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Abstract

In this paper, we discuss some conditions of a greedy basis for Banach space X under a standard ε-isometry mapping.
We show that if X and Y are Banach spaces, (xn) is a greedy basis for X, and f : X → Y is a standard ε-isometry,
then (f (xn)) is a greedy basis for a subspace of Y . As a result, if f is a surjective standard ε-isometry, then (f (xn))
is a greedy basis for Y . We also show that span {(f (xn))}∗ is isomorphic with Ψ ⊂ Y ∗ where Ψ is defined as

Ψ:=span {ψn : ψn ∈ Y ∗ and |⟨x∗n, x⟩ − ⟨ψn, f (x)⟩| < 3εa}

where ∥ψn∥ = a = ∥x∗n∥.
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1 Introduction

The study of ε-isometry emerged from Mazur-Ulam’s paper showing that any surjective isometry mapping g :
X → Y is affine, where X and Y are real Banach spaces [16]. Besides, if g (0) = 0, then g is a linear mapping.
These results indicate that isometry mapping has an important role. Note that this result does not work for complex
Banach spaces. Hence, X and Y always refer to real Banach spaces. The surjective conditions and g (0) = 0 in the
Mazur-Ulam’s theorem are weakened by Figiel who showed that for any isometric mapping, there is a bounded linear
operator F : span (g (X)) → X with ∥F∥ = 1 such that Fg = IdX which shows that the domain of Fg must be X,
i.e., for any isometry mapping g, Fg : X → X is an isometry [11]. ε-isometry is a generalization of the concept of
isometry, which was introduced in 1945 by Hyers and Ulam. Suppose that there is a mapping f : X → Y where X
and Y are Banach spaces. If for any ε ≥ 0, the mapping f satisfies

|∥f (x)− f(y)∥ − ∥x− y∥| ≤ ε

for every x, y ∈ X, then the mapping f is called an ε-isometry. Obviously, 0-isometry is just an isometry. Also, f is
called standard if f(0) = 0.
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Hyers-Ulam [14] showed that for any standard surjective ε-isometry mapping f between Hilbert spaces, there is
always a surjective isometry mapping g such that

∥f (x)− g (x)∥ ≤ 10ε.

To this result, many mathematicians have been interested in looking for the ε-isometry conditions in more general
spaces (see [3, 4]) or in reducing the value of 10 in the above inequality (see [12, 13]). Finally, Omladič and Šemrl [18]
gave a general result on any real Banach spaces with

∥f (x)− g (x)∥ ≤ 2ε.

On the other hand, by providing a counterexample Qian showed that Figiel’s theorem does not apply to any
ε-isometry and any Banach spaces [19]. Therefore, Cheng et al. [6] first provided a solution to this problem, which is
to find the stability of the nonsurjective standard ε-isometry under weak topology. The theorem is as follows.

Theorem 1.1. ([6], Lemma 2.4) Suppose that f : X → Y is a standard ε-isometry. Then for each x∗ ∈ X∗, there
is φ ∈ Y ∗ that satisfies ∥φ∥ = r = ∥x∗∥, such that

|⟨x∗, x⟩ − ⟨φ, f (x)⟩| ≤ κrε, for all x ∈ X,

where κ=4.

Recently, Cheng and Dong (2020) proved that the constant κ can be optimized to κ = 3 [5]. The usage of Theorem
1.1 can be found in ([7, 8, 9, 20, 21, 23, 24]). In this paper, the symbols w and w∗ will refer to weak and weak*
topology, respectively. BX and SX are unit ball and unit sphere of a Banach space X, respectively. The other used
notions and symbols are commonly found in some textbooks (see [2, 10, 17]).

