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Abstract

Hilfer-Katugampola-type fractional stochastic differential equations with nonlocal conditions are considered in this
paper. By using the fixed point theorem, the existence and uniqueness of solutions for the considered problem are
proved. Ulam-Hyers stability for the considered problem is studied. Finally, an example is presented to show our main
results.
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1 Introduction

Stochastic differential equations (SDEs) have attracted great interest due to its applications in various fields of
science and engineering ([8]-[26]). Fractional differential equations have been widely applied in many fields such as
physics, chemical, fluid dynamic and traffic model([19]-[32]). Recently, Hilfer fractional differential equations have
attracted the attention of many authors ([12]-[3]). Nowadays, the generalized fractional derivative introduced by
Katugampola ([2I], 22]) is unified with Hilfer fractional derivative by Oliveira and Capelas de Oliveira is named
as Hilfer-Katugampola fractional derivative ([28]). Few authors studied Hilfer-Katugampola fractional differential
equations ([28]-[30]).

To the best of our knowledge, there are no results about stochastic implicit Hilfer-Katugampola fractional dif-
ferential equations with nonlocal conditions. Motivated by the above discussion, the aim of this paper is to study
the existence, uniqueness, and Ulam-Hyers stability of the solution of Hilfer-Katugampola-type fractional stochastic
implicit differential equations with nonlocal conditions in the form:

PDSPult) = f(tu(t),? D u(t)) + /0 o(s,u(s), "D u(s))dB(s),  te Ji=(0,T],
(pjol_;”u) (0) = Zgu(n), n€J:=[0,T], GeR, v=a+p(l-a). (1.1)
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where PDgf is Hilfer-Katugampola fractional derivative of order a and type 8 (0 < 8 < 1), and ")JOlJ:” is Katugam-
pola fractional integral of order 1 —v, (v =a+ (1 —«)), 1/2 < a <1, p>0and 7;,i = 1,2,3,--- ,m are prefixed
points satisfying 0 < 7 < 1o < -+ - <7, < T

Let (2,5, P) be a complete probability space equipped with a filtration {4 }e s satisfying St C S.
The state u(-) takes values in a real separable Hilbert space X. Let Y be another separable Hilbert space. Let {ey, }n>1
is a complete orthonormal basis in Y. Suppose that {B(¢)}:>0 is a cylindrical Y-valued Wiener process with a finite
trace nuclear covariance operator @ > 0, denote Tr(Q) = Y o2 Ay = XA < oo, which satisfies that Qe, = A,e,.
actually, B(t) = Y07 v/ AnBn(t)en, where {3,(t)}52, are mutually independent one-dimensional standard Wiener
processes. Let ¢ € £4(Y, %), where £o(Y,X) is the space of all Q-Hilbert Schmidt operators from Y into X, and

define:
2

el = TreQe") = 3 [V Aawen
n=1

The collection of all strongly measurable, square integrable X-valued random variables, denoted by L£2(9,X), is a

Banach space equipped with norm:
1/2

IOz, = (B lutsw)I%)
Through this paper, let f : JxXxX—>Xando: JxXxX— Lo(Y, X).

The outline of this paper is structured as follows: Section 2 contains some notations and preliminary facts. In
Section 3, we prove the existence and uniqueness solution for equation (|1.1)). In Section 4, we discuss the Ulam-Hyers
stability for equation (1.1). In the end, we consider example to illustrate our main results.

2 Preliminaries

Throughout this paper, let C(J, X) be a Banach space of all continuous functions u from J into X and C(J, L2(92, X))
be a Banach space of all continuous (S;-adapted stochastic process) maps from J into £2(€2, X) satisfying the condition
SUPse s |u(®)]|* < oo. Let also Ci—v,p(J, L2(2, X)) is defined by

Cimvp(J, L2(2, %)) = {u: J— Lo(Q, %) : <tpp> B u(t) € Ci—y p(J, L2(, X))},

(5)

Definition 2.1 ([2I]). Let a,c € R with o > 0 and ¢ € XP(a,b), where ¢ € XF(a,b) is the space of Lebesgue
measurable functions. The generalized left-sided fractional integral is defined by

with the norm
o\ 1/2

U = | supE
ol = | sur

("Tshe) (1) = ;lil(ao)z /Ot (tjp_lsigf)a ds, t>0.
where T'(+) is the gamma function which is defined as:
INa) = /000 e 't dt, Re(a) > 0.
Definition 2.2 ([28],[I7]). The Hilfer-Katugampola fractional derivative with respect to t, with p > 0, is defined by
("D5u) (1) = (07K o, 710 (0 (2.1)

where 6, = (t”*I%).

