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Abstract

In this paper, we consider the boundary value problem related to the quasilinear hyperbolic equation with nonlinear
source terms. We start by showing the local existence theorem. Then, we prove the global existence and the decay of
the energy by using Nakao’s inequality, finally we get the finite time blow up of solutions.
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1 Introduction

In this work, we study the following value problem related to the quasilinear hyperbolic equation with nonlinear
source terms: 

utt − |∇u|div
(
α(x)

∇u

|∇u|
)
−∆ut + |ut|q−1ut = |u|p−1u, x ∈ Ω, t > 0,

u(t, x) = 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω.

(1.1)

Where Ω is bounded domain with smooth boundary ∂Ω in Rn

(n ≥ 1), p, q ≥ 1 and α(x) is is a stricty positive and continuously differentiable function in Ω.
Problems of this type arise in physics (for example, we represents the purely longitudinal motion of a viscoelastic
configuration. (see[1])) and in image processing.
The following equation

utt −∆u+ |ut|m−2ut = |u|p−2u. (1.2)

Has been extensively studied by many authors. It is well known that in the absence of the damping mechanism
|ut|m−2ut, the source term |u|p−2u causes finite time blow up of solutions with the negative initial energy (see [2, 7]).
On the other hand, in [4, 8] the damping assures global existence for arbitrary initial data in the absence of the source
terms.
The interaction between the damping term |ut|m−2ut and the source terms |u|p−2u was showed in [10, 9] by Levine for
linear damping ut. Levine studied the global nonexistence solutions when the initial energy is negative. In [6] Georgiev
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and Todorova developed the result of Levine with nonlinear damping (m > 2). Many authors have introduced a new
method and related between m and p in their work, for which there is the global existence and the other relations
between m and p for which there is finite time blow up. Particulary, they showed that if m ≥ p then, the solutions
with negative energy continue to exist globally and blow-up finite-time if p > m and the initial energy is sufficiently
negative. This result has been provesly generalized to unbounded domains and to an abstract setting in [11, 12]. In
these works, the authors showed that no solution can be extended on [0,∞) with negative initial energy if p > m and
proved with noncontinuation theorems. This generalization allowed them to apply their noncontinuation results to
quasilinear situations in the particular case of which the result of [6].
In the presence of the strong damping term ∆ut the following semilinear wave equation

utt −∆u− ω∆ut + µ|ut|q−1ut = |u|p−1u, (1.3)

studied by Yu in [22]. In the case when (q = 1) Gazzola and Squassina in [5] studied the global existence and blow up
of solutions. Then when ω = 1 and µ = 1, Chen and Liu was studied in [3] the global existence, decay and exponential
growth of solutions.
Many researchers have investigated to show the existence, blow up and asymptotic behavior of solutions of the (1.3)
(see [14, 18, 20, 17, 19]).
Messaoudi extended the blow up of solutions results of [6] in [14] with the negative initial energy. Then he studies
decay of solutions by using the techniques combination of the perturbed energy and potential well methods in [15]. In
[19], Wu and Xue proved the uniform energy decay rates of solutions by utilizing the multiplier method.
In [13], the authors showed the blow up of solutions under some restriction for a system of semilinear wave equation
and they gave an estimate for the blow up time T , this result allowed them also to apply their theorem to quasilinear
situations, of which problem (1.1) is a particular case. So, we prove the same result of [13] in the case of a quasilinear
hyperbolic equation with strong damping and source terms.

In this work, firstly we show the local and we study the global existance of solutions of the problem (1.1). Secondly,
we show the finite time blow up of solutions with negative and positive initial energy by using the same techniques in
[13] and [17].
This paper is organized as follows: In the section 2, we present some lemmas and we show the local existence theorem.
In the section 3, we prove the global existence and decay of solutions and we give example. In the section 4, we show
and prove the blow up of solutions with negative and positive initial energy in the case : (q = 1).

2 Preliminaries

In this section, we give some lemmas and assumptions which we will be used in this paper.
Let ||.||2 and ||.||p denote the usual L2(Ω) and Lp(Ω) norm, respectively, and ||.||D1,2

0
denote the D1,2

0 (Ω, α) norm.

