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Abstract

This paper is devoted to the study of the asymptotic behavior of a viscoelastic problem with short memory in a
three-dimensional thin domain 2¢. We prove some convergence results when the thickness tends to zero. The contact
is modeled with the Tresca friction law. We derive a variational formulation of the problem and prove its unique weak
solution. Then we prove some convergence results when the small parameter € tends to zero. Finally, the specific
Reynolds limit equation and the limit of Tresca-free boundary conditions are obtained.
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1 Introduction

In recent decades, many authors have applied asymptotic methods to reduce the problems of three-dimensional
frictional contact to the two-dimensional models of a thin domain. In the literature, the asymptotic behavior of partial
differential equations in a thin domain, particularly those governed by elastic systems has been widely studied. Ciarlet
and Destuynder in [5], studied the equilibrium states of a thin plate Q x (—¢, €), to justify the two-dimensional model
of the plates, under external forces, where 2 is a smooth domain in R? and ¢ is a small parameter. The same method is
used recently for problems of general elastic shells in frictionless unilateral contract with an obstacle (see for instance
[2, 11]). Moreover, there are many problems have been studied before by using mathematical aspect and after, they
used the simplified Tresca interface condition which can be found it in monographs (see [12, [15] and references therein).
In our paper, we study the asymptotic behavior of a non linear problem in a dynamic regime with Tresca free boundary
friction conditions occupying a bounded homogeneous domain Q°. The boundary of this thin domain consists of three
parts: the bottom, the lateral part, and the top surface. We model the friction with version of Tresca’s law. Our
attention is devoted to the appearance of the short memory term. The equations considered in this paper with this
term are widely used in applications dealing with physical and biological systems. These are the assumptions of
elasticity and visco-elasticity of tire. Also their uses is very important in quantum mechanics ([8]). Other applications
are related to the mechanism of ball bearing. In the context of the linear thin elasticity and in the dynamic case, the
authors in [T, [I5] proved the asymptotic analysis of a dynamical problem of isothermal and non-isothermal elasticity
with non linear friction of Tresca type but without the short memory term. Other similar problems can be found in
[4, 7, 13, [14].
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The paper is organized as follows. In section 2] and [3] we present some notations and give the problem dynamic and
variational formulation. We prove that the displacement field satisfies an evolutionary variational inequality with
viscosity. In Section 4] we use the asymptotic analysis, in which the small parameter € is the height of the domain.
We establish some estimates, independent on the parameter ¢, for displacement and the velocity. We obtain some
convergence results. The main results concerning the limit problem with a specific weak form of the Reynolds equation,
the uniqueness of the limit displacement when the thickness tends to zero are given in section

2 Basic equations and assumptions

We consider a mathematical problem governed with non linear equations in a three dimensional thin domain Q°.
Let w C R? be fixed region in the plane. We suppose that w has a Lipschitz boundary and is the bottom of the fluid
domain. Let h : w — R be a sufficiently smooth function such that

0 < hmin S h(x17$2) S hmaxv

for all = (x1,22) € w, where hpi, and hpax are constants. Let 0 < e < 1 is a small parameter that will tend to
zero. We denote by Q° the domain of the flow (as in []])

QO = {(2,23) €ER?: (2,0) € w,0 < x3 < eh(x)}.

We decompose the boundary of ¢ as I'* =T'{ UTI'; Uw, with

w = {(z,z3) € Q z3 = 0},
I = {(@an €0 : (@0) cw, m=eh(@)),
I‘EL = {(gc,xg) S QE tx € 0w, 0 < 23 < Eh(I)},

where w is the bottom of the domain, I'{ is the upper surface and I'; the lateral part of I'®

The law of conservation of momentum is given by

2,,€
% —div (6°) — f5 = 0in O x (0,7),
with div(o®) = (0f; ;) and f€ = (ff),<,<3 denote the body forces.

