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Abstract

By using Halpern’s type iteration process, an iterative algorithm is proposed to study the split inclusion problem
and fixed points of a relatively nonexpansive mapping in Banach spaces. This method uses dynamic stepsize that
is generated at each iteration by simple computations, which allows it to be easily implemented without the prior
information of the operator norm. Then, the main result is used to study the fixed points of a countable family
of relatively nonexpansive mappings and the semigroup of relatively nonexpansive mappings. Finally, a numerical
example is provided to illustrate the main result.
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1 Introduction

Let H1 and H2 be two Hilbert space. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two maximal monotone operators
and A : H1 → H2 be a bounded linear operator. Consider the following split inclusion problem (SIP) introduced by
Moudafi [25] in Hilbert space:

To find x∗ ∈ H1 such that 0 ∈ B1(x
∗) and 0 ∈ B2(Ax∗). (1.1)

Let the solution set of (1.1) is denoted by Γ. In fact, we know that the SIP is a generalization of the inclusion problem
and the split feasibility problem (SFP). Now, we provide some special cases of SIP (1.1).
Let f : H1 → R ∪ {∞} and g : H2 → R ∪ {∞} be proper, lower semicontinuous and convex functions. If we take
B1 = ∂f and B2 = ∂g, where ∂f and ∂g are the subdifferential of f and g, then the SIP (1.1) becomes the following
proximal split feasibility problem:

To find x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.2)

where argmin f = {x ∈ H1 : f(x) ≤ f(y),∀y ∈ H1} and argmin g = {x ∈ H2 : g(x) ≤ g(y),∀y ∈ H2}. In particular, if
we take f(x) = 1

2∥M(x)− b∥2 and g(x) = 1
2∥N(x)− c∥2, where M and N are matrices, and b, c ∈ H1, then the (1.2)

becomes the least square problem.
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Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2, respectively. If B1 =
NC , B2 = NQ, where NC and NQ are the normal cones of C and Q, respectively, then we have the following the SFP:

To find x∗ ∈ C such that Ax∗ ∈ Q.

This problem was first introduced in a finite dimensional Hilbert space by Censor and Elfving [13] for modeling inverse
problems in radiation therapy treatment planning, which arise from phase retrieval and in medical image reconstruc-
tion, especially intensity modulated therapy [12].

In 2011, to solve the SIP (1.1) Byrne et al. [11] proved some weak convergence results in infinite dimensional
Hilbert spaces. For given x1 ∈ H1, the sequence {xn}∞n=1 is defined by,

xn+1 = JB1

λ (xn − γA∗(I − JB2

λ )Axn), ∀ n ≥ 1,

where λ > 0 and γ ∈ (0, 2
∥A∥2 ) and JB1

λ is resolvent operator of B1. In order to obtain strong convergence, Kazmi and

Rizvi [19] proposed following algorithm for solving SIP (1.1) and fixed points of a nonexpansive mapping, for given
x1 ∈ H1: {

un = JB1

λ (xn − γA∗(I − JB2

λ )Axn),

xn+1 = αnf(xn) + (1− αn)Tun,∀ n ≥ 1,

where γ ∈ (0, 2
∥A∥2 ), f : H1 → H1 is a contraction mapping with constant α ∈ (0, 1) and {αn}∞n=1 ∈ (0, 1) such that

limn→∞ αn = 0,
∑∞

n=1 αn = ∞.
Very recently, Alofi et al. [5] introduced an algorithm based on Halpern’s iteration for solving SIP (1.1) in a uniformly
convex and smooth Banach space E. They proposed the following algorithm for given x1 ∈ E:{

yn = αnun + (1− αn)J
B1

λn
(xn − λnA

∗Jp
E2

(I − JB2
rn )Axn)

xn+1 = βn(un) + (1− βn)yn,

where {αn}∞n=1 ∈ (0, 1), {βn}∞n=1 ∈ [0, 1) and {λn}∞n=1, {rn}∞n=1 ∈ (0,∞), satisfying the some additional conditions on
parameters and the stepsize λn.

In 2018, by employing the idea of Halpern’s iteration process Suantai et al. [35] proved strong convergence theorem
for (1.1) in Banach spaces. For given x1 ∈ E1 their sequences generated by the following iterative scheme under some
suitable conditions: 

zn = Jq
E∗

1
(Jp

E1
(xn)− λnA

∗Jp
E2

(I − Jrn)Axn)

yn = Jq
E∗

1
(αnJ

p
E1

(un) + (1− αn)J
p
E1

Jλn
(zn))

xn+1 = Jq
E∗

1
(βnJ

p
E1

(xn) + (1− βn)J
p
E1

(yn)),

where stepsize λn is a sequence, chosen in such a way that,

0 < a ≤ λn ≤ b <

(
q

Cq
∥A∥q

) 1
q−1

, for some a, b ∈ (0,∞),

where {αn}∞n=1 ∈ (0, 1), {βn}∞n=1 ∈ [0, 1) and {λn}∞n=1, {rn}∞n=1 ∈ (0,∞). In recent years, many authors have
constructed several iterative methods for solving SIP (see, [5, 7, 14, 27, 33, 38]).
However, in order to achieve the solution of mentioned above problems, one has to obtain the operator norm ∥A∥,
which is not easy to calculate in general. To avoid this computation, López et al. [22] find a new way to select the
stepsize as follows:

µn =
ρnf(xn)

∥∇f(xn)∥2
, n ≥ 1,

where ρn ∈ (0, 4), f(xn) =
1
2∥(I − PQ)Axn∥2 and ∇f(xn) = A∗(I − PQ)Axn, for all n ≥ 1, where PQ is the metric

projection of H2 onto Q. This method is a modification of the CQ method often called the self-adaptive method,
which permits step-size being selected self adaptively, for more see [29, 39]
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Motivated by the work of Suantai et al. [35] and López et al. [22], intention of this paper is to propose an algorithm
to study SIP (1.1) and fixed point of relatively nonexpansive mapping in p-uniformly convex and uniformly smooth
Banach spaces. Stepsize is being selected without the prior knowledge of operator norm, so it can be more efficiently
implemented. Also, this result is applied to find the common fixed points of a family of relatively nonexpansive
mappings which ais also the solution of the SIP (1.1).

2 Preliminaries

Let C be a nonempty closed, convex subset of Real Banach space E with dual E∗ and 1 < q ≤ 2 ≤ p with 1
p+

1
q = 1.

