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Abstract

In this paper, we consider an initial-boundary problem for a wave equation containing nonlinear integral terms. By
the linear approximate method associated with the Faedo-Galerkin method, the existence and uniqueness of solutions
for the proposed problem are proved. Moreover, a high-order asymptotic expansion in a small parameter of the weak
solution is also discussed.
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1 Introduction

In this paper, we consider the following problem for a nonlinear wave equation with nonlinear integral terms

we g | (ot 1 oty ), 020 ) |

or
1 (1.1)
:f (xatvuauwauta/o g(m,y,t,u(y,t),um(y,t),ut(y,t))dy),
uz(0,t) — hou(0,t) = u(l,t) =0, t > 0, (1.2)
u(z,0) = do(x), u(z,0) =1u1(x), 0 <z <1, (1.3)

where u, o, f, g, g, 11 are given functions and hy > 0 is a given constant.

*Corresponding author
**Corresponding author
Email addresses: 1tmthanh@ntt.edu.vn (Le Thi Mai Thanh), nhannhi@huflit.edu.vn. (Nguyen Huu Nhan), ngoc1966@gmail.com

(Le Thi Phuong Ngoc)

Recetved: December 2021  Accepted: July 2022


http://dx.doi.org/10.22075/ijnaa.2022.25719.3106

410 Thanh, Nhan, Ngoc

The equation ([1.1]) can be considered as a generalized model of Kirchhoff-Carrier type equations that some specific
cases have been studied in the literature. Indeed, as o(z,y,t,u, u;) = u (x t, fo x,y, t,u( y,t),uw(y,t))dy) =

1 (||u$||2> and f =0, it becomes the Kirchhoff equation (see [5])

Eh [F
phug = <Po+ 2L/

for 0 < x < L, t > 0, where u = u(x,t) is the lateral displacement at the space coordinate x and time ¢, L is the
length of the string, h is the cross-section area, E is the Young modulus of the material, p is the mass density, and Fy
is the initial tension. The equation is an extension of the classical D’Alembert’s wave equation which describes
vibrations of a string under the effects that can make changes in length of the string. Another special case of

with o(z,y,t,u, uz) = u?, p (x,t, fol o(x,y,t,uly, t),um(y,t))dy) =u (||u\|2) and f = 0, is called the Carrier equation

[2] describing vibrations of an elastic string when changes in tension are not small

L
Ut — (PO + Pl/ Uz(yvt)dZJ) Vgax = 07 (15)
0

where Py, P; are constants. Afterward, the Kirchhoff-Carrier type equations have been extensively studied by many
authors, for example, we refer the reader to some previous studies as in [3], [], [6], [9], [11], [13], [19]-[2I] and the
references therein. In these works, numerous of interesting results about the local or global existence, the asymptotic
expansion, the decayed behavior and the blow-up property of solutions were obtained.

ou
?y(:% t)

2
dy> Ugg, (1.4)

In [3], Cavalcanti et.al. studied the existence of global solutions and exponential decay for the following nonlinear
problem

utt—M(/ |Vu|2dm> Au— Aug = f,in Q = Q x (0,00),
Q
u=0,on %) =T x (0,00),

(/ |VU| dx )-i— = (gg) =g, on Xy =TIy x (0,00), (1.6)

u(0) = uyo, (O) =y, in Q,

E

where  is a bounded domain in R (n > 2) with C? boundary I and M is a C! function, M(X\) > X\g > 0, VA > 0.

In [21], Triet et.al. used the linear approximate method associated with the Faedo-Galerkin method for proving
the local existence and uniqueness of solutions for the following Kirchhoff-Carrier wave equation

0
Wpp — P2 [,u(sc,uu, Hu||2 , ||um||2)um = f(z,t,u,uz,uy), 0 <z <1, t>0, (1.7)

where [|u(t)|® = / u? (z,t) dz. Furthermore, the (N + 1)*-order asymptotic expansion in small parameters of the

0
weak solution of the equation ([1.7)) has been considered.

Recently, some authors have paid attention to the studies of the initial-boundary value problems with nonlinear
integral terms, see [7], [8] and [I7]. In [8], Hao proved the general decay of solutions for the time varying-delay

viscoelastic equation with the nonlinear integral term [ VuVwu.dxr named Balakrishnan-Taylor damping
Q

Ut — (a +b||Vul® + 0/ VuVutdx) Au
Q
t
+a(t)/ gt — 8)Au(s)ds + pous + ur (2, — 7(£)) = 0, in Q x (0, +00),

u(z,t) = (5], on 99 x (0, +00), (1.8)
u(xz,0) = ug(x), u(z,0) =uq(z), in Q,
ut(x,t) = go(x,t), in @ x (—=7(0),0),
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where 2 is a bounded domain in R™ (n > 2) with sufficiently smooth boundary 9%, a, b, o, po, p1 are fixed positive
constants, g and f are given functions, 7(t) represents the time delay.

In [I6], the authors proved a local existence of solutions for the following strong damped wave equation with
nonlinear integral term (memory term)

0
et = Mzt = 5= [ (60l 1), @) s (O]
t

= [ ot =957 2 (o508 L) 91 s3] s (1.9)

= £ (2t g a1 e D)), 0 <2 < 1, 8> 0,

associated with Robin-Dirichlet boundary conditions and initial conditions, where A > 0 is a constant, 1, e, g, f are
given functions which satisfy some certain conditions. Moreover, the authors established an asymptotic expansion in

small parameter of solutions for the equation 1) perturbed by replacing f with f (;v, by g, ug, ()] [ue (t) ||2> +

efi (x,tu,um,ut, u®)]?, ||ux(t)H2> For more recent studies of Kirchhoff-Carrier type equation, we refer to the
results of asymptotic expansion of solutions for Kirchhoff-Love equation [21] and the results of existence, blow-up and
exponential decay estimates for Kirchhoff-Carrier wave equation in an annular [17].

Motivated by the above works, we consider the existence, uniqueness and asymptotic expansion of solutions for
the problem (L.1)-(1.3). The paper is organized as follows. In Section 2, we present some preliminaries. In Section 3,
by using the linear approximate method, the Faedo-Galerkin method and the arguments of compactness, we prove the
existence and uniqueness of weak solution for the problem —. In Section 4, we establish the (N + 1)*"-order
asymptotic expansion in a small parameter e for the solutions of the following perturbed problem

Upy — % (e [u)(z, t)uy) = folu](z,t), 0<z <1, 0<t<T, (1.10)

0
associated with (|1.2]) and (|L.3]), where

1

1
felu](z,t) = f (m,t,u,ux,ut,/ g[u}(z,y,t)dy) +efi (x,t,u, ux,ut,/ gﬂu](z,y,t)dy) ,

0 0

ety = (it [ ot 0) +n (2.8, [ i),

glul(@,y,t) = g(@,y, 1, u(y, 1), ue(y, 1), ue(y, ), (1.11)
giu)(z,y,t) = g1(z,y,t,u(y, 1), uz (v, ), ue(y, ),

olul(z,y,t) = o(z,y,t,u(y, 1), u(y,1)),

oru)(z,y,t) = o1(z,y, t,u(y, t), us (y,t)).