The constitutive law for linearly viscoelastic isotropic material with short memory is given by

oij = 2pd;; (u(t)) + Ak (u(t))d;; + SM, in Q° x (0,T),

where u is the displacement field to the z point, @ = %(t) the velocity field, A and p are the Lamé coefficients. The

short memory (SM) is represented by the formula ([6]):
SM = 29d”(u(t)) + Cdkk(u(t))ém, in Q° x (O,T),

where 6 and ( represent the viscosity coefficients that satisfy 6 > 0, > 0. Finally, the Kronecker symbol is denoted
by 6;; and dy;(uf) = %(VUS + (Vus)").
However, the tangential velocity on w x (0,7") is unknown and satisfies the Tresca boundary conditions, with friction
coefficient x° ([8]):

lo%] < k¢ = @(t) =0,

. onw x (0,7)
l|ot| =k = 3B > 0,45(t) = —Pot.
We consider now, the following mechanical problem:
Problem 1. Find displacement vector u® : Q¢ — R? such that
a2ue
M (>4 £ __ H g
—5 —div () = f© =0, in Q° x (0,7), (2.1)

ot
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045 = 2pd;; (u(t)) + )\dkk(u(t))dij + 20d;; (u(t)) + Cdkk(a(t))dij, in Q° x (0,7),
u®(t) =0, on (I'fUTT) x (0,7),
uf(t).n =0, onw x (0,7),

7| <k =i (t) =0, onw x (0,T) (2.5)
lof| = k* = 3B > 0,45 (t) = —Poz, T ’
u®(0) = ug and a;t (0) = uf. (2.6)

Here |.| denotes the Euclidean norm on R3. Let n = (ny,n2,n3) be the unit outward normal to I'*, we define the
normal and the tangential components of displacement and stress tensors on the boundary, respectively, as follows

vy, =0v°m, vi=0v"—vin, o, = (c"n)n, o°.=0"n—o..n.
3 Weak variational formulation

To get weak formulation, we consider the following spaces

HY(QF) = {p € L*(Q°), % € L*(Q°) forall i,j=1,2,3},
J

Ke={peH ()’ :p=00nT{UTS, pn=0o0nw}.
Owing to the Green’s formula and by (2.3)-(2.6), we have to find the displacement vector u® € K¢ such that:

0%us

(G ()¢ = (1)) +a(u(t), ¢ — (1) +B (@°(t), ¢ — 4" (1)) +.j(p)~ (3.1)

g (@ () = (f(8),p — (1)),
for all ¢ € K¢, where

2’[1,6 2’LL€
(i O =00 = [ @) — i),

(0, — (0) =20 [ di (0 (0)di s~ (O)drdaat
A /s div(u® (t))div(e — u°(t))dzdxs,
B(if(t), o — us(t)) =20 N di j(uf(t))d; j(p — 05 (t))dadrs+
¢ . div(a® (t))div(e — 4 (t))dzdxs,
Jj(v) :/ k® |v| dax,
: 3
(f=(8),0) = /Q [ (Wudadas = ; [ i,

We introduce some results which will be used in the next.

VUl 12qey) < C D (W)l p2(qe) (Korn inequality, see. [? ]), (3.2)

a €
[ p2(0e) < €hmax 8—1; . for i = 1,2 (Poincaré inequality, see. [3]), (3.3)
There exists C > 0 such that |B(u,v)| < Cy |lul| ||v]], (see.[16, I7]) (3.4)

There exists  Cy > 0 such that B(u,u) > Cs ||ull?, (see.[16, 17]). (3.5)
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4 Change of the domain and study of convergence

In this section, we will use the technique of scaling in Q¢ on the coordinate x3. By introducing the change of the

variables z = %, we obtain a fixed domain 2 which is independent of €.
Q={(z,2) eR’: (2,0) €w, 0<2z<h(z)}.

Next, we denote by I' = T'; UT;, Uw its boundary, then we define the following functions in

f(x,z,t) = uf(x,x3,t),i=1,2,
S(w,z,t) = e tu§(x, w3, t).

Now, we assume that

f‘f(x,x37t),l%zak€,
()3 = e~ (ug)s,i=1,2

and we consider the sets
K (Q) = {@e (H(9)* : ¢ =0o0n Ty UTy; @.n:Oonw},

1@:{¢G(L2(Q))2;852iGLQ(Q):QZJ:O onfl},

With these new data, unknown factors in (3.1)) and multiplying by ¢, to deduce

Y2y (G (0), s — (1) + 4G (1), 0y — B5(0)+
(i (1), @ — 4 (1) + B (4 (1), & = 45(1)) + jo()—
go () = (. — i), Vo € K ()

where

. 2 s ous by — 1S
d(ﬁs(t),cﬁf{f(t)):uZ/sz (aa;(f) + aﬁ?) o 8x‘1(t))dxdz

J

o das(t)\ 8(@; — s (t
*“;/ﬂ< 8z()+62 62)) (¢ - ®) g
+ﬁwég&gwm@5jwwww+
2 dug(t)  Ou5(t)\ a(ps — u5(t))
ujz_:l/ﬂez (52 o, + B ) oz, dzdz
+ Ae? /Q div(0f(t))div( — € (t))dxdz,
o 0 6%@ A(pi — U5 (1)
B4 (t), ¢ — —agjl / ( 5, Bo: ) T dzdz