2 Greedy basis under ε-isometry

Let (xn) be a Schauder basis for a Banach space X. Then clearly∥∥∥∥∥
m1∑
n=1

αnxn

∥∥∥∥∥ ≤M

∥∥∥∥∥
m2∑
n=1

αnxn

∥∥∥∥∥
whenever m1,m2 ∈ N, m1 ≤ m2, and α1, α2, . . . , αm2 ∈ F. The scalar M is the basis constant for (xn). If Pm is a
natural projection for (xn), i.e., Pm (

∑
n αnxn) =

∑m
n=1 αnxn, then

∥x− Pm(x)∥ ≤ (M + 1) inf
{βn}

∥∥∥∥∥x−
m∑
n=1

βnxn

∥∥∥∥∥ (2.1)

which shows that Pm(x) is a near-best approximation for x ∈ X.

Let x∗n be the coordinate functional of xn for each n and rearrange the order of (xn) by choosing the biggest value
of |⟨x∗n, xn⟩| from m elements as the first order. Next, choose the biggest value of |⟨x∗n, xn⟩| from m − 1 elements as

the second order. Continuing this process, the permutation ρ:N → N can be obtained such that
∣∣∣〈x∗ρ(j), xρ(j)〉∣∣∣ >∣∣∣〈x∗ρ(k), xρ(k)〉∣∣∣ whenever j < k. Let Am(x) ⊂ N be the set of indices obtained from this process. In this case, the

m-th greedy approximation of x is defined as

Gm (x) =
∑

n∈Am(x)

x∗n(x)xn.

The sequence of maps (Gm (x))
∞
m=1 is called greedy algorithm associated with the basis (xn). If the function

σ : Gm (x) → R is defined as σ (Gm) = sup∥x∥≤1 ∥Gm (x)∥ , then the homogeneity of Gm shows that the function σ is

a norm-defined function on (Gm (x))
∞
m=1. For convenience, let σ (Gm) = ∥Gm∥. Obviously ∥Gm∥ > 0 and ∥Gm∥ = 0 if
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and only if Gm is a zero mapping for all m. The triangle inequality follows from the fact that Gm (x) is just a series.
Albiac and Kalton [2] and Temlyakov ([25, 26]) gave the further discussion of this greedy process.

There are two types of bases regarding for greedy approximation Gm (x). The first type is Gm (x) → x as m→ ∞
without using unconditional condition of basis (xn) for X and the second type is using the unconditionality of (xn).
In the first case, the basis (xn) is called a quasi-greedy basis while (xn) is called a greedy basis for the second case.

Definition 2.1. Let X be a Banach space and (xn) be a basis for X. The basis (xn) is a quasi-greedy basis if
(Gm (x))

∞
m=1 converges to x in norm topology for all x ∈ X.

The previous discussion shows that the sequence (Gm (x))
∞
m=1 is related to the basis (xn). Therefore, to get a

quasi-greedy basis, firstly the Banach space X must contain a basis (xn).

Definition 2.2. Let X be a Banach space and (xn) be a basis for X. Assume that (pn) and (qn) are sequences
of positive integers such that pn < qn for each n ∈ N. Then Block basic sequence is a sequence (yn) such that
yn =

∑qn
i=pn

x∗i (x)xi for each n.

Since ∥yn∥ =
∥∥∥∑qn

i=pn
x∗i (x)xi

∥∥∥ ≤M ∥
∑n
i=1 x

∗
i (x)xi∥ for all qn ≤ n, (yn) is a basic sequence taken with respect to

(xn) ([2], Lemma 1.3.5). The following theorem gives the rule to decide when a basis is quasi-greedy.

Theorem 2.3. ([27], Theorem 1) A basis (xn) for a Banach space X is quasi-greedy if and only if there is Cqg ≥ 1
such that ∥Gm (x)∥ ≤ Cqg ∥x∥ for all x ∈ X and m ∈ N.

The following proposition is similar to Schauder basis.

Theorem 2.4. ([27], Proposition 3) Let (xn) be a quasi-greedy basis for a Banach space X and (βn) be a bounded
sequence of nonzero scalars. Then (βnxn) is also a quasi-greedy basis for X.

Since 0 < ∥xn∥ <∞ for all elements of a basis, the following definition is reasonable (see [2, 15, 28]).

