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Abstract

This paper establishes sufficient conditions to ensure the stability and boundedness of zero solution and square integra-
bility of solutions and their derivatives to neutral type nonlinear differential equations of fourth order by constructing
Lyapunov functionals.
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1 Introduction

Qalitative behaviour, Stability boundedness and squar integrability of solution of a real scalar fourth-order differ-
ential equations are challenging subjects to deal with, the most known and powerfull mathematical objects used in
studying these concepts are Lyapunov functionals historically presented by the Russian mathematician Aleksandr M.
Lyapunov.

It is very known that neutral delay differential equations play an important role in explaining large class of
phenomenae in several sciences such as electrodynamics, control theory, biology, economy, echology,... they can be
primordial when the application of ordinary differential equations fails.

The subject of qualitative behaviour of this kind of equations has also central position in applications, for the best
of our knowledge The results on qualitative behaviour of solution for nonlinear delay differential equations of fourth
order of neutral type are few when we compare them by nonlinear delay differential equations of fourth order which
received considerable attention and has been subject of many articles in the literature we have for instance [3}, [4, [6] [7].

Motivated by the facts above in this article, we investigate some asymptotic properties of solutions of the fourth
order nonlinear neutral delay differential equation,
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(" 0) + o (¢ = (1)) +a(0) (0" (1) +5 1) (o)1) +e(t) 7))
+d(t) h(x(t —r(t) )) = (t, 2(t), 2 (t), 2" (1), 2" (1)), (1.1)

where r is a bounded delay, 0 < r(t) <ry,—r3 <7'(t) <r9,0 <19 < 1, r3 > 0. The functions a, b, ¢, d, are continuously
differentiable functions. The functions f, g, h and ¢, are continuously differentiable.
Equation (1.1)) is equivalent to the system

W; —a(t)p (z)w — (b(t)g (z) + a(t)91>z - (b(t)92 +e(t) f () )y

t

—d(t)h(x) +d (1) / y ()1 (z (s)) ds,

t—r(t)

where
W(t) =" (t) + pz" (t —r(t)) = w(t) + pw(t —r(t), 01 (t) = ¢’ (x (t)) 2’ (),

and Oy (t) =g (z ()2 (t).

The continuity of the functions a,b,¢,d, f,9,9", h,p,¢’,q, and ¢’ guarantees the existence of the solutions of ([1.1)).

2 Assumptions and main results

Firstly, let us set some assumptions on the functions that appeared in (|1.1)), and suppose that there are positive
constants ag, b07 Co, d07 an %0, d0, a1, bla C1, d17 fla ®1,91, hOa m, Ma 6a 607 m and 12 such that

1) O<a0§a(t)§a1;O<b0§b(t)§b1; O<Co§0(t)§01;0<d0§d(t)§d1
and d'(t) <0 fort>tg+ry, to>0.

i) 0<fo<f(@)<fi;0<po<p(x)<p; 0<go<g(x)<gs for z€R and
0<m<min{f0790079071}a M>max{f1,g01,g1,1}.

h
iii) %2(5>0 (for z #£0); h(0)=0.
h ) h
iv) EofaOTnzogh'(:r)Sﬁ for z € R,
M+ 6 dihoM
V) bogo > C1 0+a110 — 5
apm Ccom

“+o00
vi) / (la" @)+ b @)+ | @)+ |7 )] —d (t))dt <m < +oo, where t3 =tg+7r
t1

+oo
vii) / (" ()l +1g" () + [ (s)]) ds < 2 < 0.

Lemma 2.1. [2] Let h(0) =0, zh(z) >0 (z #0) and §(¢) — h'(x) > 0 (§(¢) > 0), then

(0 H(z) > h2(x)  where H(z) = /mh(s)ds.
0

Our first main result of this paper is the following theorem where (¢, x,y,z,w) = 0.
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Theorem 2.1. Suppose that assumptions i) ~ vii) hold. Then every solution z(¢) of (L.1) and their derivatives
2'(t), 2" (t) and =’ (t) are uniformly asymptotically stable, provided that