OUs(t) | ,005(t) \ O(@i — A5 (1))
+9;/ﬂ< g + ¢ Ry 5% dzdz

+ 29/ 528%(75) 8(@3 5”3(t))dazdz

+9Z/ < 8u3 aiggﬂ) 3(@3&?3(’5))@@

+ ¢e? /Q div(4f (t))div(p — 0°(t))dxdz,

(4.1)

(4.3)
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) = [ klglds

(Fo(t). 6 — §;/ﬁ - DMW+/aMM%—ﬁ@MM&

and

We now establish the estimates for the displacement ¢ and the velocity ¢ in the domain .

2
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Theorem 4.1. Assume that f, %0 %L° € L2(0, T, L2(Q°)%) and up € H2(Q°),u; € H'(Q%), the friction coefficient

k> 0in L*®(w), then there exists a constant C' > 0 independent of € such that :

2

S 2 LN [
b axj L2<Q> 9z "2
2 2 o2
> (| 5Ew 225y ) <e
= L2(0) Ozi " "l 20
2 2 2
o H o

€ € (t) +
Z;l 3563815 L2() 020t £2(9)
2 2 2
£ (125l -2l ) <
P 82625 LZ(Q) Ox;0t L2()

Proof . We take ¢ =0 in (3.1)), to obtain

(%’fﬁ)+a(u5(t>7u6(t))+b(ff(t),u5(t>>+/ k|0 (1) da < (FE(), 45 (¢)).

Integrating (4.6 for 0 to T, from Korn’s inequality, there exists a constant C independent of e; such that
- € 2 5 2 . e 2
(12017 + 26Ci IVe (O 72 )| +40CH 9 (O 0 7.0 <

Mﬂ;ma+@u+wwv%ﬁmm+2é(F@ﬂﬂmﬁ-

But
! £ . E _ £ € £ I ‘ 8f€ 1>
/O(f (s),0°(s))ds = (f(t),u(t)) — (f°(0),u (0))—/ (5 (5),u"(s))ds

0

We apply the Cauchy-Schwarz, Poincaré and Young inequalities, we deduce

o

(ehmax)?
pCl

max afa
< uCx|| VU ()72 02y + VU (0720 s (hmex)” / 1= ()72 (e ds+

£ i ch g
1232 00) + (a1 £ <o>n%g<ga>4% —75—fjﬁ 907 (3)]13202e .

From (4.7)), we get

. 2 2 . 2 2 2
14O + uCr IV ()2 ey + 40Ck [V (D) 120, 7,05) < Nurllzziqey + (14 20+ 33) VUl Lo e +

hmax hmax a ©
(ENCY)HJCE( )||L2(Q€)+( max) H.f ( )HLQ(QE (67/ ” f

)||i2(95)d8+

pCy
||Vu5(0)||i2(ﬂs) + T/o ||VUE(S)||%2(QE)d3'

(4.4)

(4.5)

(4.6)

(4.8)
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, we obtain

Multiplying 1) by &, and since 2 |\f€(t)||2Lz(o7T7Q€) =¢” ’ fet )’

12(0,1,9)
e 16 (O)] + uCre [IVu (0) 2 gy + 40Cke Vi ()22 0100 (4.9)
t
< CuteuCi [ V() e s
0

with

~ A maX aj:‘6
Ci1= HU1||3:2(Q) + (1 +2pu+3X) ||Vuo||iz(§z) / =5 ()72 () ds+ (4.10)

s ||fs( iz + hmax||f5(0)\|L2(Q) + IV (0172 q) (4.11)
By Gronwall’s inequality ([9]), it follows that
ella @) + e IVa ()| Z20e) < C. (4.12)

So, from (4.12) we deduce (4.4]).