Theorem 2.1 ([15]). (Krasnoselskii’s fized point theory). Let E be a Banach space, let G be a bounded closed convex
subset of E and let T1,To be mapping from G into E such that Thu + Tov € G for every pair u,v € G. If Ty is
contraction and Ty is completely continuous, then the equation Tiu + Tou = u has a solution on G.
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Lemma 2.1 ([24]). For arbitrary £¢-valued predictable process o(t), t € [t1,ta] which satisfies

to
E (/ lo(s)II%,, ds> <oo, 0<t; <ty <T.
ty

< ([ Elol, ).

Lemma 2.2 ([I4]). A stochastic process u € C{_, ,(J,L2(Q,X)) is a solution of the problem if and only if u
satisfies the mized type integral equation

ult) = Fa)(f)lic | (Tf ;SP)Msp—1f<s,u<s>,Ku<s)>ds

+r2€1) (t:)y_l gg /On (ﬁ’ ; Sp>a1 s (/Osa(n,u(n),Ku(n))dB(n)) ds
+F1)tét(tp_sp>a1¢”3ﬂ8#&$7Ku@Dds

We have )
to
JE‘/ o(s)dB(s)

ty

(cx p
1 t P gP a—1 b s
where )
T := p”*l . pl’*lf(y) ?é Z Cz (Tip)ufl ,
PIT0) — S G () 2
and

K, (t) := *Dy u(t) = f(t,u(t),” Dy u(t)) + /0 o(s,u(s),” Dy u(s))dB(s).

3 Existence and Uniqueness

Firstly, We introduce the following assumptions:

H1. Let f:J x X x ¥ — X be a function such that f € CB(I_Q)(J, L2(0,%))

1-v,p
(i) for any u € C1—, ,(J, L2(€2, X)), and for t € J, u,v € X, there exist p,q, x € C1—, ,(J,R) such that

1F (E s 0)|* < p(t) + a(#) l[ull® + x (&) ]|

1/2
ﬁ%mwﬁ,f%WWﬂ
teJ teJ

(i) There exist constants Ki, K7 > 0 such that

with
1/2

1/2
and X" = (sup ||X(t)||2> < 1.
teJ

£t ur,v1) = F(tuz,v2)||? < Ky luy — uol|® + K7 [Jog — va|
for any ui, vy, us,ve € X.

H2. The function o : J x X x X — £¢(Y, X) satisfies
(i) There exist [,m,n € Ci—,,,(J,R1) such that

lo(tu,0) 1%, < Ut +m(t) [ull* +n(t) o]

1/2 1/2 1/2
- (sup|u<w|2) omt = (sup|wn<wn2) and n* = <§u§hz@)2) <1
S

with

teJ teJ
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(ii) There exist constants K, K3 > 0 such that

lo(t, ur,v1) = ot uz, v9) |2, < Ko lur — ua|® + K3 [Jor — va?

for any uy,vq,us, vy € X.

Theorem 3.1. Assume that (H1) and (H2) are satisfied. Then problem has at least one mild solution in

Cijfv,p(‘]a 'CZ(Qa %)) C Cl v p(J, »CQ(Q, %))

Proof . Consider the operator N : Ci—, ,(J, L2(2, X)) = C1—, ,(J, L2(, X)) defined by

NGO = pes (t)ic I ( ;SP)Msﬂ—1f<s,u<s>,ﬂ<u<s>>ds

=1

Consider the ball
B ={u€Ci—v,(J, L2(Q, X)) : Hu(t)“cl,,,,,, < k}.

Now we subdivide the operator N into two operators A and B on By as follows:

A = o (L) lzmjcz [T e et waonas

Lla) \ p
and
B = pla)/ot(tﬂ;sp)a1splf(s,u(s),ﬂ<u(s))ds
2 A R
e [ (55) ([ otnatn wamnasm) as

The proof is divided into several steps.
Step 1. Au + Bv € By, for every u,v € By.