1
ry < X min {1, 2ecom — aper M — apdy N, 2 — p (aar M + 2 + uh) ,

2bogo — 261 — 2eM (a1 + ¢1) — p (abrgr + B+ ph) }7 (2.1)
where
. 4e 2ecom bogo — 01 —eM (a1 + 1) 2e
p<m1n{1, _—, , 2 ; , ,}
ahy’ aciM + adi g abigr + B8+ 1) aar M + 2+ pf

= adi Ao + ad; (1 +7°3) = aaiM + abigr + acy M +2ady(1+713) + 5+ 3
1 — 2 — ’
17’[”2

}, (2.2)

177’2
dl)\O(a +ﬁ + 1) - ho

1— 14 ’Ao_max{zM’
1 diho bogo — 01 }

and ¢ < min
{aom " com T M (a1 + 1)

ho a0m50

A= P

(2.3)

Our second main result is the following theorem where (¢, z,y, z,w) # 0.

Theorem 2.2. Let all the conditions of Theorem [2.I] and the assumption

+oo
[(t, x,y, z,w)| < |e(t)| and / le (s)|ds < m3 < +00 (2.4)

t1

where 73 is positive constant. Then, there exists a finite positive constant K such that every solution z(.) of (1.1]) and
their derivatives 2/(.), z”(.) and :v”’( ) satisfy

L 2] < VE. | 2(0)] < VE, |o" ()] < VE, [ (t) + p2” (t = r(t) | < VE,  forall t > to+r1,

2. /00 (2(s) + 2" (s) + 2""*(s))ds < <.

ty

Proof . Proof of Theorem The proof depend on some fundamental properties of a continuously differentiable
Lyapunov functional U = U(t, x4, yt, 2, we) defined by

1 t
- [
U=e¢ T/t v, (2.5)

where

v (@) =l O+ V' (O] + | @ + " ()] = d" (&) + 102.(0)] + 02(8)] + |63 (2)],

and
0 t t t
2V =2V (t, xe, yt, 26, W) + A 2(0) dfds 22 (s)ds w? (s)ds,
ot s, 2, W) + /T@)/Hf’ (0) +u1/”(t) (s) m/ﬂ(t) (s)
such that
05(t) = [f(z(t)2' (1),
2Vp = 2Bd(t)H z)+c(t)f (w)y2+0<b() ()22 + a (t) p(x)2% + 2Ba () p(x)y=

(z) + (
g(x) — ahod (t)]y? — B2% + aW? 4 2ac (t) f (z) yz + 2ad (t) b (x) 2
(@) 2 (t = (1)) + apd () (z (t = r(1))” +2d (t) h (z) y + 2By W + 22W,
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with a = ﬁ +e,0= Ccllﬁs + ¢, &, and 7 are positive constants to be determined later in the proof. We rewrite
2V, as ’ ’
2Vo = a( x)[ +z+6y]2+c(t>f(x>[cw+y+a22
(t) c(t) f(x)
(t) h? a*(t)h* (x)
+ (t)f(;v) +Vi+ Vo + V3 + Vi,
where
_ S () | drho a(t) ., } .

o= 2 [ | 2 f0 w9 ds

Vo = [ab(t)g(z)fﬂfac x}zz,

Vo = [30(0)9(0) - ahod (1)~ Pa (@] + |0 o W2 and

Vi = 2ed(t)H (z)+2apd (t) h(z)z(t —7r(t)) + apd (t) (z (t — 7“(t)))2 .

Now, we will prove that V' is positive definite. Take

. dihg  bogo — o1
€ < min { aom " com * M{ar o) (2.6)
then 1 2 dh dih
<a< ;0 g TT0 (2.7)
aopm apm Ccom com
Using conditions (i) ~ (v) and inequalities (2.6)and (2.7) we get
dy [T ho ,
Vi > 4d(t)— | h —h ds >0
Lz aa [ - v e as 2o
V, = (a(b (t)g(x) — Ba(t) —ac(t) f (x)) + B(aa(t) — 1))2’2
dih M 1
> a(bogo - 1706“ _ar ela; + clM)>22 +B(—=-1)2"
apm m
> afbogo — 01 — EM(a1 +¢1))z% >0,
1
Vs > 5(5090 — Zhod; - 501M>112 + (Oé - >W2
aopm
dihoM
> ﬂ(bogoco 10 ;)n E(Com+alM))y2+€W2
0