To obtain a second estimate, let’s regularize the function ¢ using a family of functional ¢, = j. where ¢ > 0 and
Jjec is the following differentiable functional

W) = [ Ke(aecllun Pz, and o) = O,
w S

We consider the following approximate equation

%§U@+waw@+3(U¢w{mﬂ“xm@:ﬁ%mu

(4.13)
u(0) = ug, T (0) =u1, (wr); =0.
Now we derive equation || with respect to time and by substituting ¢ with 6t2 , we find
83uf 82u§ e 82u§ 82u§ 0?2 us
<8ﬁ@x8ﬁ@»+am@»8ﬁ@»+3(aﬂumaﬁuﬁ+
Out 82u5 8f5 us
oAV/) S <
(er G G o) = L w. Sk,
and because ((jg) (au (1)), a;uz (t )) >0 and b( . < (1), %(t)) > 0, we obtain
1d 0% 82ug afe us
2 5 < . .
o )y + i), 250 < L0, 2 ) (414)

For s € [0, t]; integrating (4.14]) and using Korn’s inequality, we get
0?us Qus 0%ug
a2 Dlz2(e) + 200KV 75 Ollz200) < 1755 O)lIZ200)+

ous ofe ug
@wmwwa%nmmﬁﬁ/céw»mﬂmw

AS
€ 0%ug € ous e ous 2 fe out
2<8aft (1), 5 ) = 2(851 (6), 5, (1) —2((95]; (0). —5,5(0)) —2/0 (aé)tJ; (1), 5, (0)ds
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and by the Cauchy-Schwarz, Poincaré and Young inequalities, we have

0?ug 0%ug
| T Dl + O IY o (1) ey < | e )3y + T e (O3

8 £ Ehmax a2f5
(24 3|V 8<(0)|\2L2(Qa)+ / [ $)|172(0s)ds+

8752
(ehmax)?

ofe
(O22(0¢) + 1Ch ||

max ({)fE /,LC
o) 03+ 25 [ IV

And from (4.13]), we have

(a v <o>,¢) — (F°(0),6) — a(uE(0), 9)

ot?
also
8211/2 € €
(01:6) 1= Gl £ Ol + 2+ 3 O ) [l
We multiply (4.16) by /2 and since 2 [1£2(0)l p2(qe) = Hfg(())’ @)’ ﬁHuf(O)HHl(QS) = ||ag O)HHl(Q),
0?us
Vel 75 (0)l 220 < Co.
ot
with Cs = husaell FEO) 2 + (2014 3N [8(O)]1 110
And for ¢ — 0 in (4.15]) , we obtain
0%uf ou® 0?u®
152 Ol @0y + ORIV — - (DlI72(00) < 1555 017202y + V65 (0) 17200y +
ot ot ot
ous Ehmax 82f8
(1 2+ 3019 e Oy + el [T ) 3
(&?hmax) af*

(ehmax)® max) 12 afe

,[LCk 5
O || <>||i2(95>+7 1906 s

Multiplying the last inequality by e, we deduce

0*uf
o1 s (Ol BT S Ol < Co - enCh [ 19063

with

aaa Inax azfs
Cs = CF + (4O + 201+ BNV 2 (0) g + / 1L ()12 st

8252
max of¢ max ofe
e 017 >||L2(Q>+(MC) 128

1= = (0720

By Gronwall’s inequality ([9]), it follows that

s out
5||w(t)||%2(gs) + E||Vﬁ(t)||%2(gs) <C

This completes the proof of (4.4) and (4.5). O

Theorem 4.2. Under the same assumptions as in Theorem there exists

u*(t) = (ui(t), uz(t)) € L*(0, T, V2) () L=(0, T, V2),

;

such that

< m

() = ui(t), i=1,2,
(t) = aj(t), i=1,2,

B
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(4.15)

(4.16)

we obtain

(4.17)

(4.18)

(4.19)
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Bu
3x v
au
oz, J

0u5 0
{ gz D=0 (4.21)

“(t) =0, 4,5 =1,2,
(4.20)

()_\07 ivj:]-727

o0us
25 (1) 0,

5 03
B4 =0, i=1,2
a0 0, =1,
5, 0US

8;16,-
{mé(t) -0 (4.23)

eu5(t) — 0,

(4.22)

(t)—0,i=1,2

Proof . By Theorem there exists a constant C' independent of € such that

ous
0z

(t) <C =1,

L(0,T,L*(2))

using this estimate and Poincaré’s inequality

then, @ (t) and uS(t) is bounded in L2(0,T,V.)(L>(0,T,V.), i = 1,2, this implies the existence of uf
L?(0, T V Y L>(0,T, V) such that @ (t) converges to u?(t) and 5 (t ) converges to 4} (t). While - ) follow

from (4.4) and .

