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Abstract

By using Halpern’s type iteration process, an iterative algorithm is proposed to study the split inclusion problem
and fixed points of a relatively nonexpansive mapping in Banach spaces. This method uses dynamic stepsize that
is generated at each iteration by simple computations, which allows it to be easily implemented without the prior
information of the operator norm. Then, the main result is used to study the fixed points of a countable family
of relatively nonexpansive mappings and the semigroup of relatively nonexpansive mappings. Finally, a numerical
example is provided to illustrate the main result.
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1 Introduction

Let H; and Hy be two Hilbert space. Let By : H; — 271 and By : Hy — 22 be two maximal monotone operators
and A : Hy — Hj be a bounded linear operator. Consider the following split inclusion problem (SIP) introduced by
Moudafi [25] in Hilbert space:

To find z* € Hy such that 0 € Bi(z*) and 0 € By(Ax™). (1.1)

Let the solution set of is denoted by I'. In fact, we know that the SIP is a generalization of the inclusion problem
and the split feasibility problem (SFP). Now, we provide some special cases of SIP (1.1)).

Let f: HH — RU{oco} and g : Ho — R U {oco} be proper, lower semicontinuous and convex functions. If we take
By = 0f and By = 0g, where 0f and Og are the subdifferential of f and g, then the SIP becomes the following
proximal split feasibility problem:

To find * € argmin f such that Az* € argmin g, (1.2)
where argmin f = {x € Hy : f(z) < f(y),Vy € H1} and argming = {x € Hs : g(x) < g(y), Yy € Ha}. In particular, if
)

we take f(z) = 1||M(z) — b||> and g(z) = 3||N(z) — c||?>, where M and N are matrices, and b,c € Hy, then the (L.2)
becomes the least square problem.
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Let C' and @ be nonempty, closed, and convex subsets of real Hilbert spaces H; and Hs, respectively. If By =
Nc¢, By = Ng, where N and Ng are the normal cones of C' and @, respectively, then we have the following the SFP:

To find z* € C such that Az* € Q.

This problem was first introduced in a finite dimensional Hilbert space by Censor and Elfving [I3] for modeling inverse
problems in radiation therapy treatment planning, which arise from phase retrieval and in medical image reconstruc-
tion, especially intensity modulated therapy [12].

In 2011, to solve the SIP (l.1)) Byrne et al. [II] proved some weak convergence results in infinite dimensional
Hilbert spaces. For given z1 € Hy, the sequence {z,,}22; is defined by,

Tp+l = Jfl(xn —yA*(I — J;\BQ)Axn), Vn>1,

where A > 0 and v € (0, W) and J /{3 ! is resolvent operator of B;. In order to obtain strong convergence, Kazmi and

Rizvi [19] proposed following algorithm for solving SIP (1.1)) and fixed points of a nonexpansive mapping, for given
r1 € Hy:

Up = J>\Bl(xn - ’YA*(I - J>\BQ)A£L'n),
Tl = @ f(xn) + (1 — an)Tu,,Vn > 1,

where v € (0, W), f+ Hy — H; is a contraction mapping with constant « € (0,1) and {«,}52; € (0,1) such that

limy, o0 = 0,07 | vy = 00.
Very recently, Alofi et al. [B] introduced an algorithm based on Halpern’s iteration for solving SIP (1.1)) in a uniformly
convex and smooth Banach space E. They proposed the following algorithm for given z; € E:

Yn = Qpty + (1 — an)anl (zn, — )\,LA"FJ]};2 (I — Jrliz)Axn)
Tp4+1 = ﬂn(un) + (]- - 5n)ynv

where {a,}22, € (0,1), {8,152, €10,1) and {A\,}52, {rn}02; € (0, 00), satisfying the some additional conditions on
parameters and the stepsize \,.

In 2018, by employing the idea of Halpern’s iteration process Suantai et al. [35] proved strong convergence theorem
for (1.1]) in Banach spaces. For given x; € E; their sequences generated by the following iterative scheme under some
suitable conditions:

Zn = JJ%T (B, (xn) = A A*Tp, (I — Jp,)Axy)
Yn = qu‘ (anng (up) + (1 — an)ngJAn(zn))
Tnt1 = S (Bud g, (@) + (1 = Bn) I, (yn)),

where stepsize A, is a sequence, chosen in such a way that,

1
T
0<a<A <b< (C‘{||A||q> , for some a,b € (0,00),
q
where {a,}22, € (0,1), {8n}22; € [0,1) and {A\,}22,,{rn}32; € (0,00). In recent years, many authors have
constructed several iterative methods for solving SIP (see, [5] [7, [14], 277, [33] [38]).
However, in order to achieve the solution of mentioned above problems, one has to obtain the operator norm ||Al,
which is not easy to calculate in general. To avoid this computation, Lépez et al. [22] find a new way to select the
stepsize as follows:
pnf (Tn)
n=ior v M= L
SN TN
where p, € (0,4), f(zn) = 3||(I — Pg)Az,||* and V f(z,) = A*(I — Pg)Axzy, for all n > 1, where Py is the metric
projection of Hy onto ). This method is a modification of the C'QQ method often called the self-adaptive method,
which permits step-size being selected self adaptively, for more see [29] [39]
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Motivated by the work of Suantai et al. [35] and Lépez et al. [22], intention of this paper is to propose an algorithm
to study SIP and fixed point of relatively nonexpansive mapping in p-uniformly convex and uniformly smooth
Banach spaces. Stepsize is being selected without the prior knowledge of operator norm, so it can be more efficiently
implemented. Also, this result is applied to find the common fixed points of a family of relatively nonexpansive
mappings which ais also the solution of the SIP .