> B(bogo -0 —eM(er + al))y2 +eW? >0,

and by choosing p < aho

Vi = 2ed(t) /Ox h(§)dE + apd (t) [(z (t = r(t) + () = h? (96)]

> 2ed(t) /0 h(€)dE — %d(t) /0 K (§)h(€)dE
> 2d(f) /OI (e - O‘Zh°> h(€)d¢
>

Sdo (5 _ O‘Zho) 22,
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Using the fact that the integral f () ft sV (0)dlds is positive, we deduce that there exists positive number Dy
such that
2V > Do (y* + 22+ W2 + H(z)) . (2.8)

By Lemma [2.1) and conditions (iii) and (iv) it follows that there is a positive constant D; such that
2V > Dy (2® +y° + 22 + WQ) ; (2.9)
thus V is positive definite. From (i)—(iii), it is not difficult to see that there is a positive constant A; such that
V<A (m2+y2+22+W2).
By (vii), we have
t a2 (t)
/ (102(5)] + 102(5)] + [05(s)[)ds = / (I¢' @) + g’ (W) + [ (w)]) du

t1 al(t)

+oo
< / (I ()] + 19 ()] + £ (w)])du < ma < o, (2.10)

— 00

where a4 (t) = min{x(t1),2(¢)}, and ao(t) = max{z(t;),z(¢t)}. From inequalities (2.5)), (2.9), and (2.10)), it follows
that

U > Dy(a® +y* + 22 + W?), (2.11)
D1 _nitmn2 L . e
where Dy = 76 7. Also, it is easy to see that there is a positive constant A, such that
U< Ao(a® +y>+ 22+ W?), (2.12)

for all ,y, z and w, and all ¢t > tg + ry.

Now we prove that U is a negative definite function. The derivative of the function V, along any solution
(z(t),y(t), z(t),w(t)) of system (|1.2)), with respect to t is after simplifying

2V = Vs+Ve+Ve+Vg+ Vo+ Vip+ Vi,

where

Vs =—2(b(t) g(a) — ac(t) f(z) — Ba(t) p(x))z*,

Ve =—2(aa(t) p(z) — 1)w?,

Vo = 220(0) S0° — ) o) i — 2001 0) s 2 1)1 )
+2apd (t) ' () yze + pn2® + pow® — pn (1= (8) 27 — pa(1 — 7' (1)) w?
—2apd (t) ' (t)h (x) wy + 2apd (t) (1 — 7' (1)) zpw; + 2pww; + 2Bpzw;

— apdi|r’(t)|h? (z)
Vo =A@ (0) A1 - (1) [

t—r(t)

Vs =—2 <d1hoc(t) fl@)—d@)n (3:)) y? —2ad (t) (ho — h' (z) )yz,

t

y% (u) du + 2aWd (t) / y(s)h (z(s))ds
t—r(t)

220 [ N @) ds 20 [y H o) ds

Vio = — a(t)6; (z2 + QaZW) — b(t)6 (ﬁy2 + 2ayW + 2yz — ozz2>

+ c(t)0s (y2 + 2ayz),
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and

Vit = d(t)[28H (z) — ahoy® + 2h (z) y + 2ah (z) 2] + ¢ (t) [f(2)y” + 20f (x)yz]
+0' (1) [ag(@)2® + Bg(a)y?] +a’ (1) [p(x)2? + 2Bp(2)y2]
+apd (t) [z (t — (1)) + h(z)]*> — apd’ (t) h*(z) + apd, | (t)|h? (z) .