Definition 2.5. Let X be a Banach space and (xn) be a basis for X. (xn) is called a democratic basis if blocks
of the same size are uniformly comparable under the norm, that is, there is a democracy constant Cd ≥ 1 such that∥∥∑

n∈A xn
∥∥ ≤ Cd

∥∥∑
n∈B xn

∥∥ for every A,B ⊂ N with |A| = |B|.

The constant Cd shows how far a basis being a democracy is. Let an upper democracy function be defined as

χu (m) = sup
|A|≤m

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥
and a lower democracy function be defined as

χl (m) = inf
|A|≥m

∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ .
By this new definition, a basis (xn) is democratic if and only if χu (m) ≈ χl (m), i.e., supχu(m)

χl(m) < ∞ and

sup χl(m)
χu(m) <∞ (see [2]).

As in inequality (2.1), we have the same result for greedy basis, that is,

∥x− Gm (x)∥ ≤ (K + 1) inf
{βn}
Am(x)

∥∥∥∥∥∥x−
∑

n∈Am(x)

βnxn

∥∥∥∥∥∥ .
Note that the infimum is taken over scalar βn and the set Am(x). Therefore, the following definition emerges.
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Definition 2.6. Let X be a Banach space and (xn) be a basis for X. (xn) is called a greedy basis if there is a greedy
constant Cg ≥ 1 such that

∥x− Gm (x)∥ ≤ Cg inf
Am(x), βn

∥∥∥∥∥∥x−
∑

n∈Am(x)

βnxn

∥∥∥∥∥∥
where βn ∈ R and A is an index set with |Am(x)| = m.

For simplicity, let
∑
m =

∑
n∈Am(x) βnxn. Now we are ready to discuss the stability of greedy basis under ε-isometry

mapping.

Theorem 2.7. Let (xn) be a greedy basis for X and f : X → Y be a standard ε-isometry. Then (f (xn)) is a greedy
basis for span {(f (xn))} ⊂ Y equivalence to (xn).

Proof . Since (xn) is a greedy basis for X, there exists a set Am(x) ⊂ N with |Am(x)| = m such that

∥x− Gm (x)∥ ≤ Cg inf
zm∈Σm

∥x− zm∥

whenever Cg ≥ 1. Recall that Gm (x) is a greedy approximation for each x ∈ X. Hence there is a unique decreasing
sequence (|x∗n(x)|) of scalars such that Gm (x) =

∑
n∈Am(x) x

∗
n (x)xn. By the definition of Am(x), each |x∗n(x)| > 0 for

all n ∈ Am(x), otherwise |x∗n(x)| = 0. Thus limn x
∗
n(x) = 0. Since f is a standard ε-isometry and there is ψn ∈ Y ∗

for any x∗n ∈ X∗ with ∥ψn∥ = ∥x∗n∥ (Theorem 1.1),
∑
n∈Am(x) x

∗
n (x) f (xn) must be convergent in Y . This shows

that (f (xn)) is a quasi-greedy basis for span {(f (xn))}. Let δ > 0. Since
∑
n∈Am(x) x

∗
n (x) f (xn) is convergent to

some member of Y, it has some convergent subseries
∑∞
i=1 x

∗
ni

(x) f (xni
). Clearly, every greedy basis is unconditional.

Thus, there is an N (δ) = N ∈ N such that for every m2 > m1 ≥ N ,∥∥∥∥∥
m2∑

n=m1+1

x∗n (x)xn

∥∥∥∥∥ < δ

M0

for some M0 <∞. Since f is a standard ε-isometry,∥∥∥∥∥
m2∑

n=m1+1

x∗n (x) f (xn)

∥∥∥∥∥ < δ

M

for some M <∞. Hence if N ≤ nk < · · · < nk+l, then∥∥∥∥∥
k+l∑
i=k+1

x∗ni
(x) f (xni

)

∥∥∥∥∥ ≤M

∥∥∥∥∥
nk+l∑

i=nk+1

x∗i (x) f (xi)

∥∥∥∥∥ < δ

which shows that
∑
i x

∗
ni

(x) f (xni) is Cauchy. If ni /∈ Am(x) is taken, then

min {|x∗n (x)| : n ∈ Am(x)} > max
{∣∣x∗ni

(x)
∣∣ : ni /∈ Am(x)

}
.