These results regard a relative generalization of [9], [11], [I3]-[16], [20].

2 Preliminaries

Put Q = (0,1) and denote the usual function spaces used in this paper by LP = LP(Q), H™ = H™ (). Let (-,-)
be either the scalar product in L? or the dual pairing of a continuous linear functional and an element of a function

space. The notation |-|| stands for the norm in L?, ||| is the norm in the Banach space X, and X' is the dual space
of X.

We denote by LP(0,7T; X), 1 < p < oo for the Banach space of real functions u : (0,7) — X measurable, such that

T 1/17
||uHLp(0,T;X) = (/0 lu(®)% dt) < oo, for 1 < p < oo,

and

[l oo (0.7:x) = €sssup [[u(t)]|x for p = oo.
0<t<T
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Let u(t), v'(t) = ue(t) = a(t), v (t) = up(t) = i(t), uy(t) = vult), uz(t) = Au(t), denote u(z,t), %(mt),

0%u ou 0%u .
el (z,1), e — (x, 1), o 2(1: t), respectively.
0 0 0 0
Wlthg € Ck<[071]2XR+XR3)7g = g(%y,t,zl,zz,zg),we put Dlg = 875'7 DQQ = 8757 Dgg = 87.?’ Di+3g = Ti?Wlth
i=1,2,3and D9 = D" ... D{g; 8= (Br,--- , Bs) €LY, |B] = Bi+ -+ Bs = k, DO Vg =g
o ou o

Similarly, with u = p(z,t, ), we also put Dypu = P2’ Do = T =y, D3pu= %

We shall use the following norm on H*

foll s = (ol + ) (21)

We put
V={veH" :v(1) =0}, (2.2)
a(u,v) = /0 Uy (2)vg (x)dz + hou(0)v(0), Yu,v € V. (2.3)

V is a closed subspace of H' and on V three norms |[v|| 51, [|lvz|| and [jv]|, = v/a(v,v) are equivalent norms.
Lemma 2.1. (see [I]) The imbedding H' — C°(Q) is compact and
[vllco@) < V2||v|| g1 for all v e HY, (2.4)

where ||v]|coq) = sup v(z)]-
x )

Lemma 2.2. Let hg > 0. The imbedding V — C°(Q) is compact and

[0llgogay < llvall < lvll,

2.5
5 ol < el < ol < VIFFg ol 29)

forallveV.

Lemma 2.3. Let hg > 0. There is an orthonormal base {1;}32, in L? that contains eigenvectors of —A operator
corresponding to eigenvalues {\;}52,, and satisfies ;4 (0) — how;(0) = w;(1) = 0 and

i=1
O</\1S)\2SS)\]§, hm /\]=—|—OO
j—+oo (2.6)
a(w;, v) =X (W, v) forallveV, j=1,2,---

Moreover, {10;/\/A;j}52, is also an orthonormal base of V with respect to the symmetric bilinear form a(-,-) defined

by (2.9).

The proof of Lemma 2.3 can be found in [[I8]; Theorem 7.7, page 87|, with H = L? and V, a(-,-) as defined by
(2-9). (2-9).

Definition 2.4. A weak solution of the initial-boundary value problem — is a function u € W = {u €
L0, T; VN H?) v € L®0,T; V), u" € L>(0,T; L?)}, and satisfies the following variational equation

(u"(t), w) + Al (t;u(t), w) = (f[ul(t),w), (2.7)
for all w eV, ae., t € (0,T), together with initial conditions

U(O) = 17,0, U/(O) = ’1117 (28)
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where, for each w € W, {A[w](t; -, ) Yo<i<r s a family of symmetric bilinear forms on V- x V  defined by
Alw](t;u,v) = (pw] (@) ug, vo) + hop[w](0,1)u(0)v(0), Yu,v € V, 0 <t < T, (2.9)
with hg > 0 1is a given constant, and
1
plilent) = e (ot [ olulemntian). (210)
0
olwl(z,y,t) = oz, y,t, w(y, t), ws(y, 1)),
1
flal(at) = 1 (.t [ alulto0y).
0

g[u](a?,y,t) = g(xayatvu(yvt)7uﬂc(y7t)v ut(y’t))'

3 Existence and uniqueness

In order to study the existence and uniqueness of weak solution of the problem (|L.1))-(1.3), we make the following
assumptions:

(H1) (Go,1) € (VN H?) x V satisfy @, (0) — hotio(0) = 0;

(Hz) g€C([0,1? xRy x R?);

(H3) o€ C?([0,1]2 x Ry x R?);

(H) feC\ (0.1 xRy x RY;

(Hs) p € C?(]0,1] x Ry x R) and there is a constant po > 0 such that

w(x,t,z) > po, for all (z,t,2) € [0,1] x Ry x R;

Fix T* > 0. For each M > 0 given, we put Hy(0), Har(g), Kar(p), Kar(f) as follows

KM(M) = Z RO(M’Dauva)v
la|<2

6
Kn(f) = Ko(M, f,9) + Y _ Ko(M, Dif, g),

) . = (3.1)
Hy (o) = Y Hy(M,D%0),
la|<2
6
H]W(g) = HO(Ma g) + ZHO(M7 Dig)7
=1
where _
HO(M7U) = sup |U(xay7tvylay2)|a
(z,y,t,y1,92) €A1 (M)
HO(M7g) = sup |g('ray7tazlaz27z3)|7
(z,y,t,21,22,23)EAs (M)
~O(‘Z\4MU/7O-) = sup ‘,U/((E,t,Z)L
(z,t,2)EA3(M)
KO(M;f;g): sup |f($7t,’l)1,’l)2,’l)37’04>‘,
(@,t,v1,v2,v3,v4)EA4(g,M) (3.2)
A (M) = {(2,t,y,91,92) : 0 <y <z < 1,0 <t <T%, max |y;| < M},
AQ(M) = {(1’7t7y321722323) :0 S Yy S X S 13 0 S t S T*_a 1_H<la<Xs|Z’L| S M}a
Az(o, M) ={(z,t,2) : 0< 2 <1,0<t <T*, |2| < Hy(M, o)},
A4(97M) = {(x,t,Ul,’UQ,’Ug,'U4) :0 S x S 13 0 S t S T*’ 1f2?i<x3 ‘vl| S M? ‘,U4| S HO(Mvg)}