2 Preliminaries

Let C be a nonempty closed, convex subset of Real Banach space F with dual £* and 1 < ¢ < 2 < p with %—i—% =1
The modulus of convexity dg : [0,2] — [0, 1] is defined as

. u-+v
o5(e) = nf {1~ P = 1 = o) Ju— o) 2 o).

A Banach space E is called uniformly convex [I6] if dg(e) > 0, for € € (0,2] and p-uniformly convex if there exist
Cp > 0, such that dg(e) > CpeP for any € € (0,2]. The modulus of smoothness pg(e) : [0,00) — [0, 00) is defined by

[u+ Tl + [lu = 7v]|
pe(r) ={ 5 — 1 flufl = [lvoll = 1}-

A Banach space E is called uniformly smooth [T7] if lim,_,q p%(ﬂ = 0; g—uniformly smooth if there exist C;; > 0 such
that pg(r) < C,7 for any 7 > 0.

A continuous strictly increasing function ¢ : R™ — R is said to be a gauge if »(0) = 0 and lim;_, « ¢(t) = co. The
mapping Jf : E — E* associated with a gauge function ¢ defined by

Jg (@) ={f € B : (&, f) = |lzlle(lz]), I/ = e(l|z]l), Yz € E},

is called the duality mapping with gauge o, where (.,.) denotes the duality pairing between E and E*.

If o(t) = t, then J(f = J is the normalized duality mapping. In particular, ¢(t) = t?~!, where p > 1, the duality
mapping Jf = JIJE is called the generalized duality mapping defined by

Iy (@) ={f € E*: (z, f) = |lz||", If || = ][}, = € E.

It is well known that if E is uniformly smooth, the generalized duality mapping JpE is norm to norm uniformly
continuous on bounded subsets of E (see [31]). Furthermore, Jf is one-to-one, single-valued and satisfies Jf =
(Jf*)*l, where Jf* is the generalized duality mapping of E* (see [30], [15] for more details).

For a gauge ¢, the function ® : RT™ — R™ defined by

(1) = /O ' o(s)ds

is a continuous convex strictly increasing differentiable function on R* with ®'(¢) = o(t) and limy @ — 0.
Therefore, ® has a continuous inverse function ®~!. We next recall the Bregman distance, which was introduced and

studied by Bregman in [10].

Definition 2.1. Let E be a real smooth Banach space. The Bregman distance A, (x,y) between = and y in E is
defined by

Ap(z,y) = 2([lyll) = @(l[z]) = (Jp(z),y — ).

We note that the Bregman distance A, does not satisfy the well-known properties of a metric because A, is not
symmetric and does not satisfy the triangle inequality. Moreover, the Bregman distance has the following important
properties:

Aip(xay) = AS@(‘I’Z) + Aip(z7y) + <J5$ - sz,z - y>7 (21)

and
Ay, y) + Dy(y,2) = (JTx - JZy,x —y), Vo,y,2 € E.



2250 Kumar

In the case p(t) = t?~!, where p > 1, the distance A, = A,, is called the p-Lyapunov function which was studied
in [9] and it is given by

1 1
Ap(,y) = ;Hxllp — (g )+ ];H?JH”’ (2.2)

where p, q are conjugate exponents. For the p-uniformly convex space, the Bregman distance has the following relation,
see [32):

Tle =yl < Ap(a,y) < Sz — Iy, x —y),

where 7 > 0 is some fixed number. If p = 2, we get

Ao(@,y) = o(x,y) = |z — 20Tz, ) + [ly]]%,
where ¢ is called the Lyapunov function which was introduced by Alber ([1], [2]). The function V,, : E x E* — [0, 400)

is defined by,

1 1
Vp(Z,z) = §||gz||q —{(Z,z) + 5||x||1’, Vr e E,z € E.

Then V,, > 0 and also satisty following property [28],
Vp(Z,2) = Ay (JE(Z),2), Ve e E, T e E*. (2.3)

Moreover,
Vp(Z,z) + (7, Jh(Z) — 2) < Vo (T + §,z), Vo € Eand Z,5 € E.

Lemma 2.2. [26] Let E be a p-uniformly convex and uniformly smooth real Banach space. Let {z,} and {y,} be
bounded sequences in E. Then lim, o Ap(zn,ys) = 0 if and only if lim,, o ||z, — yn|| = 0.

Lemma 2.3. [40] Let z,y € E. If E is g-uniformly smooth, then there is a C; > 0 so that
lz =yl < llzl|* = aly, JE(2)) + Cllyl|*-

Let C be a closed and convex subset of E, a point z* € C is called an asymptotic fixed point of T if C' contains
a sequence {x,} which converges weakly to «* and lim, o |2, — Tz,|| = 0. Similarly a point z* € C is a strong
asymptotic fixed point of T" if C' contains a sequence {x,, } which converges strongly to «* and lim,, o |2, — T2, || = 0.
Set of strong asymptotic fixed points and asymptotic fixed point of T is denoted by F(T') and F(T), respectively.