The modulus of convexity δE : [0, 2] → [0, 1] is defined as

δB(ε) = inf{1− ∥u+ v∥
2

: ∥u∥ = 1 = ∥v∥, ∥u− v∥ ≥ ε}.

A Banach space E is called uniformly convex [16] if δE(ε) > 0, for ε ∈ (0, 2] and p-uniformly convex if there exist
Cp > 0, such that δE(ε) ≥ CP ε

p for any ε ∈ (0, 2]. The modulus of smoothness ρE(ε) : [0,∞) → [0,∞) is defined by

ρE(τ) = {∥u+ τv∥+ ∥u− τv∥
2

− 1 : ∥u∥ = ∥v∥ = 1}.

A Banach space E is called uniformly smooth [17] if limτ→0
ρB(τ)

τ = 0; q−uniformly smooth if there exist Cq > 0 such
that ρE(τ) ≤ Cqτ

q for any τ > 0.
A continuous strictly increasing function φ : R+ → R+ is said to be a gauge if φ(0) = 0 and limt→∞ φ(t) = ∞. The
mapping JE

φ : E → E∗ associated with a gauge function φ defined by

JE
φ (x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥φ(∥x∥), ∥f∥ = φ(∥x∥),∀x ∈ E},

is called the duality mapping with gauge φ, where ⟨., .⟩ denotes the duality pairing between E and E∗.

If φ(t) = t, then JE
φ = J is the normalized duality mapping. In particular, φ(t) = tp−1, where p > 1, the duality

mapping JE
φ = JE

p is called the generalized duality mapping defined by

JE
p (x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥p, ∥f∥ = ∥x∥p−1}, x ∈ E.

It is well known that if E is uniformly smooth, the generalized duality mapping JE
p is norm to norm uniformly

continuous on bounded subsets of E (see [31]). Furthermore, JE
p is one-to-one, single-valued and satisfies JE

p =

(JE∗

q )−1, where JE∗

q is the generalized duality mapping of E∗ (see [30], [15] for more details).
For a gauge φ, the function Φ : R+ → R+ defined by

Φ(t) =

∫ t

0

φ(s)ds

is a continuous convex strictly increasing differentiable function on R+ with Φ′(t) = φ(t) and limt→∞
Φ(t)
t → ∞.

Therefore, Φ has a continuous inverse function Φ−1. We next recall the Bregman distance, which was introduced and
studied by Bregman in [10].

Definition 2.1. Let E be a real smooth Banach space. The Bregman distance ∆φ(x, y) between x and y in E is
defined by

∆φ(x, y) = Φ(∥y∥)− Φ(∥x∥)− ⟨Jφ(x), y − x⟩.

We note that the Bregman distance ∆φ does not satisfy the well-known properties of a metric because ∆φ is not
symmetric and does not satisfy the triangle inequality. Moreover, the Bregman distance has the following important
properties:

∆φ(x, y) = ∆φ(x, z) + ∆φ(z, y) + ⟨JE
φ x− JE

φ z, z − y⟩, (2.1)

and
∆φ(x, y) + ∆φ(y, x) = ⟨JE

φ x− JE
φ y, x− y⟩, ∀x, y, z ∈ E.
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In the case φ(t) = tp−1, where p > 1, the distance ∆φ = ∆p is called the p-Lyapunov function which was studied
in [9] and it is given by

∆p(x, y) =
1

q
∥x∥p − ⟨JE

φ x, y⟩+ 1

p
∥y∥p, (2.2)

where p, q are conjugate exponents. For the p-uniformly convex space, the Bregman distance has the following relation,
see [32]:

τ∥x− y∥p ≤ ∆p(x, y) ≤ ⟨JE
φ x− JE

φ y, x− y⟩,

where τ > 0 is some fixed number. If p = 2, we get

∆2(x, y) = ϕ(x, y) = ∥x∥2 − 2⟨Jx, y⟩+ ∥y∥2,

where ϕ is called the Lyapunov function which was introduced by Alber ([1], [2]). The function Vp : E×E∗ → [0,+∞)
is defined by,

Vp(x̄, x) =
1

q
∥x̄∥q − ⟨x̄, x⟩+ 1

p
∥x∥p, ∀x ∈ E, x̄ ∈ E∗.

Then Vp ≥ 0 and also satisfy following property [28],

Vp(x̄, x) = ∆p(J
q
E(x̄), x), ∀ x ∈ E, x̄ ∈ E∗. (2.3)

Moreover,
Vp(x̄, x) + ⟨ȳ, Jq

E(x̄)− x⟩ ≤ Vp(x̄+ ȳ, x), ∀x ∈ E and x̄, ȳ ∈ E∗.

Lemma 2.2. [26] Let E be a p-uniformly convex and uniformly smooth real Banach space. Let {xn} and {yn} be
bounded sequences in E. Then limn→∞ ∆p(xn, yn) = 0 if and only if limn→∞ ∥xn − yn∥ = 0.

Lemma 2.3. [40] Let x, y ∈ E. If E is q-uniformly smooth, then there is a Cq > 0 so that

∥x− y∥q ≤ ∥x∥q − q⟨y, Jq
E(x)⟩+ Cq∥y∥q.

Let C be a closed and convex subset of E, a point x∗ ∈ C is called an asymptotic fixed point of T if C contains
a sequence {xn} which converges weakly to x∗ and limn→∞ ∥xn − Txn∥ = 0. Similarly a point x∗ ∈ C is a strong
asymptotic fixed point of T if C contains a sequence {xn} which converges strongly to x∗ and limn→∞ ∥xn−Txn∥ = 0.
Set of strong asymptotic fixed points and asymptotic fixed point of T is denoted by F̃ (T ) and F̂ (T ), respectively.

Definition 2.4. [24] A mapping T from C to C is said to be Bregman relatively nonexpansive if F (T ) ̸= ∅, F̂ (T ) =
F (T ) and

∆p(x
∗, T y) ≤ ∆p(x

∗, y), ∀y ∈ C, x∗ ∈ F (T ).

For more detail, see [31]. Let B : E → 2E
∗
be a mapping, The effective domain of B is denoted by D(B), such that,

D(B) = {x ∈ E : Bx ̸= ∅}. Mapping B is monotone if,

⟨u− v, x− y⟩ ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By.

A monotone operator B on E is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on E.
Let E be a p-uniformly convex and uniformly smooth Banach space and B is a monotone operator on E, then for
λ > 0 and x ∈ E, consider the metric resolvent of MB

λ : E → D(B) of B, defined as,

MB
λ (x) = (I + λ(Jp

E)
−1B)−1(x), ∀ x ∈ E.