das

E(t)
024
—(t
020t

||’IAJ/‘7€ (t)HL(QT,L?(Q)) S hmax
ous

L (t
5 ()

LOTLAQ) ;19

<h

— max

L(0,T,L2(Q))

L(0,T,L2(Q))

5 Study of the limit problem

In this section, we give both the equations satisfied by u*(¢) and ux(t) in © and the inequalities for the trace of
the velocity u*(z’,0,t) and the stress %(m', 0,t) on w.

Theorem 5.1. With the same assumptions of Theorem the solution u* satisfies

Ol (1)) (g — 1 (1)) 0 (1)) D(ps — (1),

2
ui; Jo 0z 0z duvdz HZ Jo 0z 0z
H0) = 0) 2 3 o 01— i (0)dods, ¥ € T(K), oy
uf(0) = Uo,i»
Puilt) o) _
e 0 o = fi(t)e L3(Q), (5.2)

where,
I(K) = {@Z (1, p2) € H! (Q)Z,gb:()on F1UFL}.

Proof . Using the variational inequality (4.3) and applying Theorem we get

O (1), 6 — dE(1)) = 0,

li 6(at2
=1
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;g@@—f@b}j@ﬁ@f@@»

By the fact jo is convex and lower semi-continuous (lim inf jo (f[f(t)) > Jo (u*(t))), we obtain 1)
We choose in (5.1), ¢; = uf & ¢; i=1,2, with ¢ € H}(Q), to get

2
aq” dvdz = / fi(t)psdadz.
i=179

3(257

If g1 =0 and ¢ € HI(Q) or ¢2 =0 and ¢, € H&(Q), then

ou’

6¢z
Q 82 (

d dz —/fZ Vpidxdz.

By Green’s formula, we find

) (u Qui(t) | 0 (1)

S0z 0z 0z

o ) =fi(t), i=1,2 € H (), (5.3)

and since f; € L2(Q), Vt € (0,T), we deduce that ——Z (u% + 9%) € L?(Q2). Which implies 1) O

Theorem 5.2. Under the same assumptions of Theorem we have

/ k()Y + s*| — |s*|)dx — / uitpdr — o7 >0, vy € L? (w)?, (5.4)
T+ 9
. (5.5)
{ ’/,LT —1—9 (MT*—I—H%),
where
7= o (2,0,t) and s* (z) =u* (z,0,t)
az - ) ) *
Also the limit function v* and s* satisfy the following weak form of the Reynolds equation
4 h h 85
S v o+ 00 oozt * Vi (2) do =0, (5.6)
w 0

for all v € H' (w), where
h
F(w):/ F(x,z,t)dz—gF(x,h,t),
0

z prE
F(m,z,t):/o /0 fi (z, @) d&da.
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Proof . Equation (4.3) can be written as

0 3 o (Zt) + 32 (0)) 2dadz

e, (‘3‘“5 £ +e255(6)) [ + 282 | dadz

0z

+2ue? fQ O (¢ 86 dxdz + Ae? [, div (08 (t)) div (¢) dedz

0z

02 fQ( )+ 24 ()) P dwdz+

7 J—
0 1 Jo (W + 523—3?(15)) [%i + ez%} dadz
+2022 [, %—ig(t)%dmdz + ¢e? [, div ( ) div () dzdz
>

LR O] do — [, F i 0] de é(f“w@)ﬂ(fg(wg).

Passing to the limit and thanks to the Green formula, we deduce

82 * 82 *
—Z / (t)psdadz + / o (t)nydo — Z / 0 ()psdxdz
Q

0i; (t)ndo —|—/ ko4 s*| de — / k|s*| dx > Z/ fi(t)sdadz.
w w =179
But
Ui (t)n;do = / ;dx,
: 6“2 Ynpydo = j dz,
then

62 * 32 *
()%dxdz—/m idz — Z/ 6 (t)idadz

-dx—l—/l%|¢+s*|dx—/l%|s*\dx22/fi(t)z/)idxdz,
w w =179

—i/ﬂ

ot

for all ¢ € Hr,ur, ()%, where
Hr,ur, (@) ={v € H'(Q),» =0 on I'yUI}.