Afu) (1) <’5p)1 < L+l

where
2

2 m P _ op a—1
L= 2’"'” Zcz (p) " f (s uls), Ku(s))ds

2 T i P _ P 200—2 -
< %;CQ/O (¥> $2° 2]E|\f(s,u(s),Ku(s))||§Q ds

p

and
2

m

o2m | T |?
no= 2 ‘ch

2m | T |2 T’/‘Q T (1P — 8P 2o=2 22 Py
< Zcz [(B55) Rl R, ds

() e (ot o)

p

i (B) ijc/ () e ([ et katmyanon) as

(3.1)
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Step 2.

We first estimate
2

t
E[K. O = EHf(t,u<t>7Ku<s>>+ [ ot uto) mue)asis)

< 2 (EIIf(t,u(t), Ku(s))|? + TTrQE [lo(s, u(s) Ku(s))l, )
< 2(p(t) + g [ull® + X(OE [Ku ()” + TTrQ (1(8) + m(D)E |[ull” + n(DE [Ku (D)) )
Thus, we have
2 (" +TTrQI") + (¢ + TTrQm")E [u]*)
1—2(x*+TTrQn*)

Using (H2) and equation (3.2)), B(:, ) is the Beta function and let a = p* +TTrQl*, b = ¢* +TTrQm* and ¢ = 1 -2(x* +TTrQn*),
we get

E K (t)||* < (32)

2m | T |? —
ne TR g

i=1
where

(p*c+ 2(1){*)[5%(2’)—;17 2a — 1) ((Tip/P)QailTip_1)
I?(a)

2vp—1 (qc+20x") (0 fp)2et2v=37071)

2
20— 1) ll2, -

°7 (@)

+B(

Similarly for I, by using (H2), we can obtain

2m | YT 2 TTrQ <
1, < 2| YL TTrQ > ¢,
c £
=1
where

(I*c+ 2an*)B(2, 2ac — 1) ((7£/p)*<p)

* 2bn* P 2a+2v—2
0 = 4 B2, 20— 1) T n) (77 /p) ’)

2
ll2, , -

I2(a) I'2(a)
For operator B, )
E ||B(u)(t) (%)I_V < I3+ Iy, (3:3)
where
0272 o 2
(O gy 2
I = ;2((1) E /O (T) sP1 (/0 a(n,u(n),Ku(n))dB(n))ds

By using (H1) and (H2), we can obtain

*c+ 2ax*) (TP /p)2e—2v+1rr—1 2p—1 2p0v —1 *c 4 2bx*) (TP /p)2e—1TP—1
L @ x*) (( 2/p) )B( P11y 1 B2 720{71)01 X )((2 /p) )||u||§ i
(o) p cI2(a) 1=vp
(3.4)
and
(I*c+ 2an*) (TP /p)2e=2vHiTrHITrQ)  2p—1
Iy < ( T2 (@) )B( ,2a — 1)
(m*c+2bn*) (TP /p)2*—1TPT1TrQ) 5

+B(2v,2a — 1) T2(a) ”u”Cl,V,p . (3.5)

Then, by substituting (3.4) and (3.5) into (3.3)), we can get the result.

A is a contraction mapping. For any u,v € By,

E[|((Au) () — (A0)®) /o)~ | <V + s,

where
m T _ 200—2
e Tl e [T (T ) Kalo) = St K )

and
2

[ (%” - SP)‘H 7t ([ @l utn, Kut) = ot vl Ko) dB () ) ds

2m | T |2 &
vo= 21T S oo ;
=1

rz (a) i=

By assumptions (H2) and (H3), we have

2m | T |2 B(%/jl,m —1)(K1b* + K¥a*) ™

2 2
Vi < T2 ()" ;Ci G1 Hu—UHcl_w) )
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where
G1= ((Tf/p)m”%%f—l) , a* =2(K1+TTrQK»), b* =1-2(K{+TTrQK3)
and
2m | T |2 B(2v, 20 — 1)TrQ(K2b* + K3a*) —= .5 9
V2 = b*T'2(ar) ;Ci GQHU_U”cl_V’py
where

Ga = ((r/p)** 2 ~2p).
Step 3. The operator B is compact and continuous.
According to Step 1 and inequality (3.3]) we can obtain that operator B is uniformly bounded and equicontinuous and then by using
Arzela-Ascoli theorem, we get, the operator B is compact on Bj.

