + )\ZQZ(%)}? (3.3)

where the mapping G, (s,) is sunny retraction from X; — K;(x;).
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Proof . (a) = (b). Let (a) hold. That is, there is z; € X; such that f;(z;) € K;(x;) and
(k@) iy = Fi@i))) + pibilaisys) = pibi(ei, i)

> <ki(l‘i), Ji(ys — fi(xi))> - Pi<Ti(Ui17ui2a uiz) — Gi» Ji(yi — fi($i))>7 (3.4)

which can be rewritten as
(i dilys = Fi(@)) = (@i Jiws = Fiwi))) = (Ralfiwid), iy = Fila))) + (ki) Jilw = i)
—pibi(@s,yi = Fi(@:)) = pi (Tl i, wia) = 9o, Jiys = Filw)). (3.5)
By using (3.2), (3.5) becomes
(i = Qulws), Ji(y: = fi(@)) ) 2 0 Vi € X, (3.6)

Hence (b) holds.
(b) = (a). It is immediately followed by retracing the above steps and using Condition 2.12.
So, for \; > 0, we have

>\i<$z‘ = Qi(z:), Ji(yi — fz(xl))>
= <fi(-73i) — (filmi) — Nzy + NiQ(x2)), Jiys — fi(xi))> Vi, y € X;. (3.7)

Therefore, from (3.7) and Lemma 2.8, it follows the statements (b) and (c) are equivalent. This completes the
proof. O

4 Tterative algorithm and convergence analysis

Now, using the result of Nadler[13], we give an iterative method with error terms for finding an approximate
solution of SGQVT (2.1):

Iterative Algorithm 4.1. Fori = {1,2,3}, given 2¥ € X;, we can take u%; € B;;(29),u% € Bia(29),u’ € Biz(23),
and let
zj = (1= Bi)ad + Bi|af — fi(2) + G, (a0 (fi(x?) — iz} + /\iQi(x?))} + Biel.

Since v} € By1(29),uly € Bia(23),ul € Bi3(xY), by Nadler’s Theorem, there exist u}; € By1(21),uly € Bia(xd),uly €

Bis(z3), such that
luiy = udy || < (1 + 1)D1(Bis(a1), Bia(29)),

l[ufy — uds|| < (1+ 1)Da(Bia(z3), Bia(x9)),
l|ujz — ugsl| < (1+1)Ds(Bis(x3), Bis(3)).

Again, let
;= (1= Bz} + B [%1 — fila}) + G, (fi(%l) — Nizj + Aﬁz‘(ﬁ))} + Biej .

By Nadler’s Theorem, there exist u? € B (2%),u?, € Bia(23),u?; € B;s(23), such that
1
2y = bl < (1+5) Pu(Ba(ad), Balah)),
1
2y = ubyll < (1+ 5 ) Pa(Ba(a), Bis(ad)),

1
ks = usll < (1+ 5) Da(Bis(a?), Bis(a})).
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Continuing the above process inductively, we can obtain the sequences {z]'}, {uli }.{ulb},{u}s}, by the following
iterative:

2= (L= B)a} + Bl — fial) + Gy | filal) = Nl + ASu(al)) | + el

1
n+1

gt =il < (14 —= ) Pa(Ba (et ™), Baah),

n 1 n
hus™ = ull < (14— ) Da(Baales ™), Bia(a)),

1

g™ = wsll < (14 ——= ) Ps(Biaa ™), Bis(a),
n+1

where n = 0,1,2,... for i € {1,2,3},8; > 0,\; > 0 are constants, e’ € X;(n > 0) are errors to take into account a

possible inexact computation and D;(.,.) are the Hausdorff metrics on CB(Xj).

Now, we give the convergence analysis of the sequences generated by the iterative algorithm 4.1.

Theorem 4.1. Let for each i = 1,2,3, X; be a uniformly smooth Banach space with px, (t) < ¢;t? for some constant
ci > 0. Let f; be ;-strongly accretive and v;-Lipschitz continuous, let k; be Ly, -Lipschitz continuous and 7;-strongly
accretive with respect to f; and f; be Ly,-Lipschitz continuous. Let T; be Lr,,, Lt,, and Lt,,-Lipschitz continuous in
the first, second and third arguments, respectively, and B; be Lp,,, Lp,,, Lp,, — D— Lipschitz continuous in the first,
second and third arguments, respectively. Assume that for some constant v; > 0,

Gk, (2:) (%) — G,y 2l < villzs — will, Vg, y: € X, (4.1)