Since the construction of Am(x) uses greedy approximation, (f (xn)) is an unconditional basis for span {(f (xn))}.
Besides, the Cauchy condition of

∑
i x

∗
ni

(x) f (xni
) implies that for some r ∈ N

sup
i≥r

sup|Am(x)|≤m

∥∥∥∑ni∈Am(x) x
∗
ni

(x) f (xni
)
∥∥∥

inf |Am(x)|≥m

∥∥∥∑ni∈Am(x) x
∗
ni

(x) f (xni
)
∥∥∥ <∞.

Hence, (f (xn)) is a democratic basis for span {(f (xn))}. These two facts show that (f (xn)) is a greedy basis for
span {(f (xn))}.
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What is left to prove is that (xn) and (f (xn)) are equivalent greedy bases for X and span {(f (xn))}, respectively.
Note that if T : X → span {(f (xn))} is an isomorphism, then

T (Gm (x)) = Gm (T (x))

and so we just need to prove the existence of such isomorphism. For any coordinate functionals ψn ∈ Y ∗ and
y ∈ span {(f (xn))}, let T : X → span {(f (xn))} be defined as

T

(∑
n

x∗n (x)xn

)
=
∑
n

ψn (y) f (xn).

By uniqueness of a greedy approximation Gm, it is easy to show that T is well-defined, linear, and injective. Let
(x∗n, xn) and (ψn, f (xn)) be the orthogonal systems for greedy bases (xn) and (f (xn)), respectively. Suppose that
ui → u ∈ X and Tui → v ∈ span {(f (xn))}. If Tu = v, then T is bounded by the Closed Graph Theorem. Since
Gm(x) and Gm (f (x)) are greedy approximations, we have

lim
m

∥u− Gm (u)∥ = 0

and
lim
m

∥v − Gm (f (xn))∥ = 0

for any u ∈ X and v ∈ span {(f (xn))}. Therefore∑
n∈Am(ui)

x∗n (ui)xn = ui → u =
∑

n∈Am(u)

x∗n (u)xn.

Since ψn ∈ Y ∗ is a coordinate functional for every n,

∑
n∈Am(Tui)

ψn (Tui) f (xn) = Tui → v =
∑

n∈Am(v)

ψn (v) f (xn).

The continuity of x∗n and ψn implies Tu = v.

By Theorem 1.1, for any coordinate functional x∗n ∈ X∗ there is ψn ∈ Y ∗ with ∥x∗n∥ = a = ∥ψn∥ such that

|⟨x∗n, x⟩ − ⟨ψn, f (x)⟩| < 3εa

for every x ∈ X. Thus, T−1 is bounded and so (f (xn)) is a greedy basis for span {(f (xn))} that is equivalent to
greedy basis (xn). □

If f is a standard surjective ε-isometry, then (f (xn)) is a greedy basis for Y. Since T is an isomorphism, there is
an isomorphism T ∗ : span {(f (xn))}∗ → X∗ with ∥T∥ = ∥T ∗∥ (see [17], Theorem 1.10.12). Hence, the following is
just a consequence of Theorem 2.7.

Corollary 2.8. Let (xn) be a greedy basis for X and f : X → Y be an ε-isometry with f (0) = 0. If (x∗n) and (ψn)
are sequences of coordinate functionals for (xn) and (f (xn)), respectively, then (x∗n) and (ψn) are greedy basis for X∗

and span {(f (xn))}∗, respectively.

Theorem 2.9. ([22], Rosenthal) Every bounded sequence in a real or complex Banach space has a weakly Cauchy
subsequence.

Theorem 2.10. Let (xn) be a greedy basis for X and f : X → Y be an ε-isometry with f (0) = 0. Then there is an
isometry mapping U : X → Y ∗∗.