By conditions (i), (ii), (iv), (v) and inequality (2.6]), (2.7)and using Cauchy-Schwartz inequality we obtain

Vs < —2[d(0) ho — d (1) ' (2)] * — 20d () [ho — I (2)] y2
< —2d(t) [ho — b’ ()] y* — 2ad (t) [ho — K (x)] yz
2 2
<200~ 1 @) |(v+52) - (57) ]
o2
< a0 o~ W () 2
Therefore,
_ o2 )
Vs + Vs < =2 |b(t) g(x) — ac(t) f(z) = Ba (t) (z) = —=d (1) [ho = I (96)]} z
: dih 2
< =2 |bogo — (7 +€)61M — ( 170 —l—e)alM _ (aoméo)] 22
i apgm com 4
[ M drhoar M 1)
< =2 |bogo — c1 — o™ 9% _ _pp (a1 —i—cl)} 22
L apm Com aopm
< —2[bogo — 81 — M (a1 +¢1)] 22 <0,
Vi < —2[aagm — 1 w? = —2ew? <0,

Ve < —2ec(t) f(;v)y2 + ozpalet2 + apay Mw? + apby g1 2% + apblglwf + apey My?
Jrozpclef + apdidoy? + ozpdl)\oztz + 2% + pow? — w1 (1 — 7’2)2? —pa(l — rg)wf
+apdy (1 +13)22 4 2apd; (1 4 r3)wi + 2pw? + Bpz? + 2pw} + Bpw}

—2plwwy| + (p — p*)w}
< —(2ecom — aper M — apdi o) y? + (apbigy + Bp + p1) 22 + (apar M + 2p + o) w?
+ (apar M + apbigy + aper M + 2apdy (1 +13) 4+ Bp 4 3p — pz(1 — o)) w?
+ (apdiNg + apdi (1 +73) — p1 (1 —12)) 22 — p*w? — 2plwwy|,
where
ho ho a0m§0 . 4e 2€Com
Ao = {— %o } d {1,—, —} 2.13
0T |m T |J M P IE Ghy e + adig (213)
By taking
’ , Oédl/\o +Oéd1(1+’l“3)
pa = ppy where pj = ;
]. — T
, , oM +abigr + aci M +2adi(1+7r3) + 5+ 3
po2 = ppy where  py = 1 ,
oy
we obtain

Vs < —(2ecom — aperM — apdido) y® + (apbigy + Bp + pa) 2° + (apar M + 2p + piz) w?

—pPw? — 2pww|
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and

t

Vo < adiAo <W2r(t) + /
t

—r(t)

y? (s) dS) + Bdi Ao <y2r(t) + /t v (s) ds)

—r(t)
¢ ¢
+di ) <22r(t) + / v (s) ds) + Ar(H)y?(t) — A1 — 7"2)/ y* (u) du
t—r(t) t—r(t)
¢

< didor(t) (By? + 2% + aW?) + (dido(a + 6+ 1) — A(1 — r2) / J2 (5) ds

t—r(t)
<dido(a+ B+ 1) (y2 + 22 + W?). (2.14)

Then we have

9
1

ZVi < -2 lbogo — 01 —eM (a1 +e1) - §P(O¢5191 +8+m) |2
i=5

- <2€com —apey M — apdl/\()) y?: — (25 —plaai M + 2 + ub) >w2

—p*wi — 2plwwy| + diXo(a + B+ 1)y (y* + 22 + W?)

< =20 (y? + 2% + w? + pPwi + 2plwwy|) + dido(a+ B+ 1)y (y° + 22 + W?),
where

1
0= 3 min {1, 2ecom — apei M — apdy N, 2 — p (aar M + 2 + u5) ,

2b090 — 261 —2eM (a1 + Cl) — p(ab191 + 6 + #11) },

and
4 2 bogo — 01 —eM 2
p<min{1, = SCOMm 2090 91T € (a1,+ ) c /}. (2.15)
ahy’ aciM + adi ) abigr + B+ 1 aar M + 2 4 ph
Hence, there exists a positive constant D3 such that,
9
dido(a+8+1
Z Vi < -2 (y2 + 22 +w? 4 p2w? + 2plwwy|) + %rl (y2 + 22+ WZ) (2.16)
i=5 o2

20 (° + 2° + w? + p*w] + 2pwwy) + Ary (v + 22+ W?)