0<r<l, (4.2)

where
r =max{hy +1t1,hy + 12, hg + 13},

+/Bi/\i\/1 — 273 4+ 64¢; L7 L3, + Bidi Ly, + piBiipi + Bivi < 1,
ti = Z?:l BiAipiLr; L, <1,

o0 oo oo
and Z led — ed=1|n™? < oo, Z led — ed=1|n~? < oo, Z led — ed=1|n™? < oo,
d=1 d=1 d=1

lim ef = lim ey = lim e =0, for each h € (0,1).
n—oo n—oo n—oo
Then the SGQVI (2.1) admits a solution (z1,z2, zs3, u11, U12, U13, U21, U22, U3, U31, Us2, Us3) and the iterative se-
quences {z'}, {ufy }, {u}, {u} generated by iterative algorithm 4.1 strongly converge to x;, u;1, U2, u;3, respectively
for each i € {1, 2, 3}.

Proof . We have

27t —apll =

(1= B1)zy + A [m’f = fi(z}) + GKl(ac;L){fl(x'f) — Ay + /\191@?)” + Bret

— (= B)al T 4+ By [21 7 = AT + G LAY = et T )] + 516?1]

<(1-) ot 217 = (Aad) = A7)

n n—1
xl 71‘1 H+ﬂ1‘

+/31HGK1<I?>{J“1<9”?> —naf @D - G e (AT = Al e |
+Bulleg —er 7|
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< (1= B)|ap — 2t H + Bil|ot =217 = (A - A )|
+51HGK1(M){ - Azt + >\191(1171)} - le(zy){fl(ﬁ_l) - Mz 4 )\191(1’711_1)}“
—|—ﬁ1HGK1(m {fl (xP77) = Mal™ by )\191(;3?*1)} — GKl(wrl){fl(x?f ) — Az~ 1
+A1 Q4 (2 }H ‘|‘ﬂ1H€1 —er 7.

Then

Jz Tt =2l < (1=B)|at — 2P + B

2t =27 = (A - )|
81 fulat) = AEET = Ma@h - 2|+ B ) - 2|
it 217 + Brllet — el (4.3)

Since f1 is d1-strongly accretive and vq-Lipschitz continuous, using Lemma 2.4, we have

2
al =l = (faled) = ful@l )|

IN

ot = 2372 = 2( fu(@p) = fa(@i™h), A (o8 — 237t = (faleh) - A7)

IN

ot — 2t 72 = 2( fua}) = FulafY), e — 2l 7Y)
+2(fi(ah) = @) At - ap ™) = (2] — 2T = (A) - AEET))

< (1 =261 + 64c1v?) |2 — x?71||2.

|
Similarly, )
|1 = @) = xt a1

This implies

& — 2 (f (@) — fi(z H V1 - 260+ 6derw? oy — . (4.4)

< Xt —ai 7 P = 2(Ai6D) — A6 A (AGED - AGT =My -2 )
= Mlat =272 = 2( fu(a}) — filat ), S (Mt — 21 )))
+2(fi(a}) = it S (M Gd =21 7)) = A (6D - AT = Mt -2 ))
< (A2 = 2X6; + 64civd) ||ah — 272
Then

[f1am) = @i = Mt =217 < 4 - 2060 + 64 1o} — 7). (45)
So by using (3.2), € : X; — X; is defined by
(Qulw). Jiwi)) = (oo, Jiw)) = (ki) Ji(we)) + (ki) Jolw) )
_pi<Ti(uilvui2,ui3) — Gis Ji(yi)> = pibi(xi, yi), Vai,y € X (4.6)

Therefore, using Condition 2.12 (ii), we have

2
|@t) @)
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— ‘< — ()™ Jl(Ql(ml) TG 1))>‘

<:c1 2t 1J1(91 o) = @i ™)) = pabi (of — 277 Quaf) - i)
~(k (A1) = k(A @) D (D) - @)
(ki) = ki (@), 2 (@) - @) )

(T wl ) = Ty (i iy ui ), I (D (o) = (@l ) )|

e CIACHRTACS))
(k1 @) = k(@) = o (Tuuf, wiy uy) = T (i iy gy ) 1 (ad) — @3 ) )|

+p1‘bl($?—x?_1791(331) Ql(ml 1))‘

S [
n—-1  n—1 H

n n n
+P1HT1(U11aU127U13)_Tl(un yUTy UYy

o =5 = () — ()| + [l k)

|u (@) - @)

n n—1
tpip|| Ty — Ty

) - i)