Set of null point of B is defined by B−1(0) = {z ∈ E : 0 ∈ Bz}. Since B−1(0) is closed and convex, Then we have

0 ∈ JP
E (MB

λ (x)− x) + λBMB
λ (x).

Next, F (MB
λ ) = B−1(0) for λ > 0, from [21] we also have for all x, y ∈ E,

⟨MB
λ (x)−MB

λ (y), Jp
E(x−MB

λ (x))− Jp
E(y −MB

λ (y))⟩ ≥ 0,



Strong convergence result for split inclusion problems in Banach spaces 2251

if B−1(0) ̸= ∅ , then
⟨Jp

E(x−MB
λ (x))− (MB

λ (x)− z)⟩ ≥ 0, ∀z ∈ B−1(0).

The monotonicity of B implies that MB
λ is a firmly nonexpansive-like mapping. Now, we can define a mapping

NB
λ : E1 → D(B) called the relative resolvent of B [20], for λ > 0, as

NB
λ = (Jp

E + λB)−1Jp
E(x), ∀ x ∈ E.

It is known that NB
λ is relatively nonexpansive mapping and F (NB

λ ) = B−1(0), for λ > 0.

Lemma 2.5. [20] Let B : E → 2E
∗
be a maximal monotone operator with B−1 ̸= ∅ and let NB

λ be a resolvent
operator of B for λ > 0. Then

∆p(N
B
λ (x), z) + ∆p(N

B
λ (x), x) ≤ ∆p(x, z), ∀x ∈ E and z ∈ B−1(0).

Lemma 2.6. [36] Let E1, E2 be two p-uniformly convex and uniformly smooth Banach spaces with duals E∗
1 , E

∗
2 ,

respectively. NE1

λ1
is the resolvent operator of a maximal monotone E1 for λ1 > 0 and ME2

λ2
is the metric resolvent

operator of a maximal monotone E2 for λ2 > 0. Assume Ω ̸= ∅, λ > 0 and x∗ ∈ E1. Then x∗ is a solution of problem
(1.1) if and only if

x∗ = NE1

λ1
(Jq

E∗
1
(Jp

E1
(x∗)− λA∗Jp

E2
(I −ME2

λ2
)Ax∗)).

Lemma 2.7. [23] Let {Γn} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {Γni

} of {Γn} which satisfies Γni
< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0

of
integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ≠ ∅. Then, the following hold:

1. τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;

2. Γτn ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0 .

Proposition 2.8. Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach
space E. Let x0 ∈ C and x ∈ E, then there exists a unique element x0 in C such that

∆φ(x0, x) = inf{∆φ(z, x) : z ∈ C}.

In this case, we denote the generalized projection from E onto C by Πφ
C(x) = x0. When φ(t) = t, we have Πφ

C(x)
coincides with the generalized projection studied in [1]. Let p > 1 and φ(t) = tp−1, then Πφ

C becomes the generalized
projection with respect to p and is denoted by ΠC .

Proposition 2.9. [21] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach space E. Let x0 ∈ C and x ∈ E, then the following assertions are equivalent:

(a) x0 = Πφ
C(x);

(b) ⟨z − x0, Jφ(x0)− Jφ(x)⟩ ≥ 0, ∀z ∈ C.

Also, we have
∆φ(y,Π

φ
C) + ∆φ(Π

φ
C , x) ≤ ∆φ(y, x), ∀y ∈ C.

3 Algorithm and their convergence

For rest of the paper, let

� E1 be a p-uniformly convex and uniformly smooth Banach space and E2 be a uniformly convex and smooth
Banach space with duals E∗

1 , E
∗
2 , respectively,

� B1 : E1 → 2E1
∗
and B2 : E2 → 2E2

∗
be maximal monotone operators, such that B−1

1 (0) ̸= 0, B−1
2 (0) ̸= 0,

� NB1

λ1
is the resolvent operator of B1 for λ1 > 0 and MB2

λ2
is the metric resolvent operator of B2 for λ2 > 0.
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� Jp
E1

and Jp
E2

represent the duality mappings of E1 and E2, respectively and Jp
E1

= (Jq
E∗

1
)−1, where Jq

E∗
1
is the

duality mapping of E∗
1 ,

� T : E1 → E1 be a Bregman relatively nonexpansive mapping and A : E1 → E2 be a bounded linear operator
with its adjoint A∗ : E∗

2 → E∗
1 , and

� {αn}∞n=1 ∈ (0, 1), {βn}∞n=1 ∈ [0, 1) and {un}∞n=1 be a sequence such that un → u ∈ E.

Algorithm 3.1. Select x1 ∈ E1 and let sequence {xn}∞n=1 be generated by,
zn = NB1

λ1
(Jq

E∗
1
(Jp

E1
(xn)− ρn

fp−1(xn)
∥g(xn)∥p g(xn))

yn = Jq
E∗

1
(αnJ

p
E1

(un) + (1− αn)J
p
E1

T (zn))

xn+1 = Jq
E∗

1
(βnJ

p
E1

(xn) + (1− βn)J
p
E1

(yn)),

(3.1)

where f(xn) := 1
p∥(I − MB2

λ2
)Axn∥p, fp−1(xn) :=

(
1
p∥(I −MB2

λ2
)Axn∥p

)p−1

, g(xn) := A∗Jp
E2

(I − MB2

λ2
)Axn and

{ρn} ∈ (0,∞) satisfies lim infn→∞ ρn(pq − Cqρ
q−1
n ) > 0. If g(xn) = 0, then zn = xn and the iterative process stops,

xn is a solution. Otherwise, we set n := n + 1 and go to (3.1).

Lemma 3.1. Sequences {xn}∞n=1, {yn}∞n=1 and {zn}∞n=1 generated by Algorithm 3.1 are bounded.