For each T € (0,7*] and M > 0, we put

W(M,T)={veL*0,T;VAH?:v € L®0,T;V), vy € L*(Qr),
with [[0]l e 0,7 vnmey s 10l peorvy s 0ttll 2@y < M}, (3.3)
Wi(M,T) ={ve W(M,T): vy € L>(0,T; L?)},
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in which Q7 = Q x (0,T).
Now, we shall establish a recurrent sequence {u,,} that the first term wg is chosen by ug = 49, and suppose that

Um—1 € W1(M, T) (34)

Then, we find u,, € W1(M,T) (m > 1) satisfying the linear variational problem

(ulh (£),0) + A (t; um (), v) = (Fin(t),v), Yo €V, (3.5)

where
A (t;u,0) = Altm—1](t; 1, v) = (m (£) g, V) + hopm (0, 8)u(0)v(0), Yu, v €V, (3.6)
fim (2, 1) = (xata/ol U[Uml](%yat)dy> :
olum—1](z,y,t) = o(@,y,t, um-1(y, 1), Vim-1(y, t)),
Fo(z,t)=f <x7t, um1,Vum1,u;n_1,/olg[um1](x,y,t)dy> ,
glum—1](,y,t) = g(@, Y, t, um—1(y, 1), Vum—1(y, £), w1 (1))

Theorem 3.1. Suppose that (Hy) — (Hs) hold. Then, there are positive constants M, T such that there exists the

recurrent sequence {un,}+ defined by (3.4)-(3.6]).

Proof . The proof Theorem 3.1 consists of several steps as follows.

Step 1. Faedo—Galerkin approzimation (see Lions [10]). The Galerkin approximate solution of the problem (3.4)-
(3.6) is found in form

where cfjf; (t) satisfies the following system of linear differential equations

it (£, w3) + A (850 (1), 05) = (Fa(8),05) 1 <5 < b, 58)
uln) (0) = @k, @i (0) = @,
where
Uop = Z?:l a;k)wj — 1o strongly in V N H?, (3.9)
Uy = 25:1 ﬂ](k)wj — 17 strongly in V. )
The system (3.8]) can be rewritten in form
(k k m k
g (1) + iy AL (063 (1) = Fong (1) (3.10)
)~ a® o) = g0 | < i<k :
em (0) aj7cmj() B;7, 1< j<k,
where
ATV () = Ap(twi,w05), Fog(t) = (Fu(t),w;), 1< 4,5 < k. (3.11)

By using the arguments of ordinary differential equation theory, we can easily prove that the system (3.10))-(3.11)
. . (k) .
has a unique solution ¢,,;(t), 1 < j < k on [0, T].
Step 2. A priori estimates.

First, we need the following lemma such that its proof is easy, hence we omit the details.
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Lemma 3.2. Put p* = Ky (p) [1+ (1+2M)Hp(0)], we get that

(1) | Ay (;u,0)| < Kag(p) llull, lvll, for all u,v eV, 0 <t <T*,
(i)  An(t;v,v) > uo ||11||i forallveV,0<t<T*

A
(uit) a@t (t;u,v) = (u;n(t)um,vr> + hopn, (0,1)u(0)v(0), for all u,v €V,
w %t,vv < p*lv forallveV,OgtST*,

ot

d k K k (k 0A, k

(0)  ZAn(tul) (O, ui) (1) = 240 (6 ule) (0, i) () + =5 (4 i)
Next, we put
S (1) = X (1) + / H (5 (5 H
where

Xﬁ,?(t):H'““)()H A (10 (1), i (1),
- 4 2ol

Then, it follows from (3.8), (3.12) (i), (), , (3-14), that

Sv(rlf)(t) = S(k)( ) + 2<Um£(0)a0kma A'(7'OI~3> + 2<F ( ) Aﬂ()k)

/ ds/ fim (, 8)| AulP) (2, s)\zdx+/ agg(s;ugf)(s),u%)(s))ds
s

+2 / (= [rma (5815|508 (5)) s = 2t (OuE (1), Sl (1)

+2/0t<F (s),a¥) (s )>ds+2/t<F/ (s), Aul) (s))ds

B (1), AP (1) /Hu(k) )|[2ds
8
= S(0) + 2 (ptna (0)lona, Adior) + 2(Fpn(0), Adior) + > 1.
j=1

We shall estimate I, j =1,...,8 on the right-hand side of (3.15) as follows.
First term I;. We note that

1 6J[um 1]

forn (2, ) = Dopi[tum—1] + DS/‘[umfl]/ Ti(xvyat)dyv

0

where

1
Diu[umfl] - DZM ($7t7/ U(xayatu Um—l(y,t)y vuml(yat))dy) ) 1= 1u 2737
0

8a[um,1]
ot
Dia[umfl](mvyat) = Dia(x,ynf, umfl(yﬂf)v Vumfl(yvt))a i= 13 T 75‘

Then, by (3.1)), (3.2)) and (3.16)), we obtain

|t (2, £)] < "

Hence

t 1 * t
L :/ ds/ wh (x, s)| AulP) (z, 5)2de < M—/ Sk (s)ds
0 0 Ho Jo

(xvyat) = DSJ[Umfl] =+ D40[um71]u;n—1(yvt) + D50[Um,1]vuin_1(y,t),

415

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Second term Is. By Lemma 3.2 (i7) and (iv), we have

t aA t ‘LL* t
il = | [ 25z o enas| < [ o Sas < [ s (319)
0 88 0 /’(‘0 0
Third term I3. By using Cauchy - Schwartz inequality, we get that
t
I —2/ < ma( (k)s ,Auﬁ,’f)s>ds §—/J,§f)s S,(qf)sds, 3.20
5l 2] e )5 0)] 2l (o)) s < [0 ()50 (3.20)
where J(k H umz( )ugf;( )] ’ By the fact that S(k) > H (k) H + Hu,(ffg)g ‘ we have
(k) 0 (k)
(s = | 5= [Hma(£)u2(5)] (3.21)
(k) (k)
< oo (5)low @y || S22 ]|+ e ()1 [ 2]y

< (uum<s>ca<m + \/: ||um<s>||) SW(s).