We introduce the weighted Sobolev space D1,2
0 (Ω, α) defined as the closure of C∞

0 in the norm

||u||D1,2
0 (Ω,α) = (

∫
Ω

α(x)|∇u|2dx) 1
2 .

Lemma 2.1. [16] Let ϕ(t) be a nonincreasing and nonnegative function defined on [0, T ], T > 1, satisfying

ϕ1+γ(t) ≤ w0(ϕ(t)− ϕ(t+ 1)), t ∈ [0, T ].

For w0 is a positive constant and γ is a nonnegative constant. Then we have, for each t ∈ [0, T ],{
ϕ(t) ≤ ϕ(0)e−w1[t−1]+ , γ = 0,

ϕ(t) ≤ (ϕ(0)−γ + w−1
0 γ[t− 1]+)−

1
γ , γ > 0,

where [t− 1]+ = max{t− 1, 0} and w1 = ln( w0

w0−1 ).

Lemma 2.2. [13] Let us have δ > 0 and let B(t) ∈ C2(0,∞) be a nonnegative function satisfying

B′′(t)− 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2.1)

If
B′(0) > r2B(0) +K0, (2.2)

with r2 = 2(δ + 1)− 2
√
(δ + 1)δ, then B′(t) > K0 for t > 0, where K0 is a constant.
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Lemma 2.3. [13] If H(t) is a nonincreasing function on [t0,∞) and satisfies the differential inequality

[H ′(t)]
2 ≥ a+ b[H(t)]2+

1
b for t ≥ t0, (2.3)

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t→T∗−

H(t) = 0.

Upper bounds for T ∗ are estimated as follows:

1. If b < 0 and H (t0) < min
{
1,
√

−a
b

}
then

T ∗ ≤ t0 +
1√
−b

ln

√
−a

b√
−a

b −H (t0)
.

2. If b = 0, then

T ∗ ≤ t0 +
H(t0)

H ′(t0)
.

3. If b > 0, then

T ∗ ≤ H(t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a

[
1− (1 + cH(t0))

− 1
2δ

]
,

where c = (ab )
2+ 1

δ .

Next, we show the local existence theorem which can be estableshed by [6] and [21].

Theorem 2.4 (Local existence). We suppose that: 2 < p + 1 <
2n

n− 2
, u0 ∈ D1,2

0 (Ω) and u1 ∈ L2(Ω) then, the

problem (1.1) has a unique local solution:

u ∈ C
(
[0, T );D1,2

0 (Ω)
)

and ut ∈ C
(
[0, T );L2(Ω)

)
∩ Lq+1

(
[0, T )× Ω

)
.

Furthermore, one of the following statements holds true:

1. T = ∞,

2. ||ut||22 + ||u||2D1,2
0

−→ ∞ as t −→ T−.

3 Global existence results

In this section, we study the global existence and the decay of the solution for problem (1.1). We define

J(t) =
1

2

∫
Ω

α(x).∇u∇udx− 1

p+ 1
||u||p+1

p+1, (3.1)

and

I(t) =

∫
Ω

α(x)∇u∇udx− ||u||p+1
p+1. (3.2)

We also define the energy function

E(t) =
1

2
||ut||2 +

1

2

∫
Ω

α(x)∇u∇udx− 1

p+ 1
||u||p+1

p+1, (3.3)

and we denote the Nihari space
W = {u : u ∈ D1,2

0 (Ω), I(u) > 0} ∪ {0}. (3.4)

Next, we show the energy function (3.3) which is a nonincreasing function along the solution of (1.1) by the next
lemma:

Lemma 3.1. For t ≥ 0, E(t) is a nonincreasing function and

E
′
(t) = −(||ut||q+1

q+1 + ||∇ut||2) ≤ 0. (3.5)



1980 Bounaama, Maouni, Ouaoua

Proof . Multiplying the first equation of (1.1) by ut and integrating over Ω, by using integrating by parts, we get

E(t)− E(0) = −
∫ t

0

||uτ ||q+1
q+1dτ −

∫ t

0

||∇uτ ||22dτ for t ≥ 0. (3.6)

□

Lemma 3.2. Let u0 ∈ W , u1 ∈ L2(Ω) and we suppose that (p > 1) and

β = C∗

(2(p+ 1)

(p− 1)
E(0)

) p−1
2

< 1, (3.7)

then, for each t ≥ 0, u ∈ W .