Definition 2.4. [24] A mapping T from C to C is said to be Bregman relatively nonexpansive if F(T) # (), I:_'(T) =
F(T) and
A, (", Ty) < Ay(x*,y), Yy € C,z* € F(T).

For more detail, see [31]. Let B : E — 2" be a mapping, The effective domain of B is denoted by D(B), such that,
D(B)={x € E: Bx # (}. Mapping B is monotone if,

(u—v,z—y) >0, Vo,y € D(B), u € Bx and v € By.

A monotone operator B on F is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on FE.

Let F be a p-uniformly convex and uniformly smooth Banach space and B is a monotone operator on F, then for
A >0 and x € E, consider the metric resolvent of MZ : E — D(B) of B, defined as,

MZ(x) = I+ XJp)'B) " (2), Vz € E.
Set of null point of B is defined by B~1(0) = {z € E: 0 € Bz}. Since B~1(0) is closed and convex, Then we have
0 JE(MP(x) —z) + \BMP (z).
Next, F(MP) = B~1(0) for A > 0, from [21] we also have for all z,y € E,

(M (x) = M (y), Jp(x — M (@) = Jp(y — MY () > 0,
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if B=1(0) £ 0, then
(Jple — M (2)) — (M (z) - 2)) > 0, Vze€B~'(0).

The monotonicity of B implies that M f is a firmly nonexpansive-like mapping. Now, we can define a mapping
NP . By — D(B) called the relative resolvent of B [20], for A > 0, as

NZ = (J2 +AB) ' J%(z), Vo € E.
It is known that NP is relatively nonexpansive mapping and F(NZ) = B~1(0), for A > 0.

Lemma 2.5. [20] Let B : E — 2F" be a maximal monotone operator with B~' # () and let N be a resolvent
operator of B for A > 0. Then

Ap(NE(z),2) + Ap(NZ(z),7) < Ap(z,2), Vo € Eand z € B~1(0).

Lemma 2.6. [36] Let E;, F> be two p-uniformly convex and uniformly smooth Banach spaces with duals Ef, E3,
respectively. N fl ! is the resolvent operator of a maximal monotone E; for Ay > 0 and M f; 2 is the metric resolvent
operator of a maximal monotone Es for Ay > 0. Assume Q # (), A > 0 and z* € F;. Then z* is a solution of problem

if and only if
ot = N (Jh (Jp, (27%) = ANA" T, (I — M{2)Az™)).

Lemma 2.7. [23] Let {T',} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {I';,,} of {I',} which satisfies I',,, < T'y,+1 for all i € N. Define the sequence {7(n)}n>n, of
integers as follows:

7(n) = max{k <n:Ty < Tk},

where ng € N such that {k <mng: Ty <Tjy1} # 0. Then, the following hold:
1. 7(ng) < 7(nog+1) <... and 7(n) — oo;
2. T, < F‘r(n)—i-l and I'y < Tripyq1, VR 2> ng .

Proposition 2.8. Let C' be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach
space E. Let g € C and = € F, then there exists a unique element xg in C such that

Ag(xo,x) = inf{A, (z,2): z € C}.

In this case, we denote the generalized projection from E onto C' by IIZ(z) = 2. When ¢(t) = ¢, we have II% ()
coincides with the generalized projection studied in [1]. Let p > 1 and ¢(t) = t?~!, then II?, becomes the generalized
projection with respect to p and is denoted by Il¢o.

Proposition 2.9. [2I] Let C' be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach space E. Let g € C and x € F, then the following assertions are equivalent:

(a) zo =TI (2);
(b) (z — o, Jy(x0) — Jp(z)) >0, Vz € C.

Also, we have
Atp(y7r‘[g) + AS@(Hg?x) S Atp(yvx)a Vy € C

3 Algorithm and their convergence

For rest of the paper, let

e F; be a p-uniformly convex and uniformly smooth Banach space and Es be a uniformly convex and smooth
Banach space with duals Ef, 3, respectively,

e By :Ey — 257 and By : By — 252" be maximal monotone operators, such that Bfl(O) #0, B;l(O) #0,

o N fi ! is the resolvent operator of By for A\;y > 0 and M i 2 is the metric resolvent operator of By for Ay > 0.
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o Jp, and Jp represent the duality mappings of Ey and Es, respectively and Jp, = (']%I)_l

, where Ji. is the
duality mapping of EF,

e T : Fy — E; be a Bregman relatively nonexpansive mapping and A : £; — E5 be a bounded linear operator
with its adjoint A* : E5 — E}, and

o {a,}5°,€(0,1), {Bn}2, €]0,1) and {u,}52; be a sequence such that u, — u € E.

Algorithm 3.1. Select z; € E; and let sequence {z,,}22; be generated by,

Zn = Nﬁl((]}fjf (ng (zn) — PnWTS)ﬁp)g(wn))
Yn = Jq;(anng (un) + (1 - an)Jpl (2n)) (3.1)
Tnt1 = J%; (angl (zn) + (1 — ﬁn)ng (Yn))s

1 B, -1 1 B, P x TP B,
where f(zn) = J|[(I — M7?)Az, [P, fP= (2,) = (5||(I—M)\2 )Aa;n”P) ; 9(@n) == A*Jp (I — M, ?)Ar, and
{pn} € (0,00) satisfies liminf,, o0 pn(pg — Cypd™') > 0. If g(x,) = 0, then 2, = z,, and the iterative process stops,
Ty, is a solution. Otherwise, we set n :=n + 1 and go to .