Proof . Since (xn) is a greedy basis, (xn) is a bounded sequence. Hence, by Theorem 2.9 and Theorem 2.4, the
sequence (αxn) has a subsequence (αkxn) which is weakly Cauchy. Since (xn) and (f (xn)) are equivalent greedy bases,

the sequence
(
f (αxn)

α

)
also has a weakly Cauchy subsequence

(
f (αkxn)

αk

)
. Therefore, the subsequence

(
f

(
α

(n)
k x

n

)
α

(n)
k

)
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is a weakly Cauchy for any n ∈ Am(f (x)) where Am(f (x)) is related to Am(x). Note that α
(n)
k =

∑
n∈Am(x) x

∗
n(x)

whenever x∗n is a coordinate functional for each n. We can choose n = k such that α
(k)
k =

∑
x∗k(x). This shows

that

(
f

(
α

(k)
k x

n

)
α

(k)
k

)
is a weakly Cauchy subsequence independent from xn. Thus, Theorem 2.7 implies that for m =

1, 2, 3, . . . , Gm (y) =
∑
n∈Am(y) ψn(y)

(
f

(
α

(k)
k x

n

)
α

(k)
k

)
is a weakly Cauchy sequence of greedy approximation for any

y ∈ span {(f (xn))}.
Take a sequence (y∗∗n ) ⊂ Y ∗∗ which is weak* convergent to y∗∗ ∈ Y ∗∗, that is, y∗∗y∗ = w∗ − limy∗∗n y

∗ . Since
each y∗∗n is a bounded linear functional, the Uniform Bounded Principle implies that Y ∗∗ is w∗-complete. Put y∗∗k =

Q

(
f

(
α

(k)
k x

n

)
α

(k)
k

)
where Q : Y → Y ∗∗ is canonical embedding. So w∗-completeness of Y ∗∗ implies that the weak* limit

of

(
f

(
α

(k)
k x

n

)
α

(k)
k

)
exists. Denote this weak* limit by U , that is,

U(xn) = w∗ − limk

f
(
α
(k)
k x

n

)
α
(k)
k

 .

Since Q is an isometric isomorphism from Y into Y ∗∗, the mapping U : X → Y ∗∗ is well defined by Theorem 2.7. For
each n ∈ N, Theorem 1.1 shows that for every x∗ ∈ SX∗ there is ψ ∈ SY ∗ such that

∣∣∣∣∣∣
〈
ψ, f

(
α
(k)
k x

n

)
α
(k)
k

〉
− ⟨x∗, xn⟩

∣∣∣∣∣∣ ≤ 3ε

α
(k)
k

.

If we take the limit as k → ∞, then it is easy to see that

⟨ψ,U(xn)⟩ = ⟨x∗, xn⟩ .

As a consequence of the Hanh-Banach Theorem, there is an x∗ ∈ SX∗ such that x∗(x) = ∥x∥ for any nonzero
x ∈ X (see[17], Corollary 1.9.8). If we choose x∗ ∈ SX∗ such that

〈
x∗, xnq

− xnp

〉
=
∥∥xnq

− xnp

∥∥
then

∥∥xnq
− xnp

∥∥ =
〈
x∗, xnq

− xnp

〉
=

〈
ψ,U(xnq )− U(xnq )

〉
=

〈
ψ,U(xnq

)
〉
−
〈
ψ,U(xnq

)
〉

≤
∥∥U (xnq

)
− U

(
xnp

)∥∥ .
On the contrary,
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∥∥U (xnq

)
− U

(
xnp

)∥∥ =

∥∥∥∥∥∥w∗ − lim

f
(
m

(k)
k xnq

)
− f

(
m

(k)
k xnp

)
m

(k)
k

∥∥∥∥∥∥
≤ lim infk

∥∥∥∥∥∥
f

(
m

(k)
k xnq

)
− f

(
m

(k)
k xnp

)
m

(k)
k

∥∥∥∥∥∥
≤ lim infk

∥∥∥m(k)
k xnq

−m
(k)
k xnp

∥∥∥+ ε

m
(k)
k

=
∥∥xnq

− xnp

∥∥ .
Combining the last two inequalities, one gets that U(xn) is an isometry from X into Y ∗∗. □

Corollary 2.11. Let (xn) be a greedy basis for X and f : X → Y be an ε-isometry with f (0) = 0. Then (f (xn)) is
a greedy basis for span {(f (xn))}∗∗ ⊂ Y ∗∗.