Proof . Since g(xn) = A∗Jp
E2

(I −MB2

λ2
)Axn,

⟨g(xn), u
∗ − xn⟩ = ⟨A∗Jp

E2
(I −MB2

λ2
)Axn, u

∗ − xn⟩

= ⟨Jp
E2

(I −MB2

λ2
)Axn, Au∗ −Axn⟩

= ⟨Jp
E2

(I −MB2

λ2
)Axn,M

B2

λ2
Axn −Axn⟩

+ ⟨Jp
E2

(I −MB2

λ2
)Axn, Au∗ −MB2

λ2
Axn⟩

≤ −∥Axn −MB2

λ2
Axn∥p = −pf(xn). (3.2)

Let u∗ ∈ Γ ∩ F (T ), from Lemma 2.3 and (2.2), we have

∆p(zn, u
∗) = ∆p(J

q
E∗

1
[Jp

E1
(xn)− ρn

fp−1(xn)

∥g(xn)∥p
g(xn)], u

∗)

=
∥u∗∥p

p
+

1

q
∥Jp

E1
(xn)− ρn

fp−1(xn)

∥g(xn)∥p
g(xn)∥q − ⟨Jp

E1
(xn), u

∗⟩

+ ρn
fp−1(xn)

∥g(xn)∥p
⟨u∗, g(xn)⟩

≤ ∥u∗∥p

p
+

1

q
∥xn∥p − ρn

fp−1(xn)

∥g(xn)∥p
⟨xn, g(xn)⟩+

Cq

q
ρqn

fp(xn)

∥g(xn)∥p

− ⟨u∗, Jp
E1

xn⟩+ ρn
fp−1(xn)

∥g(xn)∥p
⟨u∗, g(xn)⟩

≤ 1

p
∥u∗∥p + 1

q
∥xn∥p − ⟨u∗, Jp

E1
xn⟩+ ρn

fp−1(xn)

∥g(xn)∥p
⟨u∗ − xn, g(xn)⟩

+
Cq

q
ρqn

fp(xn)

∥g(xn)∥p

= ∆p(xn, u
∗) + ρn

fp−1(xn)

∥g(xn)∥p
⟨u∗ − xn, g(xn)⟩+

Cq

q
ρqn

fp(xn)

∥g(xn)∥p
. (3.3)

Using (3.2) and (3.3),

∆p(zn, u
∗) ≤ ∆p(xn, u

∗)− ρnp
fp(xn)

∥g(xn)∥p
+

Cq

q
ρqn

fp(xn)

∥g(xn)∥p

= ∆p(xn, u
∗)− (ρnp−

Cq

q
ρqn)

fp(xn)

∥g(xn)∥p
. (3.4)
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Since lim infn→∞ ρn(pq − Cqρ
q−1
n ) > 0, thus

∆p(zn, u
∗) ≤ ∆p(xn, u

∗) n ≥ 1. (3.5)

Thus,

∆p(u
∗, yn) = ∆p(u

∗, Jq
E∗

1
(αnJ

p
E1

(un) + (1− αn)J
p
E1

(Tzn)))

=
∥u∗∥p

p
+

1

q
∥Jq

E∗
1

(
αnJ

p
E1

(un) + (1− αn)J
p
E1

(Tzn)
)
∥p

− ⟨u∗, αnJ
p
E1

(un)− (1− αn)J
p
E1

(Tzn)⟩

=
∥u∗∥p

p
+

1

q
∥αnJ

p
E1

(un) + (1− αn)J
p
E1

(Tzn)∥q

− αn⟨u∗, Jp
E1

(un)⟩ − (1− αn)⟨u∗, Jp
E1

(Tzn)⟩

≤ ∥u∗∥p

p
+

1

q

(
αn∥Jp

E1
(un)∥q + (1− αn)∥Jp

E1
(Tzn)∥q

)
− αn⟨u∗, Jp

E1
(un)⟩ − (1− αn)⟨u∗, Jp

E1
(Tzn)⟩

=
∥u∗∥p

p
+ αn

∥un∥p

q
+ (1− αn)

∥Tzn∥p

q

− αn⟨u∗, Jp
E1

(un)⟩ − (1− αn)⟨u∗, Jp
E1

(Tzn)⟩

= αn

(
∥u∗∥p

p
+

∥un∥p

q
⟨u∗, Jp

E1
(un)⟩

)
+ (1− αn)

(
∥u∗∥p

p
+

∥Tzn∥p

q
− ⟨u∗, Jp

E1
(Tzn)⟩

)
= αn∆p(u

∗, un) + (1− αn)∆p(u
∗, T zn)

≤ αn∆p(u
∗, un) + (1− αn)∆p(u

∗, zn)

≤ αn∆p(u
∗, un) + (1− αn)∆p(u

∗, xn). (3.6)

We can also show that,
∆p(u

∗, xn+1) ≤ βn∆p(u
∗, xn) + (1− βn)∆p(u

∗, yn). (3.7)

Since {un} is bounded, there exists a constant K > 0 such that ∆p(u
∗, un) ≤ K, ∀ n ≥ 1 and from (3.6) and (3.7),

we have

∆p(u
∗, xn+1) ≤ βn∆p(u

∗, xn) + (1− βn)∆p(u
∗, yn)

≤ βn∆p(u
∗, xn) + (1− βn) (αn∆p(u

∗, un) + (1− αn)∆p(u
∗, xn))

= (1− αn(1− βn))∆p(u
∗, xn) + αn(1− βn)∆p(u

∗, un)

≤ (1− αn(1− βn))∆p(u
∗, xn) + αn(1− βn)K

≤ max{K,∆p(u
∗, xn)}

...

≤ max{K,∆p(u
∗, x1)}.

By induction, we have that ∆p(u
∗, xn) is bounded, So are {yn}, {zn} and {Tzn}. □

Theorem 3.2. If {αn} → 0,
∑∞

n=1 αn = ∞ and lim supn→∞ βn < 1. Then the sequence {xn}∞n=1 generated by
Algorithm 3.1 converges strongly to x∗ ∈ Γ ∩ F (T ), where x∗ = ΠΓ∩F (T )u.

Proof . Let x∗ = ΠΓ∩F (T )u. Then, by using (2.3), we get that
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∆p(x
∗, xn+1) ≤ βn∆p(x

∗, xn) + (1− βn)∆p(x
∗, yn)

= βn∆p(x
∗, xn) + (1− βn)∆p

(
x∗, Jq

E∗
1
(αn, J

p
E1

(xn) + (1− αn)J
p
E1

(Tzn))
)

= βn∆p(x
∗, xn) + (1− βn)Vp(x

∗, αnJ
p
E1

(xn) + (1− αn)J
p
E1

(Tzn))

≤ βn∆p(x
∗, xn) + (1− βn)[Vp(x

∗, αnJ
p
E1

(xn)

+ (1− αn)J
p
E1

(Tzn)− αn(J
p
E1

(xn)− Jp
E1

(x∗)))]

+ (1− βn)⟨yn − x∗, αn

(
Jp
E1

(xn)− Jp
E1

(x∗)
)
⟩

= βn∆p(x
∗, xn) + (1− βn)[Vp

(
x∗, (1− αn)J

p
E1

(Tzn) + αnJ
p
E1

(x∗)
)
]

+ αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(x∗)⟩
≤ βn∆p(x

∗, xn) + (1− βn)[(1− αn)Vp

(
x∗, Jp

E1
(Tzn) + αnVp(x

∗, Jp
E1

(x∗))
)
]

+ αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ αn(1− βn)⟨yn − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩

= βn∆p(x
∗, xn) + (1− βn)[(1− αn)∆p(x

∗, T zn) + αn∆p(x
∗, x∗)]

+ αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ αn(1− βn)⟨yn − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩

≤ βn∆p(x
∗, xn) + (1− βn)[(1− αn) (∆p(x

∗, zn)−∆p(zn, T zn))]

+ αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ αn(1− βn)⟨yn − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩.