Ot
On the other hand, by pe —(z,t) = Dipt[tim—1] + Dap[tir,—1 / Dyolum—1](z,y,t)dy, it implies that

1 (3)l cogy < K () (14 Hu(0)) - (3.22)

Similarly, by the following equality

ps(.0) = 5 | 2 0.t)]

1
0o Uy —
= Do Dy piftbn—1] + D3D1H[Um—1]/ M(% y,t)dy

. ot

1 o - 1
+(D2D3u[um_11+D§u[um_11 / "“gt%,y,t)dy) | Dot i1ty
0 0

1 0D 0 [um—1] 00 U —1]
+D3/,L[Um_1]/0 T(xayat)d:% T(xayat)
:D3U[um*1](xvy7 )+D4J[um 1](.’E Y, ) Uy, 1(y7 )
oD —
+ Daolul(w, 090, (5,0 P2y

:D?)Dla[um—l](xvya )+D4D10’[Um 1]($ yat) m 1(y7t)
+D5D10[um71](x7ya )vumfl(ya )7

hence, we obtain

1
inma ()] < Bnt (1) [1 t Ha(o) / (14 [y D] + [V D) dy} (3.23)

1
+ R (o) |14 Hu0) [ (14 20 + [ 92 0] ]

1
+ Bne () B (0) / (1 + ([t (&) + |Vt (D)]) dy

< Kn(p) [L+2(1+ M)Hy (o) +2(1 + 2M)H3 (o) ] -

By (3-22) and (3.23), it follows from ([3.21)) that

TP (s) < (M) S5 (s), (3.24)
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where

(M) = Ka(p) (1 + Hy (o) + \/z [1+2(1+ M)Hpy (o) +2(1 +2M)H3/ (o) ]> : (3.25)
Therefore, we derive from (3.19) and - ) that
I3 < 7@ / Sk (s (3.26)
Fourth term I4. Using Cauchy - Schwartz inequality again, we have

131 = |-20ms (00, 2P 0] < 5 e 0] + 2 5000, (3.27)

for all 8 > 0. On the other hand, it follows from (3.24)) that

t
. 0
HUmx (k)( )H H#mx(O)VUOk +/ 35 [umx(s)usﬁ(s)} ds (3.28)
0 S
t
< e Oy [Vl + [ 78 (5)s
t
< e Oy ¥l + G 01) [ /518 (5)as
Hence, we deduce from and - that
|u\s;%sﬁ%w—+gnuma e Vol + 5T¢ 01 /‘sk ds. (3.20)
Fifth term I5.
t t
s =2| [ (Fu(o), i) (s)as| < TR () + [ 58 (s)ds, (3:30)
0 0
Siath term Ig. Using Cauchy - Schwartz inequality, we have
t t 1 t
Iy = ‘2/ (F! (5), Aul® (s))ds| < / IE ()] ds + 7/ S (s)ds. (3.31)
0 0 Ho Jo
Note that
Fr/n( ) DQf[um 1] +D3f[um 1] Uy —1 +D4f[um 1] Vu, Uy —1 +D5f[u'm 1]um 1
Ogluy,—
+ Dusfun ). [ )y
0
89[“””_1] _ D D
T(%y,t) = Dsglum—1](x,y,t) + Dagltm—1](z,y, t)us,, 1(y,1)
+ Dsglum—1](z,y,t)Vuy, 1 (y,t) + Deglum—1](x,y, t)uy, 1 (y,t),
hence we get that
[ F (O = Knr(f) (14 3M) [1+ Har(g)] - (3.32)
Then, we deduece from ([3.31)) and ( - that
1 t
[Is) < TK3,(f) (14 3M)*[1+ Hp(g)]” + /7/ S (s)ds. (3.33)
0 Jo
Seventh term I;.We have
1 2
|n_y- (1), 8 0)] < FIER@IP + 6 [ 2ul (0| (3.34)

<2 (1o +T/ IF eI ds) + 25

= 2 (1B ) + TR, (1) (14 30 [1 4 Hyr(a)]?) + 2

Ho

Q\MQ\M

Sk (1), for all B> 0.
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Eighth term Ig. We note that the equation (3.8)); can be rewritten as follows

(19005 = (55 (1 0020) 03 ) = P00 1 < 5 < k. (3.35)
After replacing w; with i’ () and integrating, we get that
= s>H2d8<2/t 2 ()t () 2ds+2/0t||Fm<s>|2ds (3.36)
<2 [ 2 (mtnpo) | as2rmzin
By (23), we have
|55 (1ot ))H2 < ([pmetsuio)] + Hum<s>Au£’i><s>H)2 (3.37)

< 2B () (1+ Kua () (1+ ﬁM@f) (Hum(s)u + Hmaugfp(s)\f)

< 2B () (1+ Karle) (1+ Aui(0))°) (1 + “0) S (s).

Therefore, we deduce from (3.36)) and - ) that

Is <2TKZ(M, f) + (o (M) /t S (5)ds, (3.38)
0
where .
() = 4R (FE) [1+ Raa) (14 )] (3.39)

Choosing 8 > 0, with Qﬂ < 1, it follows from (]3.15[), 43.18[) - 43.20[), 43.26[), 43.29[) - 43.30[), (]333[) - 43.34[) and

(3:38), that

B

t
+él(M,T)/ Sk (s)ds
0

Sty < ¢ + 21 [K?w(f) (1 +2 (1+3M)% (1 + HM(g))2) + K2(M, f)} (3.40)

where
C =P, o, f7g,uOk,u1k> = 25U(0) + 4 (e (0)iioka Adiok) (3.41)
. N 4
o+ A Fn(0), Aion) + Humm)\léo@ [ Vaok||* + 7 1 (0]

14 2p*

202 2
+ﬁT(l(M)+\//TOC1(M)+C2(M) .

Due to the convergences given in (3.9)), there is a constant M > 0 independent of k and m such that

Ci(M,T) =2 {1+

~ . 1
Cék)(uva, [+, ok, k) < §M2- (3.42)
So, from ([3.40)) and (3.42)), we can choose T € (0, T*] such that

BMQ + 2T (K?M(f) (1 42

G0 3M)% (1 + HM(g))2> + K2(M, f))] exp (TCH(M, T)) < M?, (3.43)
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and

kr = 2VT (1 + \/}) J MR (1) H(0) (14 V2@ + Har(0)) + K2(f) (14 Har())? (3.44)

2 *
X exp {T <’u0+ﬂ>} < 1.
210
Finally, it follows from (3.40)), (3.42) and (3.43) that

SW(t) < M2 exp (~TCL(M,T)) + C1 (M, T) / 509 ()ds. (3.45)
0

By using Gronwall’s Lemma, we deduce from (3.45) that
SM (1) < M exp (—Tél(M, T)) exp (tC’l(M, T)) < M2, (3.46)
for all t € [0, 77, for all m and k. Therefore, we have

u™ € W(M,T), for all m and k. (3.47)

Step 3. Limiting process. By 1) there is a subsequence of {ug,]f)} which is denoted by the same symbol such
that

) in  L°(0,T;V N H?) weak*,

(k) = Uy in  L*(0,T;V) weak*, (3.48)
ugn) — AUy, in  L?(Qr) weak, .
U € W(M,T).

