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A Zn-based metal–organic framework (Zn-MOF) was synthesized by a novel electrodeposition 

method. The prepared Zn-MOF was characterized using powder X-ray diffraction, Fourier transform 

infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy techniques. The supercapacitive behavior of synthesized MOF was examined using cyclic 

voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) 

measurements in 3 M KOH. SEM images confirmed that Zn-MOF is composed of layered cuboid 

structure properly attached on to nickel foam substrate. Electrochemical behaviors of the Zn-MOF/Ni 

foam were also evaluated through GCD tests, which showed high specific capacitance of 288 F g–1 at 

the current density of 2 A g–1. The outcomes showed great potential of fabricated Zn-MOF as a high-

performance electrode material for electrochemical supercapacitors. 
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1. Introduction 

      With the advancement of energy storage technology and 
the demand for renewable energy, supercapacitors as clean 
electrochemical energy storage devices are attracting 
attention because of their remarkable performance in 
storing energy [1]. High power density, satisfactory energy 
density and high rate cycle life are excellent features of 
supercapacitors [2]. Additionally, choosing proper active 
electrode materials can boost performance of supercapacitors. 

Metal-organic-frameworks (MOFs) are class of active 
electrode materials which take advantage of the 
pseudocapacitance mechanism for storing energy [3]. MOFs 
are highly porous materials which are used as electrode 
active material lately. Their large surface areas, well distributed 
pore size and three dimensional structures as well as redox 
metal centers help storing charges [4]. In this regard, 
several studies have been applied the porous metal organic 
frameworks materials as electrode materials for supercapacitors 
applications. For example, Le et al. fabricated a Zn-MOF composite 
as supercapacitor materials. The prepared electrode showed 
specific capacitance of about 372 F/g in 1 M H2SO4 electrolyte at 1 
A/g [5]. Hadise et al. synthesized cobalt terephthalate metal-
organic framework (MOF-71) and applied it in energy storage 
devices which showed acceptable energy density of 13.51 Wh 
kg-1 [6]. Kishore et al. incorporated the Metal-organic 

framework (MOF-5) on NiCo2O4 and tested its electrochemical 
behavior. They prepared NiCo2O4/MOF-5 electrode exhibit 
a good specific capacitance of 357.69 F/g at 1 A/g [7]. 
      Metal organic frameworks have been synthesized 
through different methods, such as solvothermal, hydrothermal, 
sonochemical, and chemical methods [8]. In storage 
applications, MOF materials are better to deposit on the 
electrode substrate directly to reduce the ohmic resistance 
and eliminate the binder [9]. Therefore, a binder-free 
electrodeposition technique provides some advantages over 
traditional methods like direct deposition of MOFs on the 
desired substrates, simple synthesisconditions, very short 
reaction times, low-cost approach, and easy to set-up [10].  
      Electrochemical synthesis process can be easily developed by 
a DC-power supply and a two-electrode set-up. By applying an 
optimized current density, the electrodepositing will be 
initialized. In this paper, we used reductive electrodeposition 
technique to synthesize Zn-MOF onto nickel foam and investigated 
its supercapacitive performance. 

2. Experimental  

2.1. Zn-MOF synthesis 

In this procedure, zinc (II) nitrate hexahydrate [Zn(NO3) 
2·6H2O] (1 mg) is dissolved in N,N-dimethyl-formamide 
[DMF] (15 mL) and well stirred for 20 minutes. Then 1 mg, 
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1,4 dicarboxybenzene [Terephthalic acid] was mixed with 
ethanol (15 mL) and stirred separately. Subsequently, the 
two solutions were mixed and stored for the deposition 
process. 

Electrodepositing synthesis was run using a two-
electrode set-up connected to a DC power supply. By 
applying a current density of 30 mA/cm2 for 20 minutes the 
thin film of MOF was deposited on nickel cathodic substrate. 
The deposited nickel foam was removed from the solution 
and washed three times with DMF, and then it was kept for 
further analyses. 