From (3.4) we obtain

∆p(x
∗, xn+1) ≤ βn∆p(x

∗, xn) + (1− βn)(1− αn)∆p(x
∗, xn)

− (1− βn)(1− αn)(ρnp−
Cq

q
ρqn)

fp(xn)

∥g(xn)∥p

− (1− βn)(1− αn)∆p(zn, T zn) + αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ αn(1− βn)⟨yn − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩

= (1− (1− βn)αn)∆p(x
∗, xn)

− (1− βn)(1− αn)(ρnp−
Cq

q
ρqn)

fp(xn)

∥g(xn)∥p

− (1− βn)(1− αn)∆p(zn, T zn) + αn(1− βn)⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ αn(1− βn)⟨yn − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩. (3.8)

We now divide the proof into following two cases:
Case 1: Suppose there is an n0 ∈ N such that {∆p(x

∗, xn)} is nonincreasing. Then

∆p(x
∗, xn)−∆p(x

∗, xn+1) → 0.

From (3.8), we obtain

(1− βn)(1− αn)[(ρnp−
Cq

q
ρqn)

fp(xn)

∥g(xn)∥p
+∆p(zn, T zn)]

≤ (∆p(x
∗, xn)−∆p(x

∗, xn+1))

+ αn(1− βn)(⟨yn − x∗, Jp
E1

(xn)− Jp
E1

(u)⟩
+ ⟨yn − x∗, Jp

E1
(xn)− Jp

E1
(x∗)⟩ −∆p(x

∗, xn)).

On taking n → ∞, we have by assumption,

∥(I −MB2

λ2
)Axn)∥ = ∥Axn −MB2

λ2
Axn∥ → 0 and ∆p(zn, T zn) → 0.
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This implies that by Proposition 2.2
∥zn − Tzn∥ → 0. (3.9)

Since Jp
E1

is norm to norm uniformly continuous on bounded subsets of E1, we get ∥Jp
E1

(Tzn)−Jp
E1

(zn)∥ → 0. By the
boundedness of {xn} and the reflexivity of E1, there exists a subsequence {xnj

} of {xn} such that {xn} → x̂. From

(3.9), we get x̂ ∈ F (T̂ ) = F (T ).
Also

∥Jp
E1

(zn)− Jp
E1

(xn)∥ = λn∥A∗Jp
E2

(Axn −MB2

λ2
Axn)∥

≤ λn∥A∗∥∥Jp
E2

(Axn −MB2

λ2
Axn)∥

= λn∥A∥∥Axn −MB2

λ2
Axn∥p−1

→ 0. (3.10)

Since Jp
E∗

1
is norm to norm uniformly continuous on bounded subsets of E∗

1 , we obtain ∥zn − xn∥ → 0. Moreover,

∥Jp
E1

(yn)− Jp
E1

(xn)∥ ≤ αn∥Jp
E1

(un)− Jp
E1

(xn)∥+ (1− αn)∥Jp
E1

(Tzn)− Jp
E1

(xn)∥
≤ αn∥Jp

E1
(un)− Jp

E1
(xn)∥+ (1− αn)∥Jp

E1
(Tzn)− Jp

E1
(zn)∥

+ (1− αn)∥Jp
E1

(zn)− Jp
E1

(xn)∥.

It follows that
lim

n→∞
∥Jp

E1
(yn)− Jp

E1
(xn)∥ = 0,

yields
lim
n→∞

∥yn − xn∥ = 0.

Thus, we have
∥Jp

E1
(xn+1)− Jp

E1
(xn)∥ = (1− βn)∥Jp

E1
(yn)− Jp

E1
(xn)∥ → 0. (3.11)

Since {yn} is bounded, there exists a subsequence {yni
} of {xn} such that xni

→ x̂ ∈ E. From ∥Axn−MB2

λ2
Axn∥ → 0

and by the boundedness and the linearity of A, we have Axni
→ Aw and MB2

λ2
Axni

→ Ax̂. Since MB2

λ2
is a resolvent

metric of B2 for rn > 0, we have

Jp
E2

(Axn −MB2

λ2
Axn)

rn
∈ B2M

B2

λ2
Axn, ∀n ∈ N.

So we obtain

0 ≤ ⟨v −MB2

λ2
Axni

, v∗ −
Jp
E2

(Axni
−MB2

λ2
Axni

)

rni

⟩, ∀(v, v∗) ∈ B2.

It follows that
0 ≤ ⟨v −Ax̂, v∗ − 0⟩, ∀v, v∗ ∈ E2.

Since B2 is maximal monotone, Ax̂ ∈ F (MB2

λ2
) = B−1

2 0 and hence x̂ ∈ A−1(B−1
2 0).

Since, vn := Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2

(AxnM
B2

λ2
(Axn))],∀n ≥ 1. By Lemma 2.5 and (3.4), we have

∆p(zn, vn) = ∆p(N
B1

λ1
vn, vn)

≤ ∆p(vn, u
∗)−∆p(zn, u

∗)

≤ ∆p(xn, u
∗)−∆p(zn, u

∗) → 0 as n → ∞.