Lemma 3.1. Sequences {x,}>2 ¢, {yn}32, and {z,}>2; generated by Algorithm [3.1] are bounded.

Proof . Since g(x,) = A*Jp, (I — M)]\B;)Aa:m

(9(xn),u” —xpn) = (A" Jp, (I — MﬁQ)Axn,u* — Zn)
= (Jb (I — M)Az, Au® — Az,
= (J% (I — M)Az, M2 Az, — Axy,)
+ (I8, (I — My?) Ay, Au® — M2 Awy,)
< Az, — M2 Ay |” = —pf (25)- (32)
Let u* € I' N F(T), from Lemma [2.3| and (2.2), we have

Bt = AT U8, (o) = pu S )] )

]- D fpil(xn) q _ 4 *
+ 6||JE1 (2n) — pnmg(fcn)ll (JE, (zn),u”)
fpil(zn)

mwmw“ﬂﬂ“”

w1 fp‘l(wn)

fp 1( ) o

e

+ pn

Cy  J7en)
q " llglaa)lP

—(u", I, Tn) + pn s

fp*l(xn) U* —r T
TGz &~ T (@)

1
< ~lu *Hp+6||mn||p_ <U*7J§‘1zn>+pn

" Hg(l’n)H”

* fpil(l‘n) U* — T
p(xnvu )"'pn ||g($n)Hp< n7g( TL)>+

‘Q%\»—ﬂ

1 pd

Cq q fP(@n)

Pl
q " "lg(xa)l?

[

Using (3.2) and (3.3),

* * fp(xn) C q fp(xn)
Ap(zn,u™) < Ap(an,u*) — PPl ?qpnm

= Ayl )~ (pup — gty LI (3.4
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Since lim inf, o0 pn(pg — Cypd~') > 0, thus
Ap(zn,u”) < Ap(zp,u™) n> 1. (3.5)
Thus,

Ap(u*,yn) = Ap(u*, ng* (anJp, (un) + (1 = an)Jp (Tzn)))

e 1
= ; + 6||qu (oznjgl (un) + (1 = an)Jp, (Tz,)) |1
— (U, anJp, (un) — (1 = an)Jp (T2n))
U L 72 () (1 — )T (T2
- D q nJ g, \(Un n)J g, n
= o, T () — (1 — ), B (T2)
< B0 L 1 )|+ (1= )|, (T2)])
~ p g TR B
— ap(u’, ng (un)) — (1 = ay)(u’, ng (T'zn))
el 172 7

+ o, . +(1—ap)
— an(u”, Jp, (un)) — (1 = an)(u”, Jp, (Tzn))

*||p p
—a, <“|| N @W, b (un)>>

p
P || Tz ||P

= oy Ap (U™, up) + (1 — apn)Ap(u™, Tzy,)
< apAp(u*,uy) + (1 —an)Ap(u”, 2,)
< apAp (Ut ug) + (1 — an)Ap(u”, zy,). (3.6)
We can also show that,
gt Zns1) < Frdp(u,0) + (1= Bu)Ap(s®, ). (3.7)
Since {u,} is bounded, there exists a constant K > 0 such that A,(u*,u,) < K, ¥V n > 1 and from ) and (B.7),

we have

Ap(u®, Znp1) < Brlp(u”,zn) + (1= Bn)Ap(u”, yn)
< Bnlp(u”, an) + (1= Bn) (anAp(u”, un) + (1 — an)Ap(u”, zn))
= (1 —an(1—5n)) Ap(U* Tp) + an(l - Bn)Ap(u y Un)
< (1= an(l=5n) Ap(u”,2p) + an(l = Bn)K
< max{K, A, (u*,z,)}

< max{K, A,(u*, z1)}.

By induction, we have that A, (u*, z,) is bounded, So are {y,}, {z,} and {T'z,}. O

Theorem 3.2. If {a,,} — 0, >.7°, o, = oo and limsup,,_, . B, < 1. Then the sequence {z,}2; generated by
Algorithm converges strongly to z* € I' N F/(T'), where x* = Ipnp(r)yu.

Proof . Let " = Ilpnp(ryu. Then, by using (2.3), we get that
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Ap(x 7$n+1)§ﬁnAp(x*vxn)+(1 ﬁn)A;n( ,yn)
= Bulp(@ ) + (1= Bu) Ay (2%, Th: (an, B, (20) + (1 = @) I, (T20)) )
= Balp(@* @) + (1= Ba) Vol an Tl (@) + (1 = 0) T2, (T2)
< BuBp(a” z0) + (1= B) [Vo(a®, 0T, (an)
+ (1= ) T5, (Tz0) = an (5, (20) — T5 (7))
+ (1= Ba){yn — 2%, an (T, (20) — JB, (7))
= Bup(*,20) + (1= Ba) [V (2%, (1= )T, (T20) + an T} (27))]

+an(l = Bn)(yn — 27, Jp, (xn) — JE, (27))
< BBz 2n) + (1= Bo)[(1 = an)Vp (27, TR, (T2n) + an V(2. T3, (27)))]
+an(l = Bn){yn — 27, Jp, (2n) = Jg, (u)
+an(l = Bu){yn — 27, ng (u) — ng (%))
= BnAp(x®, zn) + (1= Bn)[(1 — an)Ap (a7, Tzn) + anAp(a”, 27)]
+ an(l = Bu)(yn — 2%, Jg, (¥a) — J, (u))
+an(l = Bn)(yn — 27, Jp, (u) = J, (z7))
< Bnlp(a®,zn) + (1= Bn)[(1 — an) (Bp(z%, 2n) — Bp(zn, T2n))]
+an(l = Bu){yn — 27, ng (Tn) — ng (u))
+an(l = Bn)(yn — 27, Jp, (u) = Jg, (27)).