By taking the limitations in , we have u,, satlsfymg and in L2(0

On the other hand, it follows from 1 and ( 4 that !, = a% (o (t)u mz) + F,, € L>*(0,T;L?), hence
U, € W1 (M, T). Theorem 3.1 is proved completely

Using Theorem 3.1 and the arguments of compactness, we shall prove the existence and uniqueness of weak solution
for the problem (|1.1))-(1.3) which is obtained in the following theorem.

Theorem 3.3. Let (Hy) — (Hs) hold. The recurrent sequence {u,,} defined by (3.4)-([3.5) converges strongly in
Wi(T) = {v € L>®(0,T;V) :v' € L*°(0,T; L*)}, (3.49)
to a function u that is a unique weak solution of the problem —. Furthermore, we have the following estimate
um = ully, 7y < Crky, for all m €N, (3.50)

where kp € [0,1) is defined by (3.44) and Cr is a constant depending only on T, ho, f, g, 1, 0, Uo, U1 and kr.

Proof . (a) Existence of solution. First, we note that W1 (T') is a Banach space with the corresponding norm (see
Lions [10]).
||UHW1(T) = ||UHLoo(o,T;V) + HU/”LOO(O,T;L?) : (3.51)

We shall prove that {u,,} is a Cauchy sequence in W1(T'). Let wy,, = %41 — Up,. Then w, satisfies the variational

problem
(0, 10) + Apri (b (8), ) = — A (6t (8 ) + A (8, )
F(Fna(8) = Fn(t),), Yo € 7, (3:52)
W (0) =w!,(0) =0
Note that
O A (b (8), 0 (1) = 24 8 0 (8, w0 () + L (1), 1),

0 (3.53)

A1 (8 tm (8), w3 (1)) = A (8 (8), win (1)) = =  F- (2 () = pn(8)) e (1)) aw,’n(t)> :
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Taking w = w), in (3.52), after integrating in ¢, we get

Zut) = [ 22 s s+ 2 [ <a‘1[(um+1<s>—um<s>>um<s>l,w;n<s>>ds

t
Lo / (Fonsr(8) — Fn(s), uly (5)) ds
0
=J1 + Jo + Js,

where ) )
Zon (1) = W}y, (DI + A1 (8 win (), win (£)) = ), (D7 + oo [[wm (B2 -

Next, we estimate the integrals on the right-hand side of (3.54) as follows.
First integral Jy. By (3.12);,y and (3.55)), we have

|‘]1| </ ‘aAm+1 S, Wm 5>7wM(S))

* t
ds < N Zm(s)ds.
0

Ho

Second integral Jo. By the following inequalities

[Aum ()| < um ()]l 2 < M,
uma(8)llco@y < V2 [[tna ()] 1 € V2 [t (8)[| 2 < V2M,

1Dl ()| oy < Knr(p), i=1, 3,

D10 [um](8)llco(qy < Hn (o),

lttm11(5) = s (8) [l oy < 2K 0 () Har (0) [ Vw1 (5)]| < 2K a0 () Har (0) w1 llw, (1) »
I Dipslum)(s) = Diptlum—1)(s)ll ooy < 2Knr (1) Har (0) [wm—1llyy, 7y i =1, 3,

1D1g[um](s) = Drgltm—1](s) ooy < 2Hn(0) [wm-llw, (r)

and the equality

a% [(mt1(8) = pm () Vi (5)] = (pnt1(s) = pm(s) ) Aum(s) + (Drps[um](s) = Diplum—1](s) ) tima (s)

+ |(Daslunl(s) = Daplt / D (e, ] s o)

+ [Dgu[um_ﬂ(s) / (Drglttm] — Drgliim 1] >dy} ma(5),

we obtain that
Haax [(mt1(s) = pm (s)) Vi (s)]

< 20 R () (0) [14 VR + Hua () ] s
This implies that

a1 <2 [ (52 [ 12(6) = () T 6] () ) s

-~ _ _ 2 t
ATV (0B (0) [1 4+ VB + Hr(0)) | Nomorlfysry + [ Zn(o)ds,
0
Third integral Js.

T <2 ] [ Ba(s) = o) i) ds

< 2/ 1 s1(5) — Fon(5)]| ) (5)]] ds

< / | Fir(5) — Fonls) 2 ds + / e (s)? ds.

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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By (H3) and (Hy), we have
[Fmr1(t) = Fn (Ol < Kar(f) (lwm—1 O] + Vw1 (8)]| + |Jwr,—1 (8)]]) (3.62)
1
+ KM(f)HM(Q)/O (Jwm—1(y, )] + [Vwm—1(y,t)] + |w},_1 (y, 1)]) dy

< Ku(f) 2IVwm-1 ()l + [Jwh, s (0)]]) + Kar (/) Har(9) (2 [IVwn—1 (0[] + [Jwr, 1 (1)]])
< 2Km(f) (14 Har(9)) lwm—1llw, (r) -

Hence .
/0 | Fs1(5) = Fn(s)|ds < ATK2 (F)[1 + Hag (@) [wm1 I, - (3.63)

Then, we deduce from (3.61)) and (3.63)) that

9l < AT DL+ @) s s + | Zus)s. (3.64)

Combining (3.54), (3.56)), (3.60) and (3.64)), we obtain

Z0(0) AT VPR (0B (0) (14 VA + Harlo))) ' + K31 (14 Har (@) Iy, o (3.65)

2 * t
4 2ot / Zon(3)ds.
Ho 0

By using Gronwall’s lemma, we derive from ([3.65|) that

where kp € (0,1) is defined as in (3.44).
The estimate ((3.66]) implies that

[t — uerp”Wl(T) < luo — U1||W1(T) (1= kr) "'k, ¥m,p € N. (3.67)

This follows that {u,,} is a Cauchy sequence in Wi (T'). Then, there exists u € W1(T) such that

U, — u strongly in Wi (T). (3.68)

Due to u,, € Wi(M,T'), then there exists a subsequence {t,, } of {u,,} such that

u;nj — u/ in L*(0,T;V N HZ)*Weak*,
Gy LT e oo
ueW(M,T).
We also note that
i (,2) — il )] < 2Brg (1) Fng(0) i1 — il oy » e (21) € Q- (3.70)
Hence, from and (.70, we obtain
L — p[u] strongly in L=°(Qr), (3.71)

On the other hand, for all v € V, we have

At 10,0) — A8, 0)] < (U o) Kar () [2B00(0)M b1 — s oy + i — wllyy | el (3.72)



422 Thanh, Nhan, Ngoc

Hence T
/0 (A (£ 1y ©) — Al (630, 0)) $(t)dt — 0, Vo € V, Yo € LV (0,T). (3.73)
Moreover, we aslo have
1 (8) = FLul ()| Lo 0,722y < 2EK0(f) (14 Har(9) tm—1 = wllyw, 1y - (3.74)
Therefore, it implies from and that
Fou(t) — flu](t) strong in L*°(0,T; L?). (3.75)

Finally, taking the limitaions in (3.5)—(3.6) as m = m; — oo, it implies from (3.68), (3.69)1,3, (3.73) and (3.75)
that there exists v € W (M, T) satisfying

<u”(t)’ w> + A[u} (t; u(t)’ w) = <f[u](t)7 w) ) (3'76)

for all w € V and
u(0) = g, v'(0) = u;. (3.77)
On the other hand, by the assumptions (Hy) — (Hs), we obtain from (3.69)4, (3.75) and (3.76) that

_9
T Oz

"

(ulu)(tyue) + flul(t) € L*(0,T; L?). (3.78)

Thus, we have u € W1 (M, T). Then, the existence of solution is confirmed.