Proof . For I(0) > 0 and by the continuity of u(t) so: I(t) > 0, for some interval near t = 0. Let Tm > 0 the maximal
time, when (3.2) holds on [0, Tm].
From (3.1) and (3.2), we get

J(t) =
1

p+ 1
I(t) +

p− 1

2(p+ 1)

∫
Ω

α(x)∇u∇udx, (3.8)

by I(t) > 0, we have

J(t) ≥ (p− 1)

2(p+ 1)
||u||2D1,2

0
, (3.9)

then from E(t) and E
′
(t), we obtain

||u||2D1,2
0

≤ 2(p+ 1)

(p− 1)
J(t)

≤ 2(p+ 1)

(p− 1)
E(t)

≤ 2(p+ 1)

(p− 1)
E(0). (3.10)

By using Lemma 3.2 and (3.10), we get

||u||p+1
p+1 ≤ C∗||u||p+1

D1,2
0

= C∗||u||p−1

D1,2
0

||u||2D1,2
0

≤ C∗
(2(p+ 1)

(p− 1)
E(0)

) p−1
2 ||u||2D1,2

0

= β||u||2D1,2
0

< ||u||2D1,2
0

∀t ∈ [0, Tm], (3.11)

we conclude by (3.3) that I(t) > 0, ∀ t ∈ [0, Tm].
When we repeat the procedure, Tm is extended to T . So the proof is completed. □

Lemma 3.3. If the assumptions of the Lemma 3.2 hold, so there exists η1 = 1− β such that

||u||p+1
p+1 ≤ (1− η1)||u||2D1,2

0
.

Proof . We have
||u||p+1

p+1 ≤ β||u||2D1,2
0

,

when, we put η1 = 1− β, we obtain the following results. □

Remark 3.4. We have
||u||p+1

p+1 ≤ (1− η1)||u||2D1,2
0

,

then, we can deduce that

||u||2D1,2
0

≤ 1

η1
I(t). (3.12)
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Theorem 3.5. Let u0 ∈ W satisfying Lemma 3.2, and we suppose that 2 < p + 1 <
2n

n− 2
, n > 2 holds, then the

solution of problem (1.1) is global.

Proof . We have

E(0) ≥ E(t) =
1

2
||ut||22 +

1

2

∫
Ω

α(x)∇u∇udx− 1

p+ 1
||u||p+1

p+1

=
1

2
||ut||22 +

p− 1

2(p+ 1)

∫
Ω

α(x)∇u∇udx+
1

p+ 1
I(t)

≥ 1

2
||ut||22 +

(p− 1)

2(p+ 1)
||u||2D1,2

0
,

since I(t) ≥ 0, so
||ut||22 + ||u||2D1,2

0
≤ CE(0),

where C = max{2; 2(p+1)
(p−1) }. By using Theorem 2.4, we obtain the global existence result. □

Theorem 3.6. Let u0 ∈ W , we suppose that 2 < p+ 1 < 2n
n−2 , n > 2 and (3.7) holds.

So, we have the following decay estimates:

E(t) ≤

{
E(0)e−w0[t−1]+ , if q = 1,(
E(0)−λ + C−1

7 λ[t− 1]+
)− 1

λ , if q > 1,

where w0, λ, and C7 are positive constants which will be defined later.

Proof . By integrating E′(t) over [t, t+ 1], t > 0, we get

E(t)− E(t+ 1) = Dq+1(t), (3.13)

where

Dq+1(t) =

∫ t+1

t

(
∥uτ∥q+1

q+1 + ∥∇uτ∥22
)
dτ. (3.14)

By using Dq+1(t) and Hölder’s inequality, we observe that∫ t+1

t

∫
Ω

|ut|2 dxdt ≤ C0D
2(t), (3.15)

where C0 > 0.