It is follows that from Theorem that the problem ([1.1)) has at least one solution.
Theorem 3.2. Assume that (H1) and (H2) hold. Then the problem has a unique solution provided that

=<1, (3.6)
where
4mT2(K1b* +Kfa*)B(2VP*1 ) m

- _ P 9 2 p 2a+2v—3 p—l
= b*FZ(Oé) ;Cz (Tz /p) Tl

4mT2Tr Kyb* + K5a*)B(2v, 2a — at2r—

Q(K> . *)B( ZC2 pyRate=2
b I?(a)
* * ok 2vp—1 —
A(Kqb* + Kia*)B(*2=, 20 — 1) (77 p)2t o1
b*I'2(«)
ATrQ(Ksb* + Kia*)B(2v,2a — 1) 20
TP
* bT2(a) T/e)

Proof . Consider the well-defined operator N : C1_, ,(J, L2(2, X)) — C1-1,(J, L2(2, X)), which is given as follows:

N = i(%)kli@ I (Tf ’S”)a_lsﬂ*f(s,uw),Ku(s))ds

() = P
1

s (2) > I (Tip ;SP)(H oo ([ oot Bamyano) as
*r%) / t (“’ = )a_l 591 (s, u(s), K (5))ds

+ﬁ /Ot (tﬂ ; sp)afl g1 (/OS g(n,u(n):Ku("))dB(n)) ds

Clearly, the fixed points of the operator N are solutions of the problem (1.1}, according to Lemma and Theorem Now it
remains to show that the solution is unique. Let u,v € C1—, ,(J, L2(£2, X)), then we get

E || (Vu)(®) = (No)®)) (¢2/p)'

IV

1

)

2
< 49,

where

m i (P — e\ 272
o - ok 242 [T () Rl Kus) — Tl K DI s

2—2v _ 2a—2
+(th/§2 ()T R ) o) — s w6 K s

m 2 7y Ti s P g 202
+ |I’I‘\2|a)T Q ;CQ/ (ZT) 52p72E||(0(s,u(s),Ku(s)) - U(s,v(s),KU(s)))H2ds

(t°/p)* > TrQ
I'2(a)

—s 2a—2
(” )R (oo u(e, K9 — (e ol) Ko (D) (3.7)
0 p

We can also estimate using the assumptions (H2) and (H3),

E ||Ku(s) — Ku(s)||* < 2(K1 4+ TTrQKz)

< E|lu—ov|?. (3.8)
1—2(K5 +TTrQK3)
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By substituting (3.8) into inequalities (3.7) and using (H2, H3), we get

E[|(vuye) — (Vo) 2/ ||

- 2
<Elu-— v”Cl—u,p .

It follows from inequality (3.6]), that the operator N is contraction. By well-known Banach contraction principle, we can deduce that
N has a unique fixed point, which is the solution of the problem (1.1)).

4 Ulam’s Stability Results

In this section, we prove the Ulam stability result for the fractional stochastic differential equations (|1.1)). Now, we
give definition of Ulam-Hyers stable (U.H.S.) for the Hilfer-Katugampola fractional stochastic differential equations
(1.1). For € > 0, we consider the following inequality:

2

E <e (4.1)

DG Z(t) = f(t, 2(t), P Do Z(1)) —/0 (s, Z(s),Kz(s))dB(s)

Definition 4.1. The problem is said to be U.H.S. if there exists the real number C,, > 0 such that for all ¢ > 0
and for each solution Z € Cy_,, ,(J, L2(S2, X)) of the inequality there exists the solution u € CY_, ,(J, L2(€2, X))
of the problem with

E|Z(t) —u(t)|® < Cue,  te

Remark 4.1. The function Z € C{_,, ,(J, L2(S2, X)) is a solution of the inequality , if and only if, there exists
the function g € C{_,, ,(J, L2(S2, X)) such that

(a) Elgt)|> <e,  teld.

() PDGLZ(t) = f(t, 2(8),"DGLZ()) + [y o(s, Z(5), K(s))dB(s) + g(t),  t€J.