IA

o =5 = () = k() [+ [k kg

+PIHT1(U?17U7112W?3) — T (ufy ! s Uy ! S uYs I)H

pupu |t — o ] @) - @)
Then
| - @i < [l’?»ﬁ"l(kl(fl(x’f))kl(fl(x?_l))>H+Hk1(x1 ka2l ™)
+PIHTI(U?M“?2,U?3)_Tl(un ' U?Ql uys H"‘Plﬂlel zy - ] (4.7)

Since kp is Ly, -Lipschitz continuous and 7i-strongly accretive w.r.t fi; and f; is Lg, -Lipschitz continuous, using
Lemma 2.4, we have

af — T = (kl(fl(ﬂ? —ki(fi(zy™ )H
< ot = a7 P = 2k (A @ED) — k() A (ot - 27 = (k(AGED) - k(fE))

ot — 2372 = 2(ka(fu(a1) = ka (i (@), et — 7))

+2(ki () = k1 (fu(@f ™), ah —af ™) = i (a7 =217 = k(A1) — ki (AGT))

IN

(1—2m +64c1 L} L3)|la} — 27712
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This implies

Since kp is Ly, -Lipschitz continuous, we have
|1 (@) = k(@17 < Lo = 2572| (4.9)

2 =t = () = b )| < 1= 2 64ea 13, 13, — 2y (43)

Again, since T} is Lp,,, L1, and Lz ,-Lipschitz continuous in the first, second and third arguments, respectively,
B,y is Lp,,,Lp,, and Lp,, — D— Lipschitz continuous in the first, second and third arguments, respectively, we have

|7t o, uty) = Ta s )|

n n n n—1 ,n n n—1 ,n n n—1 _n—-1 _n
< HTl(u117u127u13) — Ti(ufy ,u12,u13)H + HTl(Un sufy, ufy) — Th(ufy  ufs ’ul?’)H
n—1 n—1 n n—1 n—1 n—1
+HTl(Uu sufy s ufg) — Th(uyy - uyy gy )H
n n—1 n n—1 n n—1
< LT11 Uyy —Upy H + LT12 Uy — Ugo H + LT13 Uz — Uyz H
1 n—1 1 n—1
< LTllLBll (1+E)’1‘?7ZL’1 "+LT12L312 (1+5)’x371’2 H
Lo L, (14 2 [ — ant (4.10)
+ T134Bi3 + ﬁ T3 — T3 . .

Combining (4.3)-(4.10), we have

lai —atl < (= By)er -2t + Bufer — 217 = (AGep) - i)
B fuan) = AEET = M@ =217+ B @) - 2|
+hiyllaf — 277 + Bullet — i 7
< (1- 51)‘ p — ;z:?_lu + B1y/1— 201 + 64civ? ||lap — x|
+B1/ N2 = 20101 + 6dci v ||xf — 2P| + ﬁl)\l{\/l — 27 + 6401[/%1[/}1 g — 2771
Lo = 21|+ pr (L Loy (14 1) [0 = 27| + Lol (14 1) |23 — 237

+LT13L313 (1 + %) ‘

xy — 37?71“) + Plﬂl‘ zy — 5571171‘)}

ot — a7 + Buller — et

S (]. - ﬁl) + ﬂl \/]. - 2(51 + 64611/12 + Bl \/)\% - 2)\1(51 + 64011/12 + 51)\1 \/]. - 2’7’1 + 6461[%1[/?1

+p181 LT, Lp,, (1 + %) ‘ xy — 96371H +p1BidiLlr, L, (1 + %)‘

+Blet —er M. (4.11)

+601A1 Lk, + p1Birapa + i + Bidipi Ly, Ly, (1 + %) Tt — 1y

n—lH

n n—1
2l — al H
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Similarly, following the same procedure as in (4.3)-(4.10), it follows that

22t — 22 < paBoralr, L, (1 + )‘ —ah 1H
+ (1= By) + Ban/T — 205 + 64ca12 + Barn/AE — 2A305 + 64c312 + Bods \/1 — 21y + 6dep L2 L2,
+B2A2 Ly, + p2Barapie + Baye + Barep2 L, Lp,, (1 + %) ’ zy — IZL—lH
+pafadalr,, L., (1 + )‘ — 2 H + Bollel — en Y| (4.12)
and
a5t —afl| < psfsAsLsiLp,, (1 + %)‘ x Z?_lH + p3B3AsLaaLp,, (1 + %) ry — 1wy 1H

| (1= B3) + B3y/T — 265 + 6dcsiZ + B3\ /A2 — 2A303 + 6dcsrZ + 63)\3\/1 — 275 + 6dcs L3, L2,