S —
< —2Ds (y* + 22+ W?),

2
where D3 = o — )\%1. It can be seen that if ry < 79’ then D3z > 0. From 1} and the Cauchy-Schwartz inequality,
we get

Vio < a(t)\01|(z2 +a(2? + WQ)) + b(t)|02] (az2 +a(y® + W) + By* + (v° + 22))

+ c(t)163] (4 + aly® + 22))
< Ai(|01] + 102] + 163]) (v* + 2* + W2 + H (2))

A
< 225 (161] +16] + 1031 )V,
0
where A\; = max {a1(1 + @), b1 (1 +2a+ 8),¢1(1+ a)}. Using condition (iv) and Lemma we obtain

h*(z) < hoH (x),
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consequently
Vii| < —=d' (t) [28H () + ahoy® + (h* (2) + y°) + a (h* (z) + 2°) + aph®(z)]
H @) [y* +a(y® +2°)] + 0 (6) | [az? + By?]
+la' (t) ] [z2 + 28 (y2 + z2)] + apdy v (t)|h? (z)
< Xelfld O+ @O+ | O+ 17" O] = d" ()] (v* + 2* + W + H ()
< 21/\71 [la" (@) + 6" (@) + " @) + 7" (O)] — &' ()] V.

1 1
such that Xy = max{25+ (ap+a+28+1)ho+ 1, ahg(l1+pdi) +a+28+ 1}. By taking p = D—max{)\l,)\g}, we
o

obtain

. 1
Vg <— Dsly® + 22+ W?) + g V. (2.17)

By conditions vi), vii) and inequalitie (2.17]) we have

1 t
| o IR
Ura = (V - 57 (t) V) e M/t

1/t
—f/ v (s)ds
—Ds (y2 + 22+ W2) e M/t

<
< =Dy (y?+ 22+ W3,

nit+n2

where Dy = Dze” 7 . Now take W3(|| X||) = Ds(2%+ 9>+ 22). From lb it easy to see that W3 is positive definite
function. Thus, we conclude that the solution of system (|1.2)) are uniformly asymptotically stable.
Now, it is evident from (|1.2)) that

Clearly, from the above discussion

lim z(t) = lim z/(¢t) = lim 2”(t) = lim 2"'(t) = 0.

t—o00 t—o00 t—o0 t—o0

This fact completes the proof of the Theorem O
Proof . Proof of Theorem From ({2.11)), we have

D n n
U > Dy(2? +y% + 22 + W2), where Dy = 716—712 ? (2.18)
Taking the time derivative of V with respect to t along the trajectory of system (1.2)), we obtain
: 1
Vg < - Ds(y” + 22+ W?) + 57(2&) 1%

+ (5y+z+aW)w(t,x,y7z,w). (2.19)
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By condition iv) and inequalities ([2.4]), (2.18]) and ( ) and the Cauchy-Schwartz inequality we have

1 t
| o SIRCL
Ura = (V - 57 (t) V) e T/t

t
—1/ v (s)ds
(ng (y2+22+W2)+(ﬂy+z+aW)1/J(t,w,y,z,w)>e nJu
Blyl + [z + W) [&(t, 2y, 2, w)]
Ds (lyl + [z| + [W]) le(t)]
Ds (34 y* + 2>+ W?) le(t)]

Ds (3 + D1W> le(t)]

2

IN A CIA

IN

IN

D
3Dsle(t)] + 5> Wle(t)],
2

where Dj = max{a, §,1}.
Integrating ([2.20) from 0 to ¢, using the inequality ( ) and the Gronwall inequality, we have

Ut,z,y,z,w) < U(0,2(0),y(0),2(0),w(0)) + 3Dsn3

52 [ Ulsa(s).(s). () () e(o)lds
25 [ jes)las
< (U(ny(()%y(o)’Z(()),w(O))+3D57]3)e 2 Jy
Ds

< (U(0.2(0). (0. 2(0).w(0)) +8Dsm)e D2 = Ky < oo,

In view of inequalities (2.18) and (2.21)),

1
(x2+y2+z2+W2)§D—U§K
2

where K = g—;. Aforementioned inequality implies that

lz(t)] < VK, |y(t)] < VK, |2(t) < VK, [W(t)| < VK forall t>to+ 7.

