
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,908 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
The cubic trigonometric B-spline collocation method for the time-fractional stochastic Advection-Diffusion equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 16، دوره 14، شماره 8، آبان 2023، صفحه 161-167 اصل مقاله (541.93 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.7182 | ||
نویسندگان | ||
Allahbakhsh Yazdani Cherati* ؛ Zohre Azimi | ||
Department of Applied Mathematics, Faculty of Mathematical Science, University of Mazandaran, Babolsar, Iran | ||
تاریخ دریافت: 13 اسفند 1400، تاریخ بازنگری: 26 مرداد 1401، تاریخ پذیرش: 19 شهریور 1401 | ||
چکیده | ||
The ultimate goal of this performance study is to provide a proposed scheme for solving the time-fractional stochastic advection-diffusion equation (TFSADE) of order $\alpha (0\le \alpha <1)$. In this proposed scheme, we utilize an approach based on cubic trigonometric B-spline collocation methods (CTBSCM). In this study, we replace the existing fractional derivative with the fractional Caputo derivative for time discretization and then replace the first and second derivatives of the equation using cubic trigonometric B-spline functions for spatial discretization. Applying this proposed scheme to TFSADE causes the equation to reduce to the linear system. In the end, the examples show that the order of convergence of the proposed method is $O(\tau ^{2-\alpha}+h^2)$ where $h$ and $\tau$ are the spatial and time step lengths, respectively. | ||
کلیدواژهها | ||
Fractional stochastic equation؛ Cubic trigonometric B-spline؛ Brownian motion | ||
مراجع | ||
[1] F. Mirzaee and S. Alipour Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math. 366 (2020), 112440. [2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
| ||
آمار تعداد مشاهده مقاله: 16,347 تعداد دریافت فایل اصل مقاله: 332 |