Thus, we have
lim
n→∞

∥NB1

λ1
vn − vn∥ = lim

n→∞
∥xn − vn∥ = 0. (3.12)

Since xnj
→ x̂ ∈ E1, we also have vnj

→ x̂ ∈ E1. From (3.12), we have x̂ ∈ F (NB1

λ1
) ∈ B−1

1 0. This concludes that

x̂ ∈ B−1
1 0 ∩A−1(B−1

2 0) .
Proposition 2.9 implies that

lim sup
n→∞

⟨yn − x∗, Jp
E1

(u)− Jp
E1

(x∗)⟩ = lim
n→∞

⟨yni − x∗, Jp
E1

(u)− Jp
E1

(x∗)⟩

= ⟨w − x∗, Jp
E1

(u)− Jp
E1

(x∗)⟩ ≤ 0. (3.13)
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We note that xn → u implies Jp
E1

(xn) → Jp
E1

(u) and consequently, limn→∞⟨yn−x∗, Jp
E1

(xn)−Jp
E1

(u)⟩ = 0. Combining
Σ∞

n=1(1 − βn)αn = ∞ and (3.13), we have by using Lemma 2.3, ∆p(x
∗, xn) → 0. Thus, by Lemma 2.2, we have

∥xn − x∗∥ → 0 as n → ∞.
Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such that Γni < Γni+1, for all n ∈ N. In
this case, we define τ : N → N by τ(n) = max{k ≤ n : Γk < Γk+1}. Then, by Lemma 2.7, we obtain Γτ(n) ≤ Γτ(n)+1.
Put Γn for all n ∈ N. So, by 3.11, we have ∥xτ(n)+1 − xτ(n)∥ → 0. As in the proof of Case 1, we also can show that

lim
n→∞

∥zτ (n)− Tzτ (n)∥ → 0,

lim
n→∞

∥(I −MB2

λ2
)Axτ (n))∥ = ∥Axτ (n)−MB2

λ2
Axτ (n)∥ → 0,

lim
n→∞

∥zτ (n)− xτ (n)∥ → 0,

and
lim

n→∞
∥xτ(n)+1 − xτ (n)∥ → 0.

Also,
lim sup
n→∞

⟨yτ(n) − x∗, Jp
E1

(u)− Jp
E1

(x∗)⟩ ≤ 0.

Since Γτ(n) ≤ Γτ(n)+1, by (3.8) we have

(1− βτ(n))∆p(x
∗, xτ(n)) ≤ (1− βτ(n))ατ(n)

(
⟨yτ(n) − x∗, Jp

E1
(uτ(n))− Jp

E1
(u)⟩

)
+ ⟨yτ(n) − x∗, Jp

E1
(u)− Jp

E1
(x∗)⟩,

which yields
∆p(x

∗, xτ(ni)) ≤ ⟨yτ(n) − x∗, Jp
E1

(uτ(n))− Jp
E1

(u)⟩+ ⟨yτ(n) − x∗, Jp
E1

(u)− Jp
E1

(x∗)⟩.

Thus we have
lim sup
n→∞

∆p(x
∗, xτ(n)) ≤ 0.

So limn→∞ ∆p(x
∗, xτ(n)) = 0. From (2.1) we have

∆p(x
∗, xτ(n)+1) + ∆p(xτ(n)+1, xτ(n))−∆p(x

∗, xτ(n))

= ⟨x∗ − xτ(n)+1, J
p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)⟩.

Thus

∆p(x
∗, xτ(n)+1) ≤ ∆p(x

∗, xτ(n)) + ⟨x∗ − xτ(n)+1, J
p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)⟩
→ 0,

by Lemma 2.7, we have ∆p(x
∗, xn) ≤ ∆p(x

∗, xτ(n)+1) → 0. Hence xn → x∗ as n → ∞. This completes the proof. □

4 A countable family of relatively nonexpansive mappings

A family of mappings {Tn}∞n=1 is said to be countable family of relatively nonexpansive mappings(see, for example
[37]) if the following conditions are satisfied:

1. F ({Tn}∞n=1) ̸= ∅,
2. ∆p(x

∗, Tnx) ≤ ∆p(x
∗, x), for all x ∈ C, x∗ ∈ F (Tn), n ≥ 1,

3. ∩∞
n=1F (Tn) = F̂ ({Tn}∞n=1).

The set of asymptotic fixed points of {Tn}∞n=1 is denoted by F̂ ({Tn}∞n=1).

Definition 4.1. [6] Let C be a subset of a real p-uniformly convex and uniformly smooth Banach space E. Let
{Tn}∞n=1 be a sequence of mappings of C in to E such that

⋂∞
n=1 F (Tn) ̸= ∅. Then {Tn}∞n=1 is said to satisfy the

AKTT -condition if, for any bounded subset B of C

∞∑
n=1

sup
x∈B

{∥JE
p (Tn+1x)− JE

p (Tnx)∥} < ∞.
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As in [34], we prove the following Proposition:

Proposition 4.2. Let C be a nonempty, closed and convex subset of a real p-uniformly convex and uniformly smooth
Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C such that

⋂∞
n=1 F (Tn) ̸= ∅ and {Tn}∞n=1 satisfies the

AKTT -condition. Suppose that for any bounded subset B of C. Then there exists the mapping T : B → E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B, (4.1)

and
lim
n→∞

sup
x∈B

∥JE
p (Tx)− JE

p (Tnx)∥ = 0.

Proof . To complete the proof we show that {Tnx} is cauchy sequence for each x ∈ C. Let ϵ > 0 be given and by the
AKKT -condition ∃ l0 ∈ N, such that

∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C} < ϵ.

Let k > l ≥ l0, then

∥Tkx− Tlx∥ ≤ sup{∥Tky − Tly∥ : y ∈ C}
≤ sup{∥Tky − Tk−1y∥ : y ∈ C}+ sup{∥Tk−1y − Tly∥ : y ∈ C}

...

≤
k−1∑
l

sup{∥Tn+1y − Tny∥ : y ∈ C}

≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C} < ϵ. (4.2)

Therefore we have that {Tnx} is Cauchy sequence, moreover (4.2) implies that,

∥Tx− Tlx∥ = lim
k→∞

∥Tkx− Tlx∥ ≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C},

for all x ∈ C. So,

sup ∥Tx− Tlx∥ ≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C},

therefore we conclude that liml0→∞ sup ∥Tx− Tl0x∥ = 0. □

In the sequel, we say that ({Tn}, T ) satisfies the AKTT -condition if {Tn}∞n=1 satisfies the AKTT -condition and T
is defined by (4.1) with

⋂∞
n=1 F (Tn) = F (T ).

