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Abstract

In this paper, we discuss some conditions of a greedy basis for Banach space X under a standard e-isometry mapping.
We show that if X and Y are Banach spaces, (x,,) is a greedy basis for X, and f: X — Y is a standard e-isometry,
then (f (x,)) is a greedy basis for a subspace of Y. As a result, if f is a surjective standard e-isometry, then (f (z,))
is a greedy basis for Y. We also show that span {(f (x,))}" is isomorphic with ¥ C Y* where ¥ is defined as

U:=span {n : ¥, €Y and [{x},z) — (¥, [ (2))] < 3ea}
where ||| = a = ||z%].
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1 Introduction

The study of e-isometry emerged from Mazur-Ulam’s paper showing that any surjective isometry mapping g :
X — Y is affine, where X and Y are real Banach spaces [16]. Besides, if g (0) = 0, then g is a linear mapping.
These results indicate that isometry mapping has an important role. Note that this result does not work for complex
Banach spaces. Hence, X and Y always refer to real Banach spaces. The surjective conditions and ¢ (0) = 0 in the
Mazur-Ulam’s theorem are weakened by Figiel who showed that for any isometric mapping, there is a bounded linear
operator F' : span (g (X)) — X with ||F|| = 1 such that Fg = Idx which shows that the domain of F'g must be X,
i.e., for any isometry mapping g, Fig : X — X is an isometry [II]. e-isometry is a generalization of the concept of
isometry, which was introduced in 1945 by Hyers and Ulam. Suppose that there is a mapping f: X — Y where X
and Y are Banach spaces. If for any € > 0, the mapping f satisfies

If (@) = Fll = llz —yllf <€

for every z, y € X, then the mapping f is called an e-isometry. Obviously, 0-isometry is just an isometry. Also, f is
called standard if f(0) = 0.
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Hyers-Ulam [14] showed that for any standard surjective e-isometry mapping f between Hilbert spaces, there is
always a surjective isometry mapping g such that

I f (x) — g (x)| <10e.

To this result, many mathematicians have been interested in looking for the e-isometry conditions in more general
spaces (see [3, @]) or in reducing the value of 10 in the above inequality (see [1Z, [13]). Finally, Omladi¢ and Semrl [I§]
gave a general result on any real Banach spaces with

If (z) =g ()] < 2.

On the other hand, by providing a counterexample Qian showed that Figiel’s theorem does not apply to any
e-isometry and any Banach spaces [19]. Therefore, Cheng et al. [6] first provided a solution to this problem, which is
to find the stability of the nonsurjective standard e-isometry under weak topology. The theorem is as follows.

Theorem 1.1. ([6], Lemma 2.4) Suppose that f: X — Y is a standard e-isometry. Then for each z* € X*, there
is ¢ € Y* that satisfies ||¢|| = r = ||z*||, such that

(a2 — (o, f (2))] < e, for all @ € X,

where k=4.

Recently, Cheng and Dong (2020) proved that the constant x can be optimized to x = 3 [5]. The usage of Theorem
can be found in ([7, B @ 20, 21, 23], 24]). In this paper, the symbols w and w* will refer to weak and weak™*
topology, respectively. Bx and Sx are unit ball and unit sphere of a Banach space X, respectively. The other used
notions and symbols are commonly found in some textbooks (see [2, 10, [17]).

2 Greedy basis under e-isometry

Let (z,) be a Schauder basis for a Banach space X. Then clearly

<M

mi m2
E AnTn E AnTp
n=1 n=1

whenever my,my € N, m; < mo, and a1, ag,..., @, € F. The scalar M is the basis constant for (z,). If P, is a
natural projection for (z,,), i.e., P, (3, 0n®n) = > 1| Qny, then

o = Po(a)l < (M +1) jnf (2.1)

m
T — Z BnTn
n=1

which shows that P,,(z) is a near-best approxzimation for x € X.

Let % be the coordinate functional of z,, for each n and rearrange the order of (z,,) by choosing the biggest value
of [(x},x,)| from m elements as the first order. Next, choose the biggest value of |(z},xz,)| from m — 1 elements as
the second order. Continuing this process, the permutation p:N — N can be obtained such that ‘<x;(j), :I:p(j)>‘ >
‘<x;(k),xp(k)>‘ whenever j < k. Let A,,(z) C N be the set of indices obtained from this process. In this case, the
m-~th greedy approximation of z is defined as

nEA, (x)

The sequence of maps (G, (z)),_, is called greedy algorithm associated with the basis (z,,). If the function
0 : Gm (r) — R is defined as o (G;n) = sup|, <1 [|Gm (z)| , then the homogeneity of Gy, shows that the function o is
a norm-defined function on (G, (z));-_,. For convenience, let o (Gp) = ||Gm||. Obviously ||G,,|| > 0 and |G || = 0 if

m=1"
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and only if G,, is a zero mapping for all m. The triangle inequality follows from the fact that G,, (z) is just a series.
Albiac and Kalton [2] and Temlyakov ([25] 26]) gave the further discussion of this greedy process.