(b) Uniqueness of solution.

Let uy, us € W1 (M, T) be two weak solutions of (1.1]) - (1.3). Then u = uy — uy satisfies the following variational
problem

(W’ (t), w) + Afur](t; u(t), w) = —Afur](t; ua(t), w) + Alus](t; us(t), w) + (Fi(t) — Fa(t),w), Vw € V,
u(0) =/(0) =0, (3.79)

where

Al | (8w, w) = (pfwi](t)ug, we) + hoplw;] (0, t)u(0)w(0), u, w eV, (3.80)
1
N[ul](z,t) =K <I‘,t,/0 U(‘Tay7t7ui(y7t)7vui(y,t)dy)> 5 1= 1723
1
Fl(z’t) = f[Uz](JZ,t) = f <I‘,t, uiavuiauia/or g[ul](x,y,t)dy> y L= 1727
g[ui](xa y,t) =9 (iC,y,t, ui(yat)v Vui(y,t)vu;(yat)) ) 1= 17 2.

Taking w = v’ in (3.79); and integrating in ¢, we get

20 = [ 2 st ueas 2 [ (- 1udnl(s) - w6 Tua(s)] () ) s (3.51)

ot
+ 2/0 (F1(s) — Fa(s),u'(s)) ds,
where Z(t) = |[u’ (t)||> + Afu](t;u(t), u(t)).

By making similarly the above estimates, we derive from (3.81)) that

2(t) < Zug / " Z(s)ds. (3.82)
0

s R (0 E (o 7 (o L

Finally, using Gronwall’s lemma, we deduce from (3.82)) that Z(t) = 0, i.e., u3 = ug. Therefore, Theorem 3.3 is
proved completely. [
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4 Asymptotic expansion of solution

In this section, we suppose that (H;) — (Hs) hold. In order to establish an asymptotic expansion of weak solution
of perturbed problem in a small parameter, we need the following additional assumptions:

(He) freCY[0,1] xRy x RY), g1 € C*([0,1]* x Ry x R?);

(H7) p1 € C%([0,1] x Ry x R), oy € C2([0,1]% x Ry x R?)
and pq(z,t,2) >0, V(z,t,2) € [0,1] x Ry x R.

Then, we consider the following perturbed problem in a small parameter

gy — a% [nelu] (2, )] = folu(w,8), 0 <z < 1,0 <t < T,
(P.){ uz(0,t) — hou(0,t) = u(l,t) =0,
u(z,0) = to(x), u(z,0) =t (z),

[ <x (2, )dy> +em (w,t,/ol 01[U](w,y,t)dy) :
f <x tou uz,ut, Olg[u](x,y,t)dy> +efy <x,t,u,uz,ut,/olgl[u](x,y,t)dy> ,
gilul(@,y,1) = g1(,y,t,u(y, t), uz(y, 1), ue(y, ),

o1 [ul(z, ): o1(z, Yt u(y, t), ua(y, t)).

where

We note that, by Theorem 3.3, (P.) has a unique weak solution u. depending on ¢, satisfying u. € W1 (M,T), in
which M, T are independent of ¢, these constants are chosen as in (3.38)), (3.40) and (]3 41), with Kpr(f) + Kar(f1),
Kun(p) 4+ K (), Hy(g) + HM(gl) Hyr(0) + Hy(o1) stand for Kar(f), Kar(p), Har(g9), Har(o) respectively.

Moreover, we can prove that the limitation g in suitable function spaces of the family {u.} as ¢ — 0 is a unique
weak solution of the problem (P,) (corresponding to ¢ = 0) also satisfying ug € W1 (M, T).

In what follows, we shall study the asymptotic expansion of the solution of the problem (P.) with respect to a
small parameter e.

For a multi-index o = (a1, -+ ,an) € ZY, and . = (21, -+ ,2n) € RY, we put
ol =a1 4+ - +an, al=a!l --an!,
a, BELY, a<pf<= o <p; Vi=1,--- N,

o — Otl... anN
% = 1] ANA

First, we need the following lemma.

Lemma 4.1. Let m, N € N and z = (x1,--- ,2n) € RV, e € R. Then
N _ MmN
(Z xe) =" PN, )", (4.1)
=1 k=m
where the coefficients P,gm) [N,z], m < k <mN depending on x = (x1,--- ,xn) defined by the formulas
Uk, 1<kE<N,m=1,
PUIN 2] — m!
eV, x] = > R m<k<mN,m>2,
acA™ (N) T (4.2)

N
Aim)(N) ={aeZ¥ :|a| =m, Ziai =k}.
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The proof of Lemma 4.1 is easy, hence we omit the details. [J

Now, we assume that

(Hg) feCON*I([0,1] x Ry xR4) € CNHL([0,1] x Ry x RY),
g € CNTH([0,1] x Ry x R*), 91 € ONT1([0,1] x Ry x RY);

(Hg) IS CN+2([O7 1] X R'i‘ X R)’ M€ CN+1([ 71] X R+ X R)a
> o >0and g >0, for all (z,t,2) € [0,1] x Ry x R,
o€ CN*2([0,1]% x Ry x R?), o1 € ONFL([0,1)* x Ry x R?).

For simplicity in presentation, we use the following notations

(o) = (. | 1 olul(a, 00y

e = 1 (i, | 1g[u1<x,y,t>dy) ,

glul (. ) = 9.y, £ uly, D)t (9, £), (1)),
olu)(z,y,t) = o(z,y,t,u(y,t), us(y,t)).