From (3.4) we obtain
Ap(@®, Znp1) < Brlp(a®,2n) + (1= Bn) (1 — an)Ap(z", zn)

(1= B)(1 = an)(pup — Sty 7]
(1= Bn)(1 = an)(pnp qpn)Hg(xn)Hp

— (1= Bn)(1 = ) Ap(2n, Tzn) + (1 = Bn)(yn — 27, ng (zn) — ng ()
+an(l = Bn)(yn — 27, Jp, (u) — Jg, (z7))
= (1= (1= Bn)an) Ap(a™, )
fP(xn)

c,
= (1= n) (1 = an)onp = = Eo0) 7 0 S

-(1- ﬁn)(l - an)Ap(Zn>Tzn) +an(1 ﬁn)@/n -, ng (xn) - ng (u)>
+ (1= Bu)(yn — 2", I3, (u) — Jp, (7). (3.8)

We now divide the proof into following two cases:
Case 1: Suppose there is an ng € N such that {A,(z*, z,)} is nonincreasing. Then

Ay(x* ) — Ap(z™, 2p41) — 0.
From (3.8)), we obtain

)1 — an)l(pnp — Capy L2
(1= Ba)(1 = an)[(pnp qpn)Hg(xn)ll”

< (Ap(x™, 20) — Ap(™, pt1))
+ an (1= Bn)((yn — 27, ng (rn) — ng (u))
+ (Y — ", I, () — I, (7)) — Ap(a™, z0)).

+ Ap(zn, Tz,)]

On taking n — oo, we have by assumption,

(I — Mf;)Axn)H = || Az, — Mf;Aan — 0 and Ay(2y,Tz,) — 0.
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This implies that by Proposition [2.2]
|z, — Tz || — 0. (3.9)

Since Jp, is norm to norm uniformly continuous on bounded subsets of Ey, we get ||Jp, (T'2n) — Jp (2)|| = 0. By the
boundedness of {z,,} and the reflexivity of I, there exists a subsequence {z,,} of {z,} such that {z,} — . From

B-9), we get & € F(T) = F(T).
Also

175, (z0) = T, (@n) | = Anl| A" Jh, (Azn — M2 Azy)|
< Ml AT |19, (Azy, — M2 Ay
= AallAlll| Az, — M2 A, [P~
— 0. (3.10)

Since J4. is norm to norm uniformly continuous on bounded subsets of E}, we obtain ||z, — x,| — 0. Moreover,
1

178, () = I, (@)l < cnll T, (n) = I, (@)l + (1 = an) |5, (T20) = JB, (@)
< |3, (un) = JB, (@) | + (1= an) [T, (Tz0) — b, (20)]
+ (1= an)|| 5 (2n) — T (z0)]].
It follows that
T (|5, (gn) = I, (@)l =0,

yields
lim ||y, — 2| = 0.
n—oo
Thus, we have
H‘]§1 (Tnt1) — ng ()l = (1= /th)”ng (Yn) — ng (zn)|| — 0. (3.11)
Since {yn} is bounded, there exists a subsequence {y,, } of {x,} such that z,,, - & € E. From | Ax,, — Mi"'Aan —0

and by the boundedness and the linearity of A, we have Az,, - Aw and M /\i 2 Ax,, — AZ. Since M i 2 is a resolvent
metric of By for r,, > 0, we have

Jp, (Azy, — M/\B;zAa:n)

Tn

€ ByM{* Az, VneN.
So we obtain
JY (Azy, — My? Axy,,)

Tn,

i

0§<U—Mi2Aacni,v*— ), V(v,v*) € Bs.

It follows that
0< (v—Az,v* —0), Yv,v" € Es.
Since B is maximal monotone, AZ € F(M/\B;Q) = B;'0 and hence # € A~'(B;'0).
Since, v, 1= ‘]1%{‘ [JB, (zn) — t, A* g, (Aa:an; (Az,))],Vn > 1. By Lemma and (3.4), we have

Ay (zn,vp) = Ap(Nﬁlvn,vn)
< Ap(vn, 0) = By, u’)
< Ap(xn,u*) — Ap(zp,u*) = 0asn — oo.
Thus, we have
lim |[N v, — v, | = lim |z, —v,] = 0. (3.12)
n—00 1 n—00

Since x,,; — & € E1, we also have v,, — & € E;. From (3.12)), we have & € F(NAB;) € B;'0. This concludes that
&€ BrlonA-Y(By0) .
Proposition [2.9 implies that

lim sup(y, — 2%, Jp, (u) — Jp, (7)) = lm (y,, — 2", Jp, (u) = Jp, (z7))

n—oo n—0o0

= (w—2",Jp (u) = Jp, (z7)) < 0. (3.13)
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We note that 2, — u implies Jp, (x,) — Jp, (u) and consequently, lim,, ., (yn —2*, Jp, (2,) = Jp, (u)) = 0. Combining
X2, (1 = Bn)ay, = oo and , we have by using Lemma A,(z*,z,) — 0. Thus, by Lemma we have
|z —2*|| = 0 as n — oo.