There are two types of bases regarding for greedy approximation G,, (z). The first type is G,, () — = as m — oo
without using unconditional condition of basis () for X and the second type is using the unconditionality of ().
In the first case, the basis (z,,) is called a quasi-greedy basis while (z,,) is called a greedy basis for the second case.

Definition 2.1. Let X be a Banach space and (z,) be a basis for X. The basis (z,) is a quasi-greedy basis if
(Gm (x))5r_, converges to x in norm topology for all z € X.

The previous discussion shows that the sequence (G, (z)),°_, is related to the basis (z,,). Therefore, to get a
quasi-greedy basis, firstly the Banach space X must contain a basis ().

Definition 2.2. Let X be a Banach space and (x,) be a basis for X. Assume that (p,) and (g,) are sequences
of positive integers such that p, < ¢, for each n € N. Then Block basic sequence is a sequence (y,) such that

Yn = gzpn xf(x)x; for each n.
Since [[yn| = H g JC:(JC)%H < M|I>2E @) (@) for all ¢, <n, (y,) is a basic sequence taken with respect to

() ([2], Lemma 1.3.5). The following theorem gives the rule to decide when a basis is quasi-greedy.

Theorem 2.3. ([27], Theorem 1) A basis (z,) for a Banach space X is quasi-greedy if and only if there is Cyg > 1
such that [|G,, (z)|| < Cqq ||| for all z € X and m € N.

The following proposition is similar to Schauder basis.

Theorem 2.4. ([27], Proposition 3) Let (z,) be a quasi-greedy basis for a Banach space X and (/3,,) be a bounded
sequence of nonzero scalars. Then (8, x,) is also a quasi-greedy basis for X.

Since 0 < ||@,,|| < oo for all elements of a basis, the following definition is reasonable (see [2] [I5], 28]).

Definition 2.5. Let X be a Banach space and (z,) be a basis for X. (x,) is called a democratic basis if blocks
of the same size are uniformly comparable under the norm, that is, there is a democracy constant Cy > 1 such that
13 ea n|| < Cal|>,cp n| for every A, B C N with |A| = |B|.

The constant Cy shows how far a basis being a democracy is. Let an upper democracy function be defined as

Xu (M) = sup
|[A|<m

Tn
neA

and a lower democracy function be defined as

xi (m) = | Al|nzfm

> @n
neA

Xu(m)

iom) < oo and

By this new definition, a basis (z,) is democratic if and only if x, (m) = x;(m), i.e., sup

sup% < oo (see [2]).

As in inequality (2.1), we have the same result for greedy basis, that is,

|z —Gm (x)]| < (K+1) inf |l — Z BnTn
n n€EAn, ()
Ap(2)

Note that the infimum is taken over scalar 3, and the set A,,(x). Therefore, the following definition emerges.
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Definition 2.6. Let X be a Banach space and (x,,) be a basis for X. (z,,) is called a greedy basis if there is a greedy
constant Cyq > 1 such that

|z = Gm (2)|| < C, infﬁ r— Y Bawn

Am (),
@ neEAn, ()

where 3, € R and A is an index set with |A,,(z)] = m.

For simplicity, let >° = >" A (2) Brnxyn. Now we are ready to discuss the stability of greedy basis under e-isometry
mapping.

Theorem 2.7. Let (x,) be a greedy basis for X and f: X — Y be a standard e-isometry. Then (f (z,,)) is a greedy
basis for span {(f (x,))} C Y equivalence to (zy,).

Proof . Since (z,,) is a greedy basis for X, there exists a set A, (x) C N with |A,,(z)| = m such that

[z —Gm (2)]| < ngmirelgm |z — 2]

whenever Cy > 1. Recall that G, (x) is a greedy approximation for each € X. Hence there is a unique decreasing
sequence (|z7,(x)|) of scalars such that G, (2) =3, c 4 () @5 (€) T, By the definition of A, (z), each |7, ()| > 0 for
all n € A, (x), otherwise |z ()] = 0. Thus lim, 2} (x) = 0. Since f is a standard e-isometry and there is ¢, € Y*
for any xf € X* with [|¢,] = |lz%]] (Theorem , 2 oneA,, (z) Tn (@) f (2,) must be convergent in Y. This shows
that (f (zn)) is a quasi-greedy basis for span {(f (z))}. Let 6 > 0. Since }_, 4 () @5 () f(zn) is convergent to
some member of Y, it has some convergent subseries .., @}, () f (zy,). Clearly, every greedy basis is unconditional.
Thus, there is an N (§) = N € N such that for every my > my > N,

ma
. )
Z zy (x) xn || < o
n=mi+1
for some My < co. Since f is a standard e-isometry,
ma . 6
S @ )| < 1
n=miy+1
for some M < oco. Hence if N < nj < -+ < ng4y, then
k+1 Nkl
dooan @ flen)| <M\ Y i (@) f ()| <9
i=k+1 i=ng+1

which shows that ), z;, () f (2y,) is Cauchy. If n; ¢ A,, () is taken, then

min {|z}, (z)| : n € Ap ()} > maz {|z};, (x)] :ni ¢ Apm(2)}.