Note that if ε = 0 in Theorem 1.1, then obviously ⟨ψn, f (xn)⟩ = ⟨x∗n, xn⟩. Hence ψn : X∗ → span{(f (xn))}∗ is a
linear isometry for each n. Let Ψ ⊂ Y ∗ be defined as

Ψ:=span {ψn : ψn ∈ SY ∗ satisfies Theorem 1.1}

and every y ∈ span {(f (xn))} ⊂ Y be renormed by

|∥y∥| = sup
ψ∈SΨ

ψ (y) .

Since ψ is a linear isometry for ε = 0, we have |∥y∥| = supx∗∈SX∗ ⟨x∗, x⟩ . Combining this fact and Theorem 2.7, we
can deduce that (f (xn)) is isometrically equivalent to the greedy basis (xn).

Let F = span {(f (xn))} for a greedy basis (xn) ⊂ X. Since each ψ ∈ Ψ depends on x∗ ∈ X∗, if x∗ separates
points of X then ψ separates points of F . This fact gives the following theorem.

Theorem 2.12. Let X and Y be Banach spaces with Y reflexive, (xn) be a greedy basis for X and f : X → Y be an
ε-isometry with f (0) = 0. Let F = span {(f (xn))} and

Ψ:=span {ψn : ψn ∈ Y ∗ and |⟨x∗n, x⟩ − ⟨ψn, f (x)⟩| < 3εa.}

If Ψ separates the points of F , then Ψ is linearly isomorphic to F ∗.

Proof . Since Ψ separates the points of F , Ψ is a Hausdorff subspace. Hence for any y∗ ∈ Ψ, there is a unique
x∗ ∈ X∗ such that y∗ = ψx∗ . Now, take any y ∈ F and define T : Ψ → F ∗ as

T (y∗) (y) = T (ψx∗) (y) = ψx∗ (y) .

Clearly, T is a linear operator. Since (f (xn)) is a greedy basis for F (Theorem 2.7), T is bounded by the definition
of greedy basis. If ψx∗ (f (xn)) = 0 for all n, then ψx∗ = 0 and so Theorem 1.1 says that x∗ = 0. Therefore, T is a
one-to-one, bounded and linear operator.

The definition of T implies that T (Ψ)⊂Y ∗ is a w∗-closed subspace. Besides, the Hanh-Banach Theorem shows

that T (Ψ)
w∗

= F ∗. Since Y is a reflexive space, T (Ψ)
w∗

= T (Ψ)
w
= T (Ψ)

∥·∥
. Note that Ψ is a closed subspace of Y ∗.

If F ∗⊂Y ∗ is also a closed subspace, then the proof will be completed by deploying the Inverse Mapping Theorem.

Let (y∗n) ⊂ T (Ψ) be a sequence that converges to y∗ ∈ F ∗. Then for any y ∈ F
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lim
n
T (y∗n) (y) = lim

n
ψx∗

n
(y)

exists for all n. Since (x∗n) ⊂ X∗, its limit exists and say that x∗n → x∗. Thus, there is a subsequence
(
x∗ni

)
⊂ (x∗n)

such that

lim
i
ψx∗

ni
(f (xm)) = lim

n
ψx∗

n
(f (xm)) = ψx∗ (f (xm))

for all m. Therefore the following limit

lim
i
ψx∗

ni
(y) = ψx∗ (y)

exists for all y ∈ F and so T (Ψ)
w∗

= T (Ψ)=F ∗. As a result, this shows that F ∗ is a norm-closed subspace. □
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[18] M. Omladič and P. Šemrl, On nonlinear perturbation of isometries, Math. Ann. 303 (1995), 617–628.

[19] S. Qian, ε-isometries embeddings, Proc. Amer. Math. Soc. 123 (1995), 1797–1803.
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