Case 2: Suppose that there exists a subsequence {I';,, } of the sequence {I',,} such that I",,, < T, 41, for alln € N. In
this case, we define 7 : N = N by 7(n) = max{k < n: Ty < Tgy1}. Then, by Lemma we obtain 'z () < T'rin)41-
Put T, for all n € N. So, by we have ||2;(n)+1 — Tr(n)|| = 0. As in the proof of Case 1, we also can show that

lim ||z-(n) — Tz (n)|| — 0,

n—oo

lim ||( — M?) Az, (n))|| = | Az, (n) — M2 Az, (n)|| = 0,

n—oo
limz,(n) — ()| 0,

and

B[y — ()| = 0.

Also,
lim sup(y,(ny — 2", ng (u) — ng (")) <0.

n—oo

Since 'z () < T'7(5)+1, by (3.8) we have

(1= Br)) Bp (@™, 27 () < (1= Briwy) sy (Wr(n) — 27, IE, (tr(ny) — JE, (w)))
+ Yr(ny — ", I, (u) = JE, (7)),
which yields
Ap(z*7 xT(nl)) < <y7'(n) - l‘*, ng (ur(n)) - ng (U)> =+ <y‘r(n) - l'*, ng (U) - ng (I*)>

Thus we have
limsup A, (2", 2 (,)) < 0.

n—oo

So limy, 00 Ap(2*, T1(5)) = 0. From (2.1)) we have
Ap(x*a x‘r(n)Jrl) + Ap(xr(n)+1a m'r(n)) - Ap(x*a m'r(n))
= (2" = 27 (n)11, I, (Tr(n)) = I, (@r(n)+1))-
Thus
Ay, Tr(my41) < Bp(@™, T7(n)) + (2" = Tr(my41, B, (Tr(n)) — I, (T (n)+1))
— 0,

by Lemma we have Ay (2%, 2,) < Ap(2*, 27(ny41) — 0. Hence x,, — 2* as n — oo. This completes the proof. O]

4 A countable family of relatively nonexpansive mappings

A family of mappings {T},}52 ; is said to be countable family of relatively nonexpansive mappings(see, for example
[37]) if the following conditions are satisfied:

L F({T.}520) # 0,
2. Ap(z*, Thx) < Ap(z*,z), for all x € C,z* € F(T,,),n > 1,

3. ﬂ?’fﬂF(Tn) = F<{Tn}%o:1)~
The set of asymptotic fixed points of {T},}°° , is denoted by F'({T,,}2,).
Definition 4.1. [6] Let C' be a subset of a real p-uniformly convex and uniformly smooth Banach space E. Let

{Tn}22, be a sequence of mappings of C' in to E such that (2, F(T,,) # 0. Then {T,,}52, is said to satisfy the
AKTT-condition if, for any bounded subset B of C

Z sup{||Jf(Tn+1m) — Jf(Tnx)H} < 00.
n*lxeB
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As in [34], we prove the following Proposition:

Proposition 4.2. Let C be a nonempty, closed and convex subset of a real p-uniformly convex and uniformly smooth
Banach space E. Let {T},}52, be a sequence of mappings of C' such that (2, F(T,,) # 0 and {T,}32, satisfies the
AKTT-condition. Suppose that for any bounded subset B of C. Then there exists the mapping T : B — E such that

Tr= lim T,z,Vx € B, (4.1)

n—oo

and
lim sup ||J2(Tz) — JF(T,2)|| = 0.

n—oo z€EB

Proof . To complete the proof we show that {T,,z} is cauchy sequence for each x € C. Let € > 0 be given and by the
AK KT-condition 3y € N, such that

> sup{|| Ty — Tayl sy € C} <.

lo

Let k > 1 > lp, then

|Twx — Tyx|| < sup{||Tvy — Tiyl : y € C}
< sup{||Twy — Th—1y|| : vy € C} + sup{||Th—1y — T1y|| : y € C}

k—1
<> sup{[|Th1y — Tuyl 1y € C}
l

<> sup{[|Tus1y — Tuyll sy € C} < . (4.2)

lo

Therefore we have that {T},x2} is Cauchy sequence, moreover (4.2)) implies that,

Tz — Tyxl| = lim [|Thr — Tyxl| < sup{||Tusry — Tuyll 1y € C},
k— o0

lo

for all x € C. So,

sup [|Ta — Tyxl| < Y sup{||Tus1y — Toyl| -y € C},

lo
therefore we conclude that limy, o sup || Tz — Tj,z|| = 0. O

In the sequel, we say that ({T},},T) satisfies the AKTT-condition if {T,}>2 ; satisfies the AKTT-condition and T
is defined by ([4.1) with "2, F(T,,) = F(T).