Since the construction of A,,(x) uses greedy approximation, (f (z,)) is an unconditional basis for span {(f (z,))}.
Besides, the Cauchy condition of >, % () f (x,,) implies that for some r € N

‘ < 0.

SUp|4,, (z)|<m HznieAm(x) Ty, () f (zn,)

sup
t2r inflAm(m)lzm HZnieAm(z) x5, (z) f (7n,)

Hence,

(f (z)) is a democratic basis for span{(f (z,))}. These two facts show that (f (z,)) is a greedy basis for
span {(f («
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What is left to prove is that (z,,) and (f (z,)) are equivalent greedy bases for X and span {(f (z,))}, respectively.
Note that if T: X — span {(f (z,))} is an isomorphism, then

T (gm (‘73)) =Gm (T (x))

and so we just need to prove the existence of such isomorphism. For any coordinate functionals 1, € Y™* and
y € span{(f (zn))}, let T : X — span {(f (x,))} be defined as

T (Z xy, (x) xn) = Z VYo (y) f(2n).

By uniqueness of a greedy approximation G,,, it is easy to show that T is well-defined, linear, and injective. Let
(xf,x,) and (Yn, f (z)) be the orthogonal systems for greedy bases (x,) and (f (z,)), respectively. Suppose that
u; > u € X and Tu; — v € span{(f (z))}. If Tu = v, then T is bounded by the Closed Graph Theorem. Since
Gm(z) and G, (f (z)) are greedy approximations, we have

lim [~ G ()] =0

and

for any u € X and v € span {(f (x,,))}. Therefore
Z xy (u) xp = u; > u= Z ) (u) .
neApn, (u;) n€An (u)

Since v, € Y* is a coordinate functional for every n,

Z Un (Tuz) f (m") =Tu; v = Z Yn (U) f (mn)

n€Am (Tu;) n€An (v)

The continuity of «, and ,, implies Tu = v.
By Theorem for any coordinate functional ¥ € X* there is 1, € Y* with ||z}| = a = ||3,|| such that

|<x:ux> - <¢na f (-r)>| < 3ea

for every z € X. Thus, T~ is bounded and so (f (z,)) is a greedy basis for span {(f (r,))} that is equivalent to
greedy basis (z,). O

If f is a standard surjective e-isometry, then (f (z,)) is a greedy basis for Y. Since T is an isomorphism, there is
an isomorphism T* : span {(f (z,))}" — X* with ||T|| = ||T*| (see [I7], Theorem 1.10.12). Hence, the following is
just a consequence of Theorem

Corollary 2.8. Let (z,,) be a greedy basis for X and f : X — Y be an e-isometry with f(0) = 0. If («}) and (¢)
are sequences of coordinate functionals for (z,) and (f (z,)), respectively, then (x) and (¢,,) are greedy basis for X*
and span {(f (z,))}", respectively.

Theorem 2.9. ([22], Rosenthal) Every bounded sequence in a real or complex Banach space has a weakly Cauchy
subsequence.

Theorem 2.10. Let (x,) be a greedy basis for X and f : X — Y be an e-isometry with f (0) = 0. Then there is an
isometry mapping U : X — Y **.

Proof . Since (x,) is a greedy basis, (x,) is a bounded sequence. Hence, by Theorem and Theorem the
sequence (ax,,) has a subsequence (agz,,) which is weakly Cauchy. Since (x,,) and (f (x,,)) are equivalent greedy bases,

k

aMy
the sequence ( bi %) also has a weakly Cauchy subsequence ( f %) Therefore, the subsequence ( bi ( (n)"))
X
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is a weakly Cauchy for any n € A,,(f (x)) where A,,(f (x)) is related to A,,(z). Note that ozé") =2 nean(z) Tnl(@)

whenever z7 is a coordinate functional for each n. We can choose n = k such that a = > z;(z). This shows

(®)
that < f (ak(,j">> is a weakly Cauchy subsequence independent from z,,. Thus, Theorem [2.7| implies that for m =
X

a<k)m
1,2,3,..., Gm(y) = Znezélm(y) ¥n(y) <f( ;(k)")> is a weakly Cauchy sequence of greedy approximation for any
k

y € span{(f (zn))}.