Then, there exists t1 ∈
[
t, t+ 1

4

]
and t2 ∈

[
t+ 3

4 , t+ 1
]
such that

||ut(ti)||2 ≤ CD(t), i = 1, 2. (3.16)

We multiply the first equation of (1.1) by u and integrate over Ω× [t1, t2], and by integration by parts, we obtain∫ t2

t1

I(t)dt =−
[∫ t2

t1

∫
Ω

u.uttdxdt+

∫ t2

t1

∫
Ω

∇ut∇udxdt

+

∫ t2

t1

∫
Ω

|ut|q−1utudxdt

]
. (3.17)

Now, we use (1.1) and integrate by parts then apply the Cauchy-Schwarz inequality in the first term and we use Hölder
inequality in the second term, we get

∫ t2

t1

I(t)dt ≤ ||ut(t1)||2||u(t1)||2 + ||ut(t2)||2||u(t2)||2

+

∫ t2

t1

||ut(t)||22dt+
∫ t2

t1

||∇ut||2||∇u||2dt

−
∫ t2

t1

∫
Ω

|ut|q−1utudxdt. (3.18)
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Our goal, now is to estimate the last term in the inequality. By using Hölder inequality, we obtain∫ t2

t1

∫
Ω

|ut|q−1utudxdt ≤
∫ t2

t1

||ut||qq+1||u(t)||q+1dt. (3.19)

After that, by using (3.10), we obtain∫ t2

t1

||ut(t)||qq+1||u(t)||q+1dt ≤ C∗

∫ t2

t1

||ut(t)||qq+1||u||D1,2
0

dt

≤ C∗

∫ t2

t1

||ut(t)||qq+1||u||2D1,2
0

dt

≤ C∗
(2(p+ 1)

(p− 1)
E(0)

) 1
2

∫ t2

t1

||ut(t)||qq+1E
1
2 (s)dt

≤ C∗
(2(p+ 1)

(p− 1)
E(0)

) 1
2 sup
t1≤s≤t2

E
1
2 (s)Dq(t). (3.20)

Next, we estimate the fourth term of the right hand side of (3.18), we find∫ t2

t1

||∇ut||2||∇u||2dt ≤ C∗

∫ t2

t1

||∇ut||2||u||2D1,2
0

dt

≤ C∗
(2(p+ 1)

(p− 1)
E(0)

) 1
2

∫ t2

t1

||∇ut||2E
1
2 (s)dt

≤ C∗
(2(p+ 1)

(p− 1)
E(0)

) 1
2 sup
t1≤s≤t2

E
1
2 (s)

∫ t2

t1

||∇ut||2dt,

then ∫ t2

t1

∥∇ut∥2 dt ≤
(∫ t2

t1

1dt

) 1
2
(∫ t2

t1

∥∇ut∥22 dt
) 1

2

≤ CD(t).

After that ∫ t2

t1

||∇ut||2||∇u||2dt ≤ CC∗

(
2(p+ 1)

(p− 1)
E(0)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)D(t), (3.21)

so, we have
||ut (ti) ||2||u (ti) ||2 ≤ C1D(t) sup

t1≤s≤t2

E
1
2 (s), (3.22)

with C1 = 2C∗

(
2(p+1)
(p−1) E(0)

) 1
2

.

Then ∫ t2

t1

I(t)dt ≤C1D(t) sup
t1≤s≤t2

E
1
2 (s) +D2(t)

+ CC∗

(
2(p+ 1)

(p− 1)
E(0)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)D(t)

+ C∗

(
2(p+ 1)

(p− 1)
E(0)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)Dq(t). (3.23)

On the other hand, we have

E(t) ≤ 1

2
∥ut∥22 + C3I(t), (3.24)

with C3 = 1
η1

(p−1)
2(p+1) +

1
p+1 .