On the other hand thanks to (5.2)), we find

/l%|¢+s*|dac—/I%\s*\dm—/;n*wdac—

The inequality (5.7) is also valid for any v € D(w)? and by density of D(w) in L?(w), we obtain

[+ stiar [ stiao— [ e [ 05 vds =0

for all ¢ € L?(w)?. Which gives (5.4).
To prove ., it suffices to follow the same techniques of [3] for the Stokes fluid. In effect, we choose ) = £s* in

, we obtain
R a * *
k|s*|dx — ur™ +9 |s*|dz = 0. (5.8)

(5.7)




Study of a dynamic viscoelastic problems with short memory 1921

Taking ¢ = ¢ — s*, with ¢ € L?(w) in (5.4)), we get

/wl%|¢\d:r—/ <,¢ L *>|¢|dx>/wfc|s*|dx—/ (m 109 *)|s | da.

From (5.8)), we deduce
A . or*
/k|¢>\dx—/ pr 465 ) g 2 0, (5.9)

then by choosing ¢ = (¢1, ¢2) such that ¢; > 0 for i = 1,2, in (5.9), we get

/

In (5.9), we take —¢ such that ¢; > 0 for i = 1,2, we obtain

*

or
wr +9—

" cosur + 07 oy

Thus, we have

Then

*

k|s*| > |\pr* —|—98

|s*| > <m’ +088t> *

Moreover, we have

k|s*| = (m* + 9&) s*. (5.10)

If k = ‘/,1,7'* + 9% , then from (5.10) we have

*

or
ur* +0 5

|s*| = (,ur +963t ) s,

Then, there exists 8 such that s* = (,w'* + 9%)-

, then from ([5.10) we have

Tk a * * 7 * 67_* *
whence s* =0 on w.

To prove (5.6]), we integrate twice (5.2)) for 0 to z, we obtain

—pu* (x,z,t) — 0u* (x, 2 t) +uu x,0,t) + 04" (x,0,1) (5.11)

/ / f(z, o, t)dadt.
:/Oh /ng(x,a,t)dadf. (5.12)

7 * or*
Ik > |ure + 0%

In particular for z = h, we obtain

us-i—a
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Integrating (5.11)) between 0 and h, we get

*

Os

ot

h
—/ (uu* (x, z,t) + 04" (x, 2,t)) dz + phs* + 0h (5.13)
0

Y ik
oo 2 ot

h
= / F(x,z,t)dz.
0
By (5.12)-(5.13), we get (5.1)). O
Theorem 5.3. The solution u*(t) € L?(0,T,V,)( L*°(0,T,V,) of limit problem (5.1] is unique.

Proof . Let u'(t) and u?(t) be two solutions of (5.1). Taking ¢ = u%(t) and ¢ = 4! (t) respectively, as test functions

in (5.1) we get

2L [ Oub(t) 92 (t) — (1) [ duk(t) 92 (t) — (1)

u; /Q - o dxdz+9; /Q 2. o dzdz (5.14)
2

+j(a2(1) — j(a' (1)) > Ej/fﬂwWﬂw—uﬂme&
i=179

[ Ou(t) Oad () — u3(t) [ 0u(t) Ol () — i (t)

u; /Q - o da:dz—i—Q; /Q - o dzdz (5.15)

2
+j(a(8) = j@*(t) > Z/in(t)(ﬂi(t) — 43 (t))dzdz.
i=1
By subtracting (5.14) from (5.15]), we obtain

2L [ O(al(t) — a3 (1) A(al(t) — (1)) 22 [ O(ul(t) — ud(t) B(ad(t) — il (2))
0;/9 52 drdz < p;/ﬂ 52 dxdz.

0z

We use now assumptions (3.4) and (3.5) to find

0 0
9 (1) — i2(1)) <C\<wm—ﬁw> . (5.16)
’ 9z L2(Vz) 0z L2(Vz)
Moreover, since u;(0) = uy, it follows that
and, therefore
lwo-ve)| < [ Zae-ae (518)
0z v,y Jo 1192 L2(V.) '
By and , we obtain
‘ Dy — i) < c/t 9 a1 (s) = i2(s)) ds.
0z rzov.y  Jo 0z L2(V.)

By Gronwall Lemma and Poincaré’s inequality, we deduce
t(s) = i’ (s),

for all s € [0,7]. Using then ([5.17) to obtain that u!(¢) = u?(¢), which completes the proof. [J
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