Lemma 4.1. Let p >0, 1/2 < a <1, and 0 < 3 < 1. If the function Z € C{_, ,(J,L2(Q,X)) is the solution of the
inequality , then Z is the solution of the following integral inequality

E(Z(t) = 3|° < w(vp, T)

[2(a)’

where

(5 ) 7 ([ ot 2 Kat)aB () ) s

Proof . In view of Remark we have

"Dy Z() = f(Z(), Dy Z(t) + /0 (s, Z(s),Kz(s))dB(s) + g(t) = Kz(t) + g(t).  teJ.
Then,
Y(tP/p)" ! & Ti (P g\ 1 1 trp —gp\ @t p—1
200 = 3+ NG [T (FT) T vt g [(F5F) et

From this, we get the following:
2 2
ElZ(®) - 3lI" =E[B]",
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where

and

2p — 2p—1
BIBIE < 2 (m TP/ n 0 -n) 2 (@ s 20 1)) - 8

Then,
€

_ﬁm

Theorem 4.1. Assume that the hypotheses (H1) and (H2) and equation (3.6) are satisfied. Then, the problem
is U.H.S.

E|Z(t) - 3|°

Proof . Let ¢ > 0 and for any ¢ € J, the function Z € Cy_,, ,(J, L2(£2, X)) satisfies the inequality (4.1)). From Theorem
ueCy_, ,(J,L£2(Q,X)) is the unique solution of the problem (1.1)). By using Lemma we have

ult) = A+Ffa)(tp) 1%@ I (p) ([ otnutn xaasm ) as

), (5 > ot ([ ot vt Ko ) s,

p

Now, if u(r;) = Z(7;) and *Jy . "u(0) = * Ty " Z(0), then A, = Az. Clearly,

A= (tp‘sp) 5L f(s, u(5), Ko (5))ds

QmTz ( )2V 2 TP —gP -
2 — 2
Bldu— 4zl < — i — ? ¢t I (—p ) 202 [[(F(s, u(s), Ku(s)) — F(5, Z(s), K ()] ds

tP — sP - _
+p2(a) O( " ) 82p PE|(f (s, u(s), Ku(s)) = f(s, Z(s),Kz(s)))||* ds

and by using (H1, H2) and inequality (3.8)), we get
2 _
E||A, — Az||* =0.

Thus, A, = Az. Then, we have

ut) = AZ‘*'%(%)_Z:L:C/O (Tip;sp)aflsp—l ([ otuta i) as

By applying Lemma 1| and integration of inequality . ) for any t € J we can obtain
E[Z(t) — u(®)|? < Cue,

which completes the proof.
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5 Example

In this section, we give an example to illustrate our main results. We consider the following implicit stochastic
Hilfer-Katugampola-type fractional differential equation

e O A (519 sinu(s)) + 2D u(t)
D u(t) ZJLTO teos(t) 1 i(t)” + ‘i 21:154%@) +/0 20+ ") ipee), e (0,1,
(27w) (0) =20(3/2) v =0+ 61— ). (5.1)

Here, ”Dgf is the Hilfer-Katugampola fractional derivative, p = 2, =2/3,8 =1/2 and v = 5/6. Let B(t) denote
the standard one-dimensional Brownian motion process in £5([0, 7]) defined on (€2, S, P). Set

1 ‘ u(t) v(t) ~ t3sin(u(t)) + v
ftu,v) = m(tcos(t)l+u(t) +1+v(t))’ o(t,u,v) = 50 .

Therefore, (5.1) can be reformulated as the system (1.1). Clearly, for u,v € Ry and ¢ € (0, 1], the functions f, o
satisfy all of the assumptions of Theorem and Theorem For u,v,u,v € Ry and ¢ € (0, 1], we have

€
10

170 = 0P < oo (= all® + o - o))

Hence, the condition (H1(i)) is satisfied with K7 = K7 = 1/10. In addition, for ¢ € (0, 1],

1
1) < 55 (Jlull® + o))

so condition (H1(z)) is satisfied with p(t) = 0,¢(t) = x(t) = 1/10, and ¢* = x* = 1/10 < 1. Similarly, the conditions
(H2(i,i1)) are satisfied for the function o defined above. As a result, the assumptions (H1) and (H2) hold, and we can
see that | = |< 1. Hence, from Theorem it follows that the implicit stochastic Hilfer-Katugampola-type fractional
differential equation has a unique solution for ¢ € (0,1]. Furthermore, it implies from Theorem that the

problem (5.1)) is U.H.S.
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