By integration over [t1, t2], we have∫ t2

t1

E(t)dt ≤ 1

2

∫ t2

t1

∥ut∥22 dt+ C3

∫ t2

t1

I(t)dt. (3.25)
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Then, we obtain ∫ t2

t1

E(t)dt ≤1

2
CD2(t) + C3

[
C1D(t) sup

t1≤s≤t2

E
1
2 (s) +D2(t)

+ CC∗

(
2(p+ 1)

(p− 1)
E(0)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)D(t)

+C∗

(
2(p+ 1)

(p− 1)
E(0)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)Dq(t)

]
. (3.26)

Next, we integrate over [t, t2], we get

E(t) = E (t2) +

∫ t2

t

(
∥uτ∥q+1

q+1 + ∥∇uτ∥22
)
dτ, (3.27)

since t2 − t1 ≥ 1
2 , we conclude ∫ t2

t1

E(t)dt ≥ (t2 − t1)E (t2) ≥
1

2
E (t2) ,

so

E (t2) ≤ 2

∫ t2

t1

E(t)dt. (3.28)

Consequently,

E(t) ≤ 2

∫ t2

t1

E(t)dt+

∫ t2

t1

(
||uτ ||q+1

q+1 + ||∇uτ ||2
)
dτ

= 2

∫ t2

t1

E(t)dt+Dq+1(t). (3.29)

Hence, we have

E(t) ≤
(
1

2
C + C3

)
D2(t) +Dq+1(t) + C4 [D(t) +Dq(t)]E

1
2 (t). (3.30)

Then, we get
E(t) ≤ C5

[
2D2(t) +Dq+1(t) +D2q(t)

]
, (3.31)

since E(t) is nonincreasing function and E(t) ≥ 0 on [0,∞),

Dq+1(t) = E(t)− E(t+ 1) ≤ E(0). (3.32)

Then, we have

D(t) ≤ E
1

q+1 (0). (3.33)

So
E(t) ≤ C5

[
2D2(t) +Dq+1(t) +D2q(t)

]
≤ C5D

2(t)
[
2 +Dq−1(t) +D2(q−1)(t)

]
≤ C5D

2(t)
[
2 + E(q−1)× 1

q+1 (0) + E2(q−1)( 1
q+1 )(0)

]
= C6D

2(t).

Then, we get

E1+
(q−1)

2 (t) ≤ C7D
q+1(t). (3.34)

case 1 : When q = 1
E(t) ≤ C7D

2(t) = C7[E(t)− E(t+ 1)],

we get

E(t) ≤ E(0)e−w0[t−1]+ ,
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where w0 = ln( C7

C7−1 ).
case 2 : When q > 1, we apply Lemma 2.1 to (3.27), we obtain

E(t) ≤
(
E(0)−λ + C−1

7 λ[t− 1]+
)− 1

λ ,

where λ = (q−1)
2 .

The proof of Theorem 3.6 is completed.

□
Example 3.1: We consider the problem (1.1) in R3 with α(x) = 1, p = 1 and q = 1 with u0 = cosh(x) ∗ cosh(y) ∗
cosh(z), so the Theorem 3.6 is applicable.

4 Blow up results

Definition 4.1. A solution u of the problem (1.1) is called blow up with (q = 1) if there exists T ∗ a finite time such
that

lim
t→T∗−

[∫
Ω

u2dx+

∫ t

0

(||u||22 + ||∇u||22)dτ
]
= ∞. (4.1)

We put

A(t) =

∫
Ω

u2dx+

∫ t

0

(||u||22 + ||∇u||22)dτ for t ≥ 0. (4.2)

Lemma 4.2. We assume that: 2 < p+ 1 <
2n

n− 2
, n > 2, q = 1 and 0 ≤ 4δ ≤ p− 1, so, we have

A
′′
(t) ≥ 4(δ + 1)

∫
Ω

u2
tdx− 4(2δ + 1)E(0) + 4(2δ + 1)

∫ t

0

(||∇ut||22 + ||ut||22)dτ. (4.3)

Proof . By taking the first and second derivative of A(t), we obtain

A
′
(t) = 2

∫
Ω

uutdx+ ||∇u||22 + ||u||22, (4.4)

A
′′
(t) =2

∫
Ω

u2
tdx+ 2

∫
Ω

uuttdx+ 2

∫
Ω

(∇u∇ut)dx+ 2

∫
Ω

(|u|ut)dx.