Algorithm 4.1. Select x1 ∈ E1 and let sequence {xn}∞n=1 be generated by,
zn = NB1

λ1
(Jq

E∗
1
(Jp

E1
(xn)− ρn

fp−1(xn)
∥g(xn)∥p g(xn))

yn = Jq
E∗

1
(αnJ

p
E1

(un) + (1− αn)J
p
E1

Tn(zn))

xn+1 = Jq
E∗

1
(βnJ

p
E1

(xn) + (1− βn)J
p
E1

(yn)),

(4.3)

where f(xn) := 1
p∥(I − MB2

λ2
)Axn∥p, fp−1(xn) :=

(
1
p∥(I −MB2

λ2
)Axn∥p

)p−1

, g(xn) := A∗Jp
E2

(I − MB2

λ2
)Axn and

{ρn} ∈ (0,∞) satisfies lim inf ρn(pq−Cqρ
q−1
n ) > 0. If g(xn) = 0, then zn = xn and the iterative process stops, xn is a

solution. Otherwise, we set n := n + 1 and go to (4.3).

Theorem 4.3. Suppose that {Tn} be a countable family Bregman relatively nonexpansive mapping on E1 such that
F (Tn) = F̂ (Tn), Assume that Ω =

⋂∞
n=1 F (Tn) ∩ Γ ̸= ∅ and satisfying following condition:
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1. limn→∞ αn = 0,
∑∞

n=1 αn = ∞,

2. lim supn→∞ βn < 1,

3. un be a sequence in E such that un → u,

4. ({Tn}∞n=1, T ) satisfy AKTT-Condition.

Then the sequence xn generated by 4.3 converges strongly to x∗ ∈ Ω, where x∗ = ΠΩu

Proof . To this end, it suffices to show that limn→∞ ∥xn − Txn∥ = 0. By following the method of proof in Theorem
3.2, we can show that {xn} is bounded and limn→∞ ∥xn − Tnxn∥ = 0. Since JE1

p is uniformly continuous on bounded
subsets of E1, we have

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0.

By Proposition 4.2, we see that

∥JE1
p (xn)− JE1

p (Txn)∥ ≤ ∥JE1
p (xn)− JE1

p (Tnxn)∥+ ∥JE1
p (Tnxn)− JE1

p (Txn)∥
≤ ∥JE1

p (xn)− JE1
p (Tnxn)∥+ sup

x∈{xn}
∥JE1

p (Tnx)− JE1
p (Tx)∥

→ 0 as n → ∞.

Since J
E∗

1
p is norm-to-norm uniformly continuous on bounded subsets of E∗

1 ,

lim
n→∞

∥xn − Txn∥ = 0.

This completes the proof. □

5 A semigroup of relatively nonexpansive mappings

Definition 5.1. Let C be a subset of a real p-uniformly convex and uniformly smooth Banach space E. A family of
mappings S:= {T (t)}t≥0 from C into C is said to be a nonexpansive semigroup, if it satisfies the following conditions:

(S1) T (0)x = x, for all x ∈ C;

(S2) T (s+ t) = T (s)T (t), for all s, t ≥ 0;

(S3) for each x ∈ C the mapping t 7→ T (t)x is continuous;

(S4) for each t ≥ 0, T (t) is nonexpansive, i.e.

∥T (t)x− T (t)y∥ ≤ ∥x− y∥,∀x, y ∈ C.

We denote by F (S) the set of all common fixed points of S, i.e., F (S) =
⋂

t≥0 F (T (t)).
The following classical examples were one of the main sources for the development of semigroup theory (see Engel and
Nagel [18]). The theory of semigroup is very important in theory of differential equations. Let E = Rn and let L(E)
be the space of all bounded linear operators on E. Consider the the following initial value problem for a system of
homogeneous linear first-order differential equations with constant coeffcients:

x1
′
= a11x1 + a12x2 + . . . a1nxn, x1(0) = u1

x2
′
= a21x1 + a22x2 + . . . a2nxn, x2(0) = u2

...

xn
′
= an1x1 + an2x2 + . . . annxn, xn(0) = xn,

(5.1)

which can be written in a matrix form as {
x

′
(t) = Ax(t), t ≥ 0

x(0) = u,
(5.2)

where A ∈ L(E) is bounded linear operator and A = (aij) is an n × n matrix with aij ∈ R, for i, j = 1, 2, . . . n and
u = (u1, u2, . . . xn)

T ∈ Rn is a given initial vector with ui ∈ R, for all i = 1, 2, ...n. It is well-known that the problem
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(5.2) has a unique solution given by explicit formula x(t) = etAu, t ≥ 0, where etA is a matrix exponential of the
linear differential system (5.2) defined by

etA :=

∞∑
k=0

tkAk

k!
= I +

tA

1
+

t2A2

2!
+ . . . .

We can check that the operator {T (t) : etA, t ≥ 0} is a semigroup on E. Then, we can write the solution of the
problem (5.2) as x(t) = T (t)u, t ≥ 0.

Example 5.2. Let E = Lp(Rn), 1 ≤ p < ∞. Consider the initial value problem for the heat equation

∂u

∂t
= Du, x ∈ Rn and t > 0,

u(x, 0) = f(x), x ∈ Rn,
(5.3)

where D =
∑n

i=1
∂2

∂x2
i
is the Laplacian operator on E. We can solve the heat equation using Fourier transform and the

solution (5.3) can be written as follows:

u(x, t) =
1√

(4πt)n

∫
Rn

e
−∥s−ξ∥2

4t f(ξ)dξ,

where t > 0, s ∈ Rn and f ∈ E. Then, we can write the solution u(x, t) in the form of convolution integral as follows:

u(x, t) = (Kt ∗ f)(x),

where Kt is heat kernel given by Kt =
1√

(4πt)n
e

−∥x∥2
4t . Then the solution of (5.3) can be written as follows:

Ttf(x) = u(x, t) = (Kt ∗ f)(x),

we can check that the operator Ttf(x) is a semigroup on E.

Definition 5.3. A one-parameter family S = {T (t)}t≥0 : E → E is said to be a family of uniformly Lipschitzian
mappings if there exists a bounded measurable function L(t) : (0,∞) → [0,∞) such that

∥T (t)x− T (t)y∥ ≤ L(t)∥x− y∥, x, y ∈ E.

We now first give the following definition:

Definition 5.4. A one-parameter family S = {T (t)}t≥0 : E → E is said to be a Bregman relatively nonexpansive
semigroup if it satisfies (S1), (S2), (S3) and the following conditions:

(a) F (S) = F̂ (S) ̸= ∅,
(b) ∆p(T (t)x, z) ≤ ∆p(x, z), ∀x ∈ E, z ∈ F (S) and t ≥ 0.