Let ug be a unique weak solution of the problem (P,) corresponding to € = 0, i.e.,
0

uy — P2 (ufuo)ugz) = flugl, 0 <z <1,0<t < T,

qu(O, t) — hoUO(O, t) = UQ(l, t) = 0,

uo(x,0) = ug(z), uy(x,0) = 41 (z),

ug € W1 (M, T)

(Fo)

Let us consider the sequence of the weak solutions ug, 1 < k < N, defined by the following problems:

ug_%(ﬂ[uo]um): o) 0<2<1,0<t<T,
gz (0,t) — hour(0,t) = ug(1,¢t) =0,

ug(z,0) = uj(z,0) =0,

ug € Wi(M,T),

where Fj, [ug], 1 < k < N, are defined by

B f[uo]a k= 0,
Fy lug] = k9
k[ k] Trk[Nafﬂg]+7Tk—1[N_17f1agl] Z87[(pi[Nauvo-]+pi—1[N_la,uho-l})vuk—i}a 1SkSN7
(4.3)
with 7 [N, f, g] and pi [N, p, o] are respectively defined by
f[u()} k= Oa
o/ NS =9 S 1D fugl@ul, Nogouos@l, 1<k <N, (44
=1
where @ = (ug,--- ,uy) and
o N 7 — P('Yl) N HP('Y?) N VHP(’YS) N —/ P('Y4) N.RIN e 4.5
k[’Y, agvaJOvu} k1 [ 7U] ko [ ) u] k3 [ au] k4 [ 7”[ agvu07u]]a ( . )
(k1,k2,k3,ks)EA(y,N)
ki+kot+ks+ki=k
with
A('%N) = {(klﬂ e ak4) € Zi iy < ki < N’Yia Vi = 172a3a4}v (46)

y=(,,m) €ZL, 1< |y] <N,



On a wave equation containing nonlinear integral terms 425

—

and E[N,Q,UO,J} = (R}l[N7g,UO,U], : 7RN[N7Q,U0,'II]) is defined by

. I .
alVogunid = 3 5 [ Dgluwalp N s, (4.7)
1<|pl<k 70
U8, N, ] = 3 PPN, @ PP N, va PPN, ),
(k1,k2,k3)€A(B,N),
k1+ka+ksz=k

A(B,N) = {(k1, ko, k3) € Z2 : B; < ky < NB;, Vi=1,2,3}.

N[UO]v k= O,
_ k ,
b/ Pi [N7M’0-] N Z ‘%D]M[UO]?RIG[L N7 g, uOuﬁL 1 S k S Na (48)
j=1
where
%k[j7N70—7u0aﬁ] :Pé])[N,%[N7J7UO,ﬁ]] (49)
Xk[N70-7u(_)|7ﬁ}v J: )
=y ¥ L¥Nowa, j<k<iNj>2
aeAd (N) "
with X[N, o, ug, 4] = (x1[N, 0, ug, @], - , XN[N, 0, up, @] ) is defined by
1
Xk[N7Ua UQ,?I} = Z % DﬁU[UO]‘i’k[@Nvﬁ]dya 1 S k S Na
1<[gl<k T Jo
&, [, N, ] = Z PPYIN, @ PPN, Vi, (4.10)
(1,5)€B(B,N),
itj=k
B(B,N)={(i,j) € Z% : p1 <i < NPy, B2 < j < NBa}.

Then, we have the following theorem.

Theorem 4.2. Let (Hy), (Hg) and (Hy) hold. Then there are positive constants M and T such that, for every
0 < e < 1, the problem (P.) has a unique weak solution u. € W1(M,T) satisfying an asymptotic expansion up to
(N + 1)t order as follows

< CT€N+1, (4.11)
Wi(T)

N
Ueg — E ukak
k=0

where u, 0 < k < N are the weak solutions of the problems (FPp), (pk), 1 < k < N, respectively, and Cr is a constant
dependmg Only on N7 T7 M, H1, 0, 01, f7 f17 g9, 91, Uk, 0<k<N.

In order to prove Theorem 4.2, we need the following Lemmas.

Lemma 4.3. Let 7y [N, f,g], pr [N,u,0], 1 <k < N, be the functions are defined by the formulas (4.4), (4.8). Put

N
h= Zuksk, then we have
k=0
N
f[h} = Z Tk [Na fa g} {_:k + €N+1RS\}) [fa g, uo, ’Ja 5]7 (412)
k=0
N
ulh] =" pi [N, 0] €8 + eNHLRY 11, 0, w0, 1 ],
k=0
with "Rs\l,)[f,g,uo,ﬁ, E]HLOO(O,T;B) + Héﬁ) [, 0, w0, T, 6]”Lw(07T;L2) < C, where C is a constant depending only on N,

T7 w, p1, 0, Ulvf) f17 g, glaukvongN
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Proof . In the case of N = 1, the proof of (4.12) is easy, hence we omit the details. We shall prove (4.12)) in the case
N

N > 2. Putting h = ug + Zukak = ug + h1, we have
k=1

fiH =1 (x,t,h@c,t), bt t). (o), | g(x,t,y,h(y,t),hw<y,t>,ht<y,t>>dy) (1.13)

1
= f <$,t,uo +h17vu0 +Vh1au6 +h/1a/ g[U'O](xay7t)dy+£> )
0

glh)(@,y,t) = g(@, t,y, h(y, ), ha(y, 1), hu(y, 1)),
1
where € = [ (glua + ]z, 3. )y — gluo](2,3.1)) d.
0
1
By using Taylor’s expansion of the function f (:E,t,uo + h1,Vug + Vhy, uy + h’l,/ gluo](x,y, t)dy + 5) around
0

1
the point [ug] = (z,t,uo,Vuo,u’O,/ g[ud(x,y,t)dy) up to (N + 1)** order, we obtain
0

1
flhl=f (l‘,t,uO + h1, Vug + Vhy, uj + h’p/ glugl(z,y,t)dy +§> (4.14)
0
— fludl+ Y D7 Sl (V) ()9 + Rlf, o, ha, €,
1<]ylgN
where
1
Rylfounhn €)= 3 ST () [ (1= 0N DS (0,1,6)do (4.15)
[v[=N+1 ' 0

= 5N+1R§\17)[f7 uo, h17535]7

v=0, ) €24, W= 4y, =ml-al, DVf = Dy D DD f,
1
D7 flug) = D™ f (%taUO(%t),Vuo(%t),%(w,t%/ g[uo](%y,f)dy) : (4.16)
0
1
DV f(x,t,0) =D"f (m,t, up + Oh1, Vug + 0Vhy, uj + 9h’17/ gluo](x,y, t)dy + 9§> .
0

Using the formula (4.1]), we have

N n Ny
Rt = (Zuk5k> = Z P,gvl)[N,ﬂ']ek, 4= (ug, - ,un). (4.17)
k=1 k=1
Similarly, with (Vhy)?2, (h})”®, we also have
72 N2
(Vhy)" = <Z Ve ) =" PPN, Vit (4.18)
k=72
s Nrs
() = (Zu ) =" PPN, @, (4.19)
k=3
where @' = (uj,--- ,uly), Vi = (Vuy, -, Vuy).
Hence, we deduce from (4.17)-(4.19), that
NIB|
(hy)PH(Vhy)P2 ()P = Z (B, N, @l + Y W[, N, )" (4.20)

k=|B| k=N+1



On a wave equation containing nonlinear integral terms

where U [5, N,d], 1 <k < N|B|, are defined by (4.7).