= 2||ut||22 − 2

∫
Ω

α(x)∇u∇udx+ 2||u||p+1
p+1. (4.5)

From (4.5) and (3.3), we get

A
′′
(t) =4(δ + 1)

∫
Ω

u2
tdx− 4(2δ + 1)E(0) + 4(2δ + 1)

∫ t

0

(||∇ut||22 + ||ut||22)dτ

+ 4δ

∫
Ω

α(x)∇u∇udx+
(
2− 8δ + 4

p+ 1

)
||u||p+1

p+1.

Where 0 < 4δ ≤ p− 1, we get (4.3). □

Lemma 4.3. We assume that 2 < p+ 1 < 2n
n−2 and n > 2, so we have

1. If E(0) < 0, then A
′
(t) > ||u0||22 for t > t∗, where t0 = t∗ is given by

t∗ = max{0, A
′
(t)− ||u0||22

(8δ + 4)E(0)
}.
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2. If E(0) > 0 and

A
′
(0) > r2[A(0) +

G

4δ + 4
] + ||u0||22, (4.6)

holds, where G and t∗ will be defined later.
Then, A

′
(t) > ||u0||22 where t0 = 0.

Proof .

1. When E(0) < 0, then for t ≥ 0, A
′′
(t) ≥ −4(1 + 2δ)E(0), by integration over [0, t], we obtain

A
′
(t) ≥ A′(0)− 4(2δ + 1)E(0)t, t ≥ 0.

Then, we get A
′
(t) > ||u0||22 for t > t∗, with:

t∗ = max{0, A
′
(t)− ||u0||22

4(2δ + 1)E(0)
}. (4.7)

2. When E(0) > 0, Firstly, we find

2

∫ t

0

∫
Ω

uutdxdτ = ||u||22 − ||u0||22. (4.8)

By using the Hölder inequality and the Young inequality, we obtain

||u||22 ≤ ||u0||22 +
∫ t

0

(||u||22 + ||ut||22)dτ. (4.9)

Now, we use (4.9), Hölder’s inequality and Young’s inequality, we get

A
′
(t) ≤ A(t) +

∫
Ω

u2
tdx+

∫ t

0

||ut||22dτ + ||u0||22. (4.10)

By (4.9) and (4.3), we have

A′′(t)− 4(δ + 1)A′(t) + ||u0||22A(t) + (8δ + 4)E(0) + (4δ + 4)||u0||22 ≥ 0, (4.11)

with
G = (8δ + 4)E(0) + (4δ + 4)||u0||22. (4.12)

Let

b(t) = A(t) +
G

4(δ + 1)
, for t > 0.

Where b(t) satisfies Lemma 2.2.
Finaly, from (4.6) we obtain A

′
(t) > ||u0||22 for t > 0 and r2 is given in Lemma 2.2.

□

Theorem 4.4. We assume that 2 < p+ 1 < 2n
n−2 and 2 < n, so we have two cases

1. Case 1: If E(0) < 0, then the solution u blows up in finite time T ∗ in the sense of limt−→T∗− A(t) = ∞ and

T ∗ ≤ t0 −
L (t0)

L′ (t0)
. (4.13)

Moreover, if L (t0) < min
∣∣∣1, (−a

b )
1
2

∣∣∣, we have:

T ∗ ≤ t0 +
1√
−b

ln
κ

κ− L (t0)
, (4.14)

where κ = (−a
b )

1
2 .
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2. Case 2: If 0 < E(0) <

(
F

′
(t0)

)2
8F (t0)

and (4.6) holds, then the solution u blows up in finite time T ∗ in the sense of

limt−→T∗− A(t) = ∞, and

T ∗ ≤ L (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

µδ√
a
{1− [1 + µL (t0)]

− 1
2δ }. (4.15)

With:

a = δ2L2+ 2
δ (t0)

[
(F ′(t0))