Using idea in Aleyner and Censor [3], Aleyner and Reich [4] and Benavides et al. [8], we define the following concept:

Definition 5.5. A continuous operator semigroup S = {T (t)}t≥0 : E → E is said to be uniformly asymptotically
regular (in short, u.a.r.) if for all S ≤ 0 and any bounded subset B of E such that

lim
t→∞

sup
x∈B

∥JE
p (T (t)x)− JE

p (T (s)T (s)x)∥ = 0.

Algorithm 5.1. Select x1 ∈ E1 and let sequence {xn}∞n=1 be generated by,
zn = NB1

λ1
(Jq

E∗
1
(Jp

E1
(xn)− ρn

fp−1(xn)
∥g(xn)∥p g(xn))

yn = Jq
E∗

1
(αnJ

p
E1

(un) + (1− αn)J
p
E1

T (tn)zn)

xn+1 = Jq
E∗

1
(βnJ

p
E1

(xn) + (1− βn)J
p
E1

(yn)),

(5.4)

where f(xn) := 1
p∥(I − MB2

λ2
)Axn∥p, fp−1(xn) :=

(
1
p∥(I −MB2

λ2
)Axn∥p

)p−1

, g(xn) := A∗Jp
E2

(I − MB2

λ2
)Axn and

{ρn} ∈ (0,∞) satisfies lim inf ρn(pq−Cqρ
q−1
n ) > 0. If g(xn) = 0, then zn = xn and the iterative process stops, xn is a

solution. Otherwise, we set n := n + 1 and go to (5.4).
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Theorem 5.6. Let S = {T (t)}t≥0 be a u.a.r. Bregman relatively nonexpansive semigroup of uniformly Lipschitzian
mappings on E1 into E1 with a bounded measurable function Lt : (0,∞) → [0,∞) such that F (S) := ∩h≥0F (Th) ̸= ∅
and Let Γ ∩ F (S) ̸= ∅. Suppose that the following condition hold:

1. limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
2. un be a sequence in E such that un → u,
3. {tn} ∈ (0,∞) with limn→∞ tn = 0,
4. lim supn→∞ βn < 1.

Then the sequence generated by xn converges strongly to x∗ ∈ Γ ∩ F (S), where x∗ = ΠΓ∩F (S)u.

Proof . We only have to show that limn→∞ ∥xn − T (t)xn∥ = 0 for all t ≥ 0. By following the method of proof in
Theorem 3.2, we can show that {xn} is bounded and

lim
n→∞

∥xn − T (tn)xn∥ = 0. (5.5)

Since {T (t)}t≥0 is a uniformly of Lipschitzian mappings with a bounded measurable function Lt. Then, we have

∥T (t)T (tn)xn − T (t)xn∥ ≤ Lt∥T (tn)xn − xn∥
≤ sup

t≥0
{Lt}∥T (tn)xn − xn∥ → 0 as n → ∞.

Since JE1
p is uniformly norm-to-norm continuous on bounded subsets of E1, then we also have

lim
n→∞

∥JE1
p (T (t)T(tn)xn)− JE1

p (T (t)xn)∥ = 0. (5.6)

For each t ≥ 0, we note that

∥JE1
p (xn)− JE1

p (T (t)xn)∥ ≤ ∥JE1
p (xn)− JE1

p (T (tn)xn)∥+ ∥JE1
p (T (tn)xn)− JE1

p (T (t)T (tn)xn)∥
∥JE1

p (T (t)T (tn)xn)− JE1
p (T (t)xn)∥

≤ ∥JE1
p (xn)− JE1

p (T (tn)xn)∥+ ∥JE1
p (T (t)T (tn)xn)− JE1

p (T (t)xn)∥
sup

x∈{xn}
∥JE1

p (T (tn)x)− JE1
p (T (t)T (tn)x)∥.

Since {T (t)}t≥0 is a u.a.r. Bregman relatively nonexpansive semigroup with limn→∞ tn = ∞, then from (5.5) and
(5.6), we get

lim
n→∞

∥JE1
p (xn)− JE1

p (T (t)xn)∥ = 0,

for all t ≥ 0. Since J
E∗

1
q is uniformly norm-to-norm continuous on bounded subsets of E∗

1 , we get

lim
n→∞

∥xn − T (t)xn∥ = 0.

This completes the proof. □

6 Numerical Example

We now give a numerical example of the Algorithm 3.1.

Example 6.1. Let E1 = E2 = l2(R), where l2(R) := {r = (r1, r2, . . . , ri, . . . ), ri ∈ R :
∑∞

i=1 |ri|2 < ∞}, ∥r∥2 =

(
∑∞

i=1 |ri|2)
1
2 , ∀r ∈ E1 and ⟨x, y⟩ :=

∑∞
i=1 xiyi . We define B1 : E1 → E1 and B2 : E2 → E2 be maximal monotone

operators such that B1x = 3x and B2x = 5x, respectively. Let T : E1 → E1 be defined by Tx = x
2 , ∀x ∈ E1 and

A : E1 → E2 is a bounded linear operator defined by Ax = 2x
3 ,∀x ∈ E1. We choose αn = 1

2n , βn = 2n−1
3n and un = 1

6n .
Furthermore, it can be verified that for λ1, λ2 ≥ 0,

NB1

λ1
x = (I + λ1B1)

−1x =
x

1 + 3λ1
, ∀x ∈ E1,

and
MB2

λ2
y = (I + λ2B2)

−1y =
y

1 + 5λ2
, ∀y ∈ E2.

Using MATLAB R2016(a), we now study the convergence behavior of Algorithm 3.1 at different initial values x1 and
different {ρn}. We plot the graphs of errors = ∥xn+1 − xn∥ against number of iterations with the following choices:
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Figure 1: Convergence of Algorithm 3.1 for different x1 and {ρn}
.

1. x1 = (6, 6
2 ,

6
3 , . . . ) and ρn = 3n

n+1 ,

2. x1 = (3, 3
2 , 1, . . . ) and ρn = 2n

n+1 ,

3. x1 = (−5, −5
2 , −5

3 , . . . ) and ρn = n
n+1 ,

4. x1 = (−2,−1, −2
3 , . . . ) and ρn = 0.5n

n+1 .

We observed that different choices of x1 have no large effect in terms of number of iterations for the convergence of
our Algorithm 3.1, also we see that sequences generated by our Algorithm 3.1 converges to 0 ∈ Γ ∩ F (T ). Moreover,
the number of iterations significantly decreasing from choice 1 to choice 4. The error plotting for each choices is shown
in Figure 1.
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