 2.2. Material characterizations 

The XRD patterns of MOF samples were tested by a 
PHILIPS/PW1730 with Cu-Ka radiation. Surface morphologies 
of the sample were obtained by scanning electron microscopy 
(SEM, Zeiss, with an applied potential of 30 kV). Using 
Scherrer equation the nano crystallite size (D) was 
calculated. 

 





cos

k
D 

 
(1) 

 
where λ is the XRD radiation wavelength, β is the full 

width at half maximum in radian and K is the shape factor 
which is about 0.89. 

  2.3. Electrochemical measurements  

Electrochemical properties of the prepared electrode 
were investigated by a three-electrode electrochemical cell 
in 3 molar potassium hydroxide aqueous solution; the cell 
includes Zn-MOF/Ni foam (a working electrode), graphite 
plate (a counter electrode), and Ag/AgCl/saturated KCl (a 
reference electrode). 

Cyclic voltammetry (CV), galvanostatic charge–discharge 
(GCD), and electrochemical impedance spectroscopy (EIS) 
measurements were run by potentiostat /galvanostat (Autolab). 
The EIS test was performed with the AC voltage of 10 mV 
amplitude and a frequency range of 0.01 Hz - 100 kHz. The mass 
loading of Zn-MOF onto nickel foam was 1 mg. CV profiles of the 
electrode were recorded within the potential window of 0 and 
0.6 V vs. Ag/AgCl at the different scan rates of 5, 10, 20, 50, and 
100 m V s-1. The GCD tests were also performed at the current 
densities of 2, 3, 5, 10, 15, and 20 A g-1. Helping the GCD data, the 
specific capacitances of the fabricated electrode were calculated 
by the following formula [11]: 

 

C=(I ×∆t)/(m×∆V)        (2) 

 
In which, C in farad per gram is the measured capacitance, I 

in amper is the discharge current, Δt in second is the discharge 
time of electrode, ΔV in volt is the potential window, and m in 
gram is the mass of the loaded electrode active material.  

 

3. Results and discussion 

 3.1. XRD 

       The XRD pattern of Zn-MOF/Ni foam is shown in Figure 
1 the main diffraction peaks of fabricated electrode are in 
agreement with pattern of Zn-MOF reported in the literature 
[12]. The (100) crystal plane of Terephthalic acid -based 
MOF is recognized as the most intensive peak [13]. The 
sharp XRD peaks are observed at 44.10°, 51.8°, and 76.8° 
corresponding to the nickel foam. Thus, XRD studies 
proved the formation of Zn-MOF on to the nickel foam. 
Using Scherrer equation the crystallite size of MOF structure 
was calculated to be 2.97 nm. 
 

 
Fig. 1. XRD pattern of the fabricated Zn-MOF/Ni foam. 

 

  3.2. SEM  

      The morphology and composition of the as-prepared Zn-
MOF/Ni foam are revealed by SEM at different magnification 
scales. At lower magnification the porous nickel foam is 
completely illustrated. According to the SEM images 
(Figure 2a, b), the Zn-MOF/Ni foam shows a layered cuboid 
structure with homogenous sizes distribution of about 1 
µm width and 50 nm thickness. 
      This desired morphology could provide large contact 
area in the electrochemical reaction and shorten the 
electrolyte ion pathway [14].  

 3.3. Cyclic voltammetry tests 

The electrochemical performance of Zn-MOF/Ni foam is 
studied by the three-electrode system in 3 M KOH aqueous 
electrolyte.  Figure 3 illustrates CV curves of the fabricated 
Zn-MOF electrode at different scan rates from 5 to 100 mV 
s-1. A pair of redox peaks is clearly seen on all CV curves, 
which reveals pseudocapacitive behavior of the Zn-MOF 
electrode [15].  
      These peaks may correspond to the intercalation and 
deintercalation of OH- ion while electrochemical reactions 
are accrued. By increasing scanning rate, the current 
response is also gradually increased, showing excellent 
capacitive behavior and charge storage characteristics of 
the Zn-MOF electrode [16].  
      It can be easily observed that by increasing the scan rate, 
the anodic and cathodic peak potential shift toward positive and 
negative directions which indicate the ohmic resistance 
increase [17-19].  
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Fig. 2. SEM images of (a-b) Zn-BDC/Ni foam. 