2 − 8E(0)L− 1
δ (t0)

]
> 0, (4.16)

b = 8δ2E(0), (4.17)

µ = (
a

b
)2+

1
δ . (4.18)

Proof .Let
L(t) =

[
A(t) + (T1 − t) ||u0||22

]−δ
, t ∈ [0, T1] , (4.19)

where
F (t) = A(t) + (T1 − t)||u0||22,

with T1 is a stricty positive constant which will be defined later.
Then, by taking the second derivative of L(t), we obtain

L′(t) = −δ
[
A(t) + (T1 − t) ∥u0∥22

]−δ−1 [
A′(t)− ∥u0∥22

]
= −δL1+ 1

δ (t)
[
A′(t)− ∥u0∥22

]
. (4.20)

L
′′
(t) = −δL1+ 2

δ (t)A′′(t)
[
A(t) + (T1 − t) ∥u0∥22

]
+ δL1+ 2

δ (t)(1 + δ)[A′(t)− ||u0||22]2

L′′(t) = −δL1+ 2
δ (t)W (t), (4.21)

with
W (t) = A

′′
(t)F (t)− (1 + δ)(F

′
(t))2. (4.22)

We define

Mu =

∫
Ω

u2dx, Nu =

∫
Ω

u2
tdx,

Pu =

∫ t

0

∥u∥2dt, Qu =

∫ t

0

∥ut∥2 dt.

From (4.4), (4.7) and by Hölder’s inequality, we obtain

A′(t) = 2

∫
Ω

uutdx+ ||u0| |22 + 2

∫ t

0

∫
Ω

uutdxdt

≤ 2
(
(NuMu)

1
2 + (PuQu)

1
2

)
+ ||u0||22. (4.23)

When case 1 holds and by Lemma 4.2 we have

A′′(t) ≥ −4(1 + 2δ)E(0) + 4(1 + δ) (Nu +Qu) . (4.24)

Then, from (4.19), (4.22) and (4.24), we get

W (t) ≥ [−4(1 + 2δ)E(0) + 4(1 + δ) (Nu +Qu)]L
− 1

δ (t)

−4(1 + δ)
(
(NuMu)

1
2 + (PuQu)

1
2

)2

.

From A(t), we have

A(t) =

∫
Ω

u2dx+

∫ t

0

∫
Ω

u2dxds = Mu,
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and by L(t), we obtain

W (t) ≥ −4(1 + 2δ)E(0)L− 1
δ (t) + 4(1 + δ)[(Nu +Qu)(T1 − t)||u0||22 + Λ(t)],

with

Λ(t) = (Nu +Qu) (Mu + Pu)−
(
(NuMu)

1
2 + (PuQu)

1
2

)2

.

Where Λ(t) being nonnegative function and by the Schwarz inequality, we obtain

W (t) ≥ −4(1 + 2δ)E(0)L− 1
δ (t), for t ≥ t0.

Thus, by L
′′
(t), we obtain

L
′′
(t) ≤ 4δ(1 + 2δ)E(0)L1+ 1

δ (t), for t ≥ t0. (4.25)

We have
L′(t) < 0, t ≥ t0.

Multiplying (4.25) by L′(t) and integrating over [t0; t], we obtain

L
′2(t) ≥ a+ bL2+ 1

δ (t), for t ≥ t0,

with a, b are defined.
By using the steps of case 1, when case 2 holds, then if and only if

E(0) <
(F ′(t0))

2

8F (t0)
,

we get a > 0.
After that, we use Lemma 2.3, so there exists T ∗ such that limt−→T∗− L(t) = 0 and according to the sign of E(0), the
upper bound of T ∗ is estimated. So (4.1) holds. □
Example 4.1: We consider the problem (1.1) in R2 with α(x) = 1, p = 1 and satisfied 0 < δ ≤ 1

2 , so the Theorem
4.4 is applicable.

5 Conclusion

In this paper, we obtained the local and global existence, decay of solutions and blow up time for a quasilinear
hyperbolic equation with source terms in a bounded domain. This improves and extends many results in the literature.
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