+83A3 Ly, + p3Baisps + Bays + BsAzpsLry, LB, (1 + %) ‘ xf —axy 1”
+Bsles — ez 7M. (4.13)
Therefore, combining (4.11)-(4.13), we have
3
‘1111—0—1 n+1 n+1 xg _ Z ‘ IIT?+1 o I‘;ﬂ
+BiAi \/1 — 27 + 64c; L L3, + Bi\iLk, + piBidipi + Bivi
3 1 n n—1 3 n n—1
+Zj:1 ﬁj)\jijTjiLBji (1 + E) ‘ Ty — H + Zi:l 61”61 — € ”
3 3
<3+ 17) 2 — a7+ D Ailler — e, (4.14)
=1 i=1

where

hi = (1= B;) + Bin/1 — 28; + 64c;v? + Bin/A? — 2X;6; + 64c;v?

+Bihiy /1 = 27 + 64¢,L3, L3, + BN L, + pibihigsi + Bi

t?: Z] 15] ijLT LB ( l).
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Then

3
ap =+ D Biller - e (4.15)
1=1

where ™ = max{hy + t}', ho + t5, hs + t§}, for all n = 1,2,3,--- . Letting » = max{hy + 1, ha + t2, h3 + t3}, where
t; = Z 1 BiNjpiLr; Ly, Yie{l,2,3}, weget r" —rt} —t; asn — 00,4 € {1,2,3}.

From (4.2), since 0 < r < 1, there exist ng € N and r¢ € (r,1) such that " < rg for all n > ng. This implies from
(4.15) that

3 3 3
n+1 n n n—1 n n—1
S et = < S wolfer — a3 Biller e (4.16)
i=1 i=1 i=1
3 n—ng 3
_ Z Z -1 1
S E Tg o $?0+1 - -’L‘?O + n (= )a vn Z No, (417)
where s = [|e? — el '||, Vn > ng. Hence for any m > n > ng, we have
m—1 3
Z ’ pdtl —
d=n i=1

m—1

3
<> 2.
d=n i=1

d—no
1
no x?o-‘r —CE?O

m 3
+3°3 S gty (4.18)

d=n p=1 i=1

71)

m—1 3 m d—ng 3 —
S IR DIDIH AL (419
d=n i=1 d=n p=1 i=1

Since Y07, sth™ < 00,307 s3h™¢ < oo and Yo7, sgh’d < o0, Vhe(0,1)and ro < 1.

no+l _  no

m o __ m _

Therefore, (4.19) implies that ‘ 1} {zz}, {2} are

Cauchy sequences in X, X5, X3 respectively. Thus, there exist 1 € Xi,29 € Xo,23 € X3 such that zf — z1,25 —
To, x5 — T3 as M — 00.

Now we prove that uly — u;1 € Bji(x1),uly = wse € Bia(xe), uly — w;s € Big(xs), for each i € {1,2,3}. In fact, it
follows from the Lipschitz continuity of B;1, B;2, B;3 and from above iterative algorithm 4.1, that

1
it =il < (14 ——=)Pa(Ba (a1 ™), Balah), (4.20)
n+1
n n ]' n n
™ =iyl < (1+ = ) Da(Bales ™), Ba(as)). (4.21)
1
™ =iyl < (14 = ) Pa(Bia(a5 ), Buala). (4.22)

From (4.20)-(4.22), it follows that {u};},{ufy} and {u}s} are also Cauchy sequences. Therefore, there exists
u;1 € X1, U2 € Xo and u;3 € X3 such that ujy — w1, uly — Uio, Uiy — U3, as n — 00.
Further, for each ¢ € {1,2,3},
d(ui, Bin(z1)) < lui — uy || + d(ufy, Bir (1))
< lwin — u || + Di(Bir(21), Bir(x1))
< lwin —ull 4 L, |27 — 24|
— 0asn— oo.
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Since By is closed, we have w;; € Bji(x1). Similarly wis € Bya(w2), uis € Byz(xs), respectively. Thus the
approximate solution {z?'}, {u}} }, {ulh}, {uls} generated by iterative algorithm 4.1 converge strongly to x;, w1, u2, U3,
respectively for each ¢ € {1,2,3}. O
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