Take a sequence (y:*) C Y** which is weak* convergent to y** € Y** that is, y**y* = w* — limy}*y"* . Since
each y,;* is a bounded linear functional, the Uniform Bounded Principle implies that Y** is w*-complete. Put y;;* =

(%)
Qlf (az(k)") where @ : Y — Y** is canonical embedding. So w*-completeness of Y** implies that the weak* limit
k

()
of <f (ak(,j")> exists. Denote this weak™® limit by U, that is,
X

(e

o

U(zy) = w" — limy,

Since @ is an isometric isomorphism from Y into Y**, the mapping U : X — Y** is well defined by Theorem For
each n € N, Theorem shows that for every z* € Sx- there is ¢ € Sy~ such that

(k)
Qg T, % 3e
<¢>f((k))> — (%, 2,)| < W
ay a

If we take the limit as K — oo, then it is easy to see that

<1/)7 U(xn» - <x*ﬂ zn> .

As a consequence of the Hanh-Banach Theorem, there is an z* € Sx« such that z*(z) = |z|| for any nonzero
x € X (see[I7], Corollary 1.9.8). If we choose z* € Sx- such that

<(E*,1’nq 7x"p> = ||an - :L'an

then

*
x J)nq $np>

(
= (,U(zn,) —U(zn,))

(0, U(n,)) = (0, U(n,))
U (2n,) = U (2, )| -

Han - m"pH

IN

On the contrary,



Greedy basis and e-isometry 1887

. f mfck)an —f m,(ck)xnp
U (@n,) = U (2n,)[| = |[w" —lim ( )<k>< )
my,
f m(k)xn _f m(k)xn
< liminf, ( , q) (k)( i p>
my
o Hm,(ck)a:nq—m,(f)xnp +e
< liminf, m(k)
k
= H‘r"q - l'an :

Combining the last two inequalities, one gets that U(z,,) is an isometry from X into Y**. O

Corollary 2.11. Let (x,) be a greedy basis for X and f : X — Y be an e-isometry with f (0) = 0. Then (f (x,)) is
a greedy basis for span {(f (z,))}™ C Y**.

Note that if ¢ = 0 in Theorem u then obviously (i, f (z,)) = (x},z,). Hence ¢, : X* — span{(f (x,))}" is a
linear isometry for each n. Let ¥ C Y* be defined as

U:=3pan {Yn : ¥, € Sy~ satisfies Theorem 1.1}

and every y € span {(f (z,))} CY be renormed by
Myl = sup 4 (y).
PpESw

Since 1 is a linear isometry for € = 0, we have |[|y||| = sup,.¢g,. (z*, 7). Combining this fact and Theorem we
can deduce that (f (x,)) is isometrically equivalent to the greedy basis (x,,).

Let F = span{(f (x,))} for a greedy basis (z,) C X. Since each ¢ € ¥ depends on z* € X*, if x* separates
points of X then 1) separates points of F. This fact gives the following theorem.

Theorem 2.12. Let X and Y be Banach spaces with Y reflexive, (z,) be a greedy basis for X and f : X — Y be an
e-isometry with f(0) = 0. Let F = 3span {(f (z,))} and

U:=span {Yn : ¥, € Y™ and |z, x) — (¥n, f (2))| < 3ea.}

If ¥ separates the points of F', then V¥ is linearly isomorphic to F™*.

Proof . Since ¥ separates the points of F, ¥ is a Hausdorff subspace. Hence for any y* € V¥, there is a unique
z* € X* such that y* = 1¢,«. Now, take any y € F' and define T': ¥ — F* as

T(y") () =T (o) (y) = = (y) -

Clearly, T is a linear operator. Since (f (z,)) is a greedy basis for F' (Theorem , T is bounded by the definition
of greedy basis. If ¥~ (f (z,)) = 0 for all n, then ¢« = 0 and so Theorem says that z* = 0. Therefore, T is a
one-to-one, bounded and linear operator.

The definition of T' implies that T(¥)CY™ is a w*-closed subspace. Besides, the Hanh-Banach Theorem shows

that T(\Il)w = F*. Since Y is a reflexive space, T(\I’)u} = T(\II)UJ = T(\I’)‘I.H. Note that ¥ is a closed subspace of Y*.
If F*CY™ is also a closed subspace, then the proof will be completed by deploying the Inverse Mapping Theorem.

Let (y2) C T(¥) be a sequence that converges to y* € F*. Then for any y € F
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Em T (yy,) (y) = lim ¢ (y)

exists for all n. Since (27;) C X*, its limit exists and say that 2, — z*. Thus, there is a subsequence (z}, ) C (z},)
such that

for all m. Therefore the following limit

lim ey (y) = s (y)

*

exists for all y € F' and so (\I/)w =T (¥)=F*. As a result, this shows that F** is a norm-closed subspace. [J
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