Hence,

20 < VE, [2/(t)] < VE, |o"(t)] < VE, [" (t) + p2” (t = r(t) | S VE forall ¢ > tg+ry.

for all t > tg + r1. First from (2.16|) we obtain

< =20 (y? + 22 + w? + pPw? + 2plwwy]) + M1 (y2 + 22 + w? + pPw? + 2plww|)

i\
=
A

—2D3 (y° + 2% + w® + p*w} + 2plww;|)
—2D; (y2 + 22 4 w2) ,

ININA

and we get,

: 1
Vg < - Ds(y? + 22 +w’) + YOV + (By + 2+ aW)g(t,2,y,2,w).

2177

(2.20)

(2.21)

(2.22)

(2.23)
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From vi), ([2.11]) and ( ) and the Cauchy-Schwartz inequality, we get

1 t
: : 1 *5/ v (s)ds
Uy = (V 7 (t) V) e t
—1/ v (s)ds
< (*DB (y2+z2+w2)+(ﬂy+z+aW)¢(t,x,y,z,w))e nJt, (2.24)

Now, we define F; = F(t,x(t),y(t), z(t), w(t)) as

F=U+ cr/ (y2(s) + 22(s) + w?(s)) ds,

t1

where o > 0. Tt is easy to see that F} is positive definite, since W = W (¢, x,y, z, w) is already positive definite. Using

t
_m / v (s)ds
the estimate e n <e M/t <1 and (2.24) implies

_mi+mn2

By < =Ds(P(0) + 220 + w?(1)) e ™7 + Da(ly(®)] + =) + W) [t 2.y, 2, w)
o (12(0) +22(1) + (1)
Dy () + 2(0) + w?(0) e 4 D (0] + 120 + WD) el

+o (yQ(t) 221 + w2(t)>. (2.25)

IN

n + N2

where D, is positive constant. By choosing o = Dse n we obtain

B < Di(3+52(0) +22(0) + W2(0))le(t)

IA

D4(3+ D%U)|e(t)|

IN

3D4le(t)| + %Ft|e(t)|. (2.26)

Integrating the last inequality (2.26)) from 0 to ¢, and again using the Gronwall inequality and the condition ([2.4)),
we get

D t
o< Fo+3Din+ ot [ Rle)lds
ty
D, !
D, le(s)|ds
S (FO + 3D4773)€ 2 Jt
Dy
73
< (FO + 3D4773)eD2 — Ky < 0. (2.27)

Therefore o I )
/ Y2 (s)ds < Ky / 2%(s) < K, and w?(s)ds < Ko,

ty t1 t1
which implies that
/ 2% (s)ds < Ko / 2"%(s)ds < Ky / 2% (s)ds < Ko. (2.28)
t t t

The proof of Theorem [2.2]is completed. O
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3 Example

We consider the following fourth order non-autonomous delay differential equation of neutral type

/
" 1 mn tz ' —t 3 x(t) + 4€w(t) + 467w(t) "
¢ 170 = o t+2 t
(CE ( ) + 170x 20 (t2 + 1) + (6 sint + ) 4 (eaj(t) + e—aj(t)) T ( )

2 . a(t) —a(t) !
+<cost+3t+3> <(s1nx(t)+66 + 6e )x’(t))

1+ ¢2 ex(t) 4 e==(t)

z(t) cosx xt
+ (67% sin®t + 2) < ®) 3 (1(?—142))@) + 5> x'(t)

( 1 +1+2(1+t2)> 2(t = wrery)
20 cosh t 20 (1 +1t2) z?(t — Wjﬂ)) +1

2sint
24 (@) + 2" (1) + (@ ()2 () +1

) T+ 4e® + 4e~ 7 sinx + 6e” + 6"
By taking ¢ (z) = m s g(z) = €T 4 e—7 ’
xrcosx + 5zt 45 z
= h =
f (@) 5(1 + 29 » h(2) 2417