 
 
 

 

 
Fig. 3. Cyclic voltammetry curves of the Zn-BDC/Ni foams at the scan rate of 10, 20, 50, and 100 m V s–1. 

 

 

Fig. 4. (a) GCD curves of Zn-MOF/Ni foams at the current densities of 2, 3, 5, 10, 15, and 20 A g–1 and (b) the calculated specific capacitances at 

different current densities. 

 

 3.4. Galvanostatic Charge-Discharge tests       Fig. 4a shows the galvanostatic charge-discharge curves 
of the Zn-MOF electrode at different current densities in 3 
M KOH solution within the potential window of 0 to 0.45 V. 
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From the GCD profile, the none linier response of the 
discharge curve exhibited pseudo-capacitive behavior of 
the electrode [16]. As it can be seen the longer duration 
time for charging–discharging belongs to the current 
density of 2 A g-1, which showed the maximum specific 
capacitance of 288 F g-1. The specific capacitances of the Zn-
MOF/Ni foam electrode are calculated to be 288, 260, 255, 
244, 200, and 163 F g–1 at the current densities of 2, 3, 5, 10, 
15, and 20 A g–1, respectively (Figure 4b). The capacitance 
retention of 56% is observed for the electrode. 
 
Table 1. Some references for the capacitive data of the single metal MOF-

based electrodes.  

Electrode composition Cs (F g–1) Refs. 

Co-MOF 220 at 1 A/g [20] 

Ni-MOF 849 at 1 A/g [20] 

Ni-MOF 164.37 at 1 A/g [21] 

Co-MOF/PANI 504 at 10 A/g [22] 

Fe-MOF 78 at 0.5 A/g [23] 

Co-MOF 206.76 at 1 A/g [24] 

Zn-MOF 221 at 1 A/g [25] 

Hu15 (Zn-MOF) 27.86 at 1 A/g [26] 

Zn-MOF/NF 288 at 1 A/g This work 

      In Table 1, some capacitive data reported for MOF-based 
electrodes are listed from the literature. It was verified that 
our fabricated Zn-MOF electrode has shown great capacitive 
properties compared to electro-active materials in the other 
published literatures. 

 3.5. EIS 

      Electrical resistance of the fabricated electrode can be 
evaluated by electrochemical impedance spectroscopy 
(EIS) measurements. Figure 5 shows the Nyquist plot of the 
Zn-MOF/Ni foam electrode. The EIS test was examined in 
the frequency range of 0.01 Hz to 100 kHz at open circuit 
potential. The plot is composed of a semi-circle in the range 
of high frequency and a straight line in the range of low 
frequency. The semi-circle is related to Faradic reactions 
and showed charge transfer resistance (Rct) [27]. The point 
intersection with the real impedance (Z’) axis at the high 
frequency region implies the solution resistance (Rs) [28-
31]. The calculated Rct and Rs are 2.2 Ω and 1.5 Ω, respectively. 
Moreover, the equivalent circuit of the electrode was 
simulated by Zview software and the result is demonstrated in 
the inset image in Figure 5. Therefore, the prepared Zn-
MOF electrode shows a good energy storage property for 
supercapacitor. 

 
Fig. 5. Nyquist plot of Zn-MOF/Ni foam electrodes at the frequency range 
of 0.01 Hz to 100 kHz and its equivalent circuit. 

4. Conclusion 

      In summary, a binder-free Zn-MOF/Ni foam electrode 
for energy storage aims was successfully synthesized by a 
facile electrochemical deposition method. The morphological 
characterization revealed the petal-like structures of Zn-
MOF which were well attached on the surface of the nickel-
foam. Electrochemical analyses were run a three electrode 
set-up in 3M potassium hydroxide media and the results 
demonstrated a pseudo-capacitive charge storage behavior 
of the fabricated electrode. The maximum specific capacitance 
of 288 F g-1 was delivered at the current density of 2 A g-1. 
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