Algorithm 4.1. Select z; € E7 and let sequence {x,,}52; be generated by,

p—1 Ln
2 = NI (TE: (T5, (2n) = pu oz St g(@n))
Yn = J,‘gf (omJ]’;1 (up) + (1 — an)ngTn(zn)) (4.3)
where f(zn) == 31 = MP) Az, P, 74 (wa) = (LT MP) Az lP)’, glan) = A*J (I — MP2) Az, and
n) = p Ao nil n) «— P Ao n , g\ Ty ) = Es Ao Ty an
{pn} € (0, 00) satisfies liminf p, (pg — Cyp%~t) > 0. If g(x,,) = 0, then z, = x,, and the iterative process stops, x,, is a
solution. Otherwise, we set n := n + 1 and go to (4.3).

Theorem 4.3. Suppose that {T,} be a countable family Bregman relatively nonexpansive mapping on E; such that
F(T,) = F(T,), Assume that Q =~ F(T,,) " T # () and satisfying following condition:
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Climy e = 0,207y, = 00,

. limsup,,_, o, Bn < 1,

u, be a sequence in E such that u,, — u,
. ({T,}2,, T) satisfy AKTT-Condition.

%@l\')»—t

Then the sequence z,, generated by [£-3] converges strongly to z* € Q, where z* = [Igu

Proof . To this end, it suffices to show that lim,, . ||€, — Tz,| = 0. By following the method of proof in Theorem
we can show that {x,} is bounded and lim, 0 ||z — Th2n|| = 0. Since Jfl is uniformly continuous on bounded
subsets of F1, we have

lim ||Jfl (Tn) — Jfl (Thxn)| = 0.

n—oo

By Proposition 4.2, we see that

17 (@n) = I3 (Tza)|| < 197 (20) = T (Tnaa)ll + 1957 (Tawn) — I (Ta)|

< HJfI (70) — Jfl (Thry)|| + sup ||J;J)El (Thx) — JpE1 (Tx)]|

TE{Tn

— 0 asn — .

. Ef . . .
Since Jp ' is norm-to-norm uniformly continuous on bounded subsets of Ej,
lim ||z, — Tz,| =0.
n—oo

This completes the proof. [J

5 A semigroup of relatively nonexpansive mappings

Definition 5.1. Let C be a subset of a real p-uniformly convex and uniformly smooth Banach space FE. A family of
mappings S:= {T'(t) }+>0 from C' into C is said to be a nonexpansive semigroup, if it satisfies the following conditions:

(S1) T(0)z =z, for all z € C;

(S2) T(s+1t)=T(s)T(t), for all s,¢t > 0;

(S3) for each x € C' the mapping t — T'(t)x is continuous;
(S4) for each t > 0, T'(t) is nonexpansive, i.e.

1T(t)z =Tyl < |z —yll, Yo,y € C.

We denote by F(S) the set of all common fixed points of S, i.e., FI(S) = \,s, F(T'(t)).
The following classical examples were one of the main sources for the development of semigroup theory (see Engel and
Nagel [18]). The theory of semigroup is very important in theory of differential equations. Let E = R™ and let L(F)
be the space of all bounded linear operators on E. Consider the the following initial value problem for a system of
homogeneous linear first-order differential equations with constant coeffcients:
21 = a1, + 199 + - .. a1y, 21(0) = Uy

To = G211 + A22%2 + . .. A2 Tn, T2(0) = ug

(5.1)

’
Tp = Gp1T1 + Gp2T2 + ... Gppy, .’L’n(O) = Tn,

which can be written in a matrix form as

{i,(g;:_ A=t (5.2)

where A € L(E) is bounded linear operator and A = (a;;) is an n X n matrix with a;; € R, for ¢, = 1,2,...n and
u = (u1,us,...x,)" € R™ is a given initial vector with u; € R, for alli = 1, 2, ...n. It is well-known that the problem
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tA tA

(5.2) has a unique solution given by explicit formula z(t) = e**u, t > 0, where €** is a matrix exponential of the

linear differential system (5.2) defined by

X Lk Ak 2 42
t"A tA  t°A
etA:: _ +

o + 1 ol +....

k=0

We can check that the operator {T'(t) : et4, ¢ > 0} is a semigroup on E. Then, we can write the solution of the
problem (5.2) as x(t) = T(t)u,t > 0.

Example 5.2. Let £ = LP(R,), 1 < p < co. Consider the initial value problem for the heat equation

ou
— =D R™and ¢t > 0
ot u, x € an >0, (53)

u(z,0) = f(x), x € R™,

where D = El 1 8 927 is the Laplacian operator on . We can solve the heat equation using Fourier transform and the
solution can be written as follows:

ula, 1) = Trt / ) F(€)de.

where t > 0, s € R® and f € E. Then, we can write the solution u(x,t) in the form of convolution integral as follows:
u(@,t) = (K * f)(x),

a2
where K is heat kernel given by K; = \/(41?6 = Then the solution of (5:3) can be written as follows:

Tif(x) = u(z,t) = (K * f)(x),
we can check that the operator T; f(x) is a semigroup on E.

Definition 5.3. A one-parameter family S = {T'(¢)}+>0 : £ — E is said to be a family of uniformly Lipschitzian
mappings if there exists a bounded measurable function L(t) : (0,00) — [0, 00) such that

1T(t)x = T(t)yl| < L)z —yl,  =yek.
We now first give the following definition:

Definition 5.4. A one-parameter family S = {T'(¢)};>0 : £ — E is said to be a Bregman relatively nonexpansive
semigroup if it satisfies (S1), (S2), (S3) and the following conditions:

(a) F(S) = F(S)# 0,
(b) Ap(T(t)z,2) < Ap(x,2), Ve E,ze F(S)andt>0.