! " " _ 2sint
Uit (0, (0,5 (), (0)) =

cost+3t2+3

,c(t)=e Psin®t+2

(: 2)1+t2
1 14+2(1+¢ 2sint 12 9 11
a(t) = t)=>——and r(l) = ———-= h == M==
D= S0comt t 2005 0 W=y ad 1) =gy Wehavem =15, 10
11 13 5
90:?791:?7]10:5760:57a0:17a1:37b0:27b1:4300:1701:37
do=~ gyl Mo gmdo e e <11 < then gy = 5 and
= — ==, — - —4. T . — n dp = 2 an
710" T 5 m d = Y VA 073
dihgar M M + 6
bogo = 11> y = LD + a + % = 51,
54 com agm
. 1 dlho bogo — 51 985 ’ t 1
< s R — R t = | S—: — .
‘ mm{aom com’ M(ay +cp) 1782 I @) 10 (£2 4+ 1)° 20 27"
1 M 49 dih 29
By choosing €=7 we get azao—m—i—e:%, 8= c(l)n”(z —l—ez%,
A\ - max E @ B agmdy . % \— dl)\o(a-i-ﬁ—f— 1) . %
o oM’ |m dy BT - 1—ry T T
’ N Ozd1>\0 + Oédl (1 + 7"3) o 50911
k= 1— 1 = 30780
;o aalM—l—ablgl+ozclM+2ad1(1+7“g)+B+3_51
M2 - 177"2 o
= i<min{l4—g —2£com
p = 170 ’aho’aclM+ozd1)\o’
bogo—(Sl—EM(al—FCl) 2e }_ 60
abigy + B+ 4 TaaM +2+ph ) 6899
1 1 . /
7“1:% < Xmln{1,2500m—apclM—apd1)\o, 2 — plaar M + 2+ p5),

29709
~ 578000

2bogo — 201 — 2eM (a1 + Cl) — p(ablgl + 5 + :u’/l) }
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On the other hand,

+oeo 1 [t 1 et —e” 0
"(\de = = < -
/—oo e (o) do 4/—00 €I+67I+x(ei"+e4)2 i
+oo +oo T —x (T oI\ o
N de = 1 (e +e *)cosx — (e —e *)sinx dr < 17
lg 2
—o00 3 —00 (ew + e*w) 5
+oo “+o0 o 3 4 1) — 4 4 .
CoNde — L (cosz — wsinz) (z* + 1) — 4z cos x "
|f )
—o0 5 —o0 (934 + ]-)
1 [T°5+2a2 9
< = 2T =2
= 5/(><> A1 10‘[”’
then
+o0
[ 00 @1 )+ 1 @) ds < .
—o0
We have also
+oo +o00 +oo Foo
/ la" ()| dt < / la’ (t)| dt = / | (cost)e™ — (sint)e "] dt < / 2e~tdt = 2,
I 0 0 0

sint cost
2+1 T (124 1)

too 1 2t
dtg/ 5 + 5 | dt
0 t“+1 0 (12+1)

“+ o0 400 400
[ won < [ woe- |
T1 0 0

+oo )
< / —dt =,
0 241
+oo 5

+oo +o0o +oo
/ I ()| dt < / | (¢)| dt = / | 3 (costsin®t) e — 2 (sin¢) e | dt < / Se 2t dt = 2
T1 0 0

0

and
/+OO( d (t))dt < /+oo x + sinhx + x cosh 2z + 222 sinh x + 2* sinh = .
" ~— Jo 10 cosh 22 + 2022 cosh 2x + 1024 cosh 22 + 2022 + 1024 + 10
1
10’
+oo , +o0 , +oo t 1
rtdtg/ rtdt:/ ==,
/m a 0 o o [10(2+1) 20
+oo “+o0 +oo 2sint “+o0 2
/ |e(t)|dt§/ \e(t)\dt:/ ‘:m‘dt</ ———dt =T
- 0 0 t+1 0 t-+1
Hence

+oo
/ (la" @+ 1" @ + ¢ (0)] = d' (&) + [ (1)]) dt < +o0.

T1

Thus all the assumptions of Theorem hold, this shows that every solution x(t) of (3.1) and their derivatives
2'(t), 2" (t) and z"'(t) are uniformly asymptotically stable.

4 Conclusion

A class of fourth-order differential equations of neutral type with variable delay inspired from some previous works
in the literature has been considered. Some new results are obtained on the stability, the boundedness and the square
integrability of the solutions of this class using the powerful tool of Lyapunov’s second method. A Lyapunov functional
is defined to achieve our proofs.
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