Using idea in Aleyner and Censor [3], Aleyner and Reich [4] and Benavides et al. [§], we define the following concept:

Definition 5.5. A continuous operator semigroup S = {T'(t)};>0 : E — FE is said to be uniformly asymptotically
regular (in short, uw.a.r.) if for all S < 0 and any bounded subset B of E such that

Jim sup 17 (T(0)x) = I (T()T(5)2)] = 0.

Algorithm 5.1. Select 1 € E; and let sequence {x,}22; be generated by,

pl(

2 = N (T (J5, () — padem 2 g(an))
yn = Jp: (anJg, (un) + (1 - Oén)J%l (tn)zn) (5-4)
Tny1 = Jggf (ﬁnjgl (xn) (1 - ﬁn)ng( n))a

p—1
where f(za) == LI(I = M) Aza|lP, 774 (@) = (A0 = M) AzalP), glan) == AT, (I = MP?) Az, and

{pn} € (0,00) satisfies liminf p,(pg — Cypd~1) > 0. If g(x,) = 0, then 2, = z,, and the iterative process stops, z,, is a
solution. Otherwise, we set n := n + 1 and go to (5.4).
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Theorem 5.6. Let S = {T'(t)};>0 be a u.a.r. Bregman relatively nonexpansive semigroup of uniformly Lipschitzian
mappings on E; into E; with a bounded measurable function L; : (0,00) — [0, 00) such that F(S) := Np>oF (Th) # 0
and Let T'N F(S) # (0. Suppose that the following condition hold:

L limy, ooy = 0,307 vy = 00,

2. u, be a sequence in F such that u,, — u,
3. {tn} € (0,00) with lim, . t, =0,

4. limsup,,_, fn < 1.

Then the sequence generated by x,, converges strongly to * € T' N F'(S), where 2* = Ipnp(g)u.
Proof . We only have to show that lim,, o ||2, — T'(t)z,]| = 0 for all ¢ > 0. By following the method of proof in
Theorem we can show that {z,} is bounded and

lim ||, — T(tn)2zn| = 0. (5.5)

n— oo

Since {T'(¢) }+>0 is a uniformly of Lipschitzian mappings with a bounded measurable function L;. Then, we have
[TO)T (tn)2n — T()xnll < Le||T(tn) 20 — 24|
< sup{ L H|T (tn)Tn — zn] — 0 as n — oo.
>0

Since Jfl is uniformly norm-to-norm continuous on bounded subsets of F1, then we also have

lim_ [JE(T ()T tn)2n) — J2 (T (t)an)| = 0. (5.6)

For each t > 0, we note that

157 (2n) = Ty (T (O zn)l| < (1957 (@) = JZH (T () zn)[| + (17 (T(En)xn) — T (T(OT (tn) )|
[T (T )T (tn)wn) — 7 (T ()|

Ty (

<7 () = (T (ta)za) | + 1T (TOT (tn)an) — T (T()an)|
e, 177 (T (tn)2) = T (T ()T (t)2) .

Since {T'(t)};>0 is a u.a.r. Bregman relatively nonexpansive semigroup with lim,,_, t, = oo, then from (5.5 and

(-6). we get
lim (| J7 (2n) — JPH(T(8)2)|| = 0,

n—oo

for all t > 0. Since Jf T s uniformly norm-to-norm continuous on bounded subsets of E}, we get
lim ||z, — T(t)z,|| = 0.
n—oo

This completes the proof. O

6 Numerical Example

We now give a numerical example of the Algorithm

Example 6.1. Let E; = E; = L(R), where l5(R) := {r = (ri,ro,...,7,...),r € R 37 ri2 < o}, |7]l2 =
>, |7‘i|2)%, Vr € Ey and (z,y) := Y .0, x;y; . We define By : By — E; and By : B3 — E» be maximal monotone
operators such that Bix = 3z and Bsx = 5z, respectively. Let T : £ — FE; be deﬁned by Tx =% Vo e FE; and
A : Fy — FE5 is a bounded linear operator defined by Ax = %I,Va: € F1. We choose «a,, = 2n, Bn = L and u, =
Furthermore, it can be verified that for Ay, Ao > 0,

6n'

By, _ -1, _ T

N/\llx—(l—i—/\lBl) x—1+3)\1, Vx € Eq,
and y

MPB2y = (I +XBy) ly=—2— Vy€ Es.

Y=+ XB2) Ty 1550y y € B9

Using MATLAB R2016(a), we now study the convergence behavior of Algorithm at different initial values x; and
different {p,}. We plot the graphs of errors = ||z,,+1 — || against number of iterations with the following choices:
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Figure 1: Convergence of Algorithm for different 1 and {pn}

1. x (6,%,%,. ) and p,, = n?’fl,
2. x1 = (3,%,1,. ) and p, = ffl,
3. x1 = (75,_75,_75,...) and p, = 17,
4. 21 =(-2,-1,3%,...) and p, %.

We observed that different choices of x; have no large effect in terms of number of iterations for the convergence of
our Algorithm also we see that sequences generated by our Algorithm converges to 0 € I'N F(T). Moreover,
the number of iterations significantly decreasing from choice 1 to choice 4. The error plotting for each choices is shown
in Figure 1.
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