427

By using Taylor’s expansion of the function g[h|(z,y,t) = g(x,t,y,uo + h1, Vug + Vhy, uj + ) around the point

[uo] = (,t,y, 1o, Vug, uy) up to (N + 1) order, we obtain

glh)(z,y,t) = g(@,t,y, (uo + h1)(y. 1), (Vuo + Vhr)(y, 1), (ug + h1)(y, 1))

Z *Dﬁ U/O hl)ﬁl(Vhl>ﬂQ(h€[)ﬁ3+RN[gau07h17€],
1<|B|<N

where

N+1 ot
Ryl[g,u0,h1,e] = Z 3 hfl(VhﬂBz(hi)ﬁd/(1—9)ND69($>t,9)d9

|8|=N+1 0

= €N+1R§\}') [87 g, uo, h1]7

8= (Br,Ba2,B3) € Z3, |B| = B1 + B + B3, B! = B1!B2!Bs!, DPg = D* D2 D g,

Dﬂg[u()] = Dﬂg (fE,t,y, uo, VUO,%) )
DPg(x,t,0) = DPg(x,t,y,uo + Oh1, Vug + OVhy, uly + Oh}).

Hence, it follows from (4.21)), (4.22) that

glh) = gluo) + fDB [uo] Z\I/kBNu]

1<|/5|<N k=8|
N|B|
+ Z —D/3 [o] Z U, (8, N, iile® + eNT R [e, g, u0, 1)
1<|,6|<N k=N+1

gluo +Z Z ﬁ' Ui[B, N, u]e +5N+1R( )[5 g, uo, hil,

k=11<|B8|<k
where
N8|
€N+1R( )[6 g,uo, Z 7DB Z \I/k[ﬁ,N, ﬁ]&k +EN+1R§\1,)[E,Q,U(),}M}.
1<\B\<N k=N+1
Therefore

(g[h}(xvyvt) - g[uO](x7y7t)) dy

T
Il
S—

2.

> / DPglucl WlB, N, ldy | & + ! / RO, g, uo, b, Tldy

1 1§|ﬂ|<k

M= 1M

Rk[Nag7u07ﬁ]€k + €N+1R§\§) [67g7u07 hlyﬁ]a

IN

where Ri[N, g,up, 4], 1 <k < N, are defined by (4.7) and

1
5N+1RS$’) [Eagvum hl,ﬁ] = 5N+1 / Rs\?) [Evg,uo, h17ﬁ]dy
0

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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On the other hand, we also have

6’74

N Y4
<Z ’_{k[Na g, uo, ’J}ek + €N+1R53) [Ea g, uo, h’lv ﬁ?)
k=1

N Y4
— — 4 —
<Z’ik[Nagau07u}5k> +5N+1R§V)[57Py47gau07hlau]
k=1

YaN
= Z P]SM) [N7"_{[N7g7u07ﬂ]] Ek +€N+1R5\A/%) [5,’}’479,U0,h1,ﬂ],
k=74
where
Plg’m) [N,I_’\Z‘[N,g,’lto,ﬁ”
Rk[N, g, uo, ], v=11<k<N,
|
= Z %R?l[]v,g,uo,ﬁ]--~R%N[N,g7u07ﬁ], 74§k'§'74N,’7422,
acA0V(N)
and

N
AVIN) ={a e ZV |a| =74, ia; = k},
=1

with E[Na g, uo, ﬂ] = (Rl[N,ga Uo, ﬁ]v e ,F':N[N,ga Uuo, ﬁ]) is defined by "
Thus, combining (4.17)) - (4.19)), (4.29)), it leads to

h'lvl (Vhl)w (hll)vsgw

YaN
= nP (Va2 (B | S0 POV [NLRIN, g,uo, @) €® + eV HLRY (6,74, 9, w0, b,
k=4
Y4 N
= R (V)2 (hy) > POV [N,RIN, g,uo, @] € + eNHRY 6,7, 9, uo, )
k=4
Ny
= Z D[y, N, g, uo, ﬁ]sk + €N+1R§3)[€, v, g, U, U,
k=~

where @[y, N, g, uo, @] is defined by (4.5)) and (4.6]).

eNFIRG (e, g, w0, @) = eNFURY (Ve )2 (B)) P RS e, 74, g, o, b .

Nl N Ny
Separating Z into Z and Z , we deduce from (4.31) that

k=|~| k=]~ k=N+1

N
hYI(Vhl)’yz(hll)’mE’M = Z ék[’%N?gauO,ﬁ]gk +5N+1R§3)[577’97u07ﬂ],
k=|vl|
with

Nyl

€N+1RS\?)[5’7’9’U07&}: Z (I)k[%NangO,ﬁ]gk+5N+1R§\?)[57%97u07m'
k=N+1

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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By (4.14) and (4.33), we get

S = fluol + 3 =D Flualh] ()™ (W)€ + R[f, o, b, €] (4.35)
1<|ylgN

N
= fluo] + Z %D'yf[uo] Z ®i[y, N, g, ug, i)

1<y|<N k=7l
1 s
+eN N =D f[ugl R [e, 7, g, w0, @) + €N TR [ w0, o €]
1<lygN T

N
1 B .
:f[u0]+z Z jDWf[uO](Pk[77N7g7u07u] Ek+EN+1RN[fag7u07h17§}
k=1 \1<]y|<k

N
= f[UO] + Zﬂ-k [Na fa g] Ek + €N+1E§§)[fvgvu0aﬁ7 E],
k=1
where 7 [N, f,g], 1 < k < N, are defined by (4.4)-(4.7) and

~ . 1 L
Rs\:/l')[f7g7u07u7€] = Z *,D'Yf[uo]Rg\?)[&’%QaUO,U] + RE\]/:)[fa anhlag]' (436)
1<]y|gN

By the boundedness of the functions uy, Vuy, u), 1 <k < N in L*°(0,T; H'), we obtain from (4.15), (4.22)), (4.25),
4.27), (4.32)), (4.34]) and (4.36]) that “Rg\l,)[f,g,uo,ﬁ, 6]"Lm(07T;L2) < C, where C' is a positive constant depending only
on N, T, f, g, ug, 1 <k < N. Hence, 1 is proved.

Similarly, using — and 1 for f = f(x,t,y1,92,y3,ya) = p(

x,t
Dyp and i [N, f, 9] = pi [N, u, 0], we obtain (4.12))2, where p [N, pu, 0], 1 <k
Therefore, Lemma 4.3 is proved completely. U]

sYa), Daf = Daf = Dsf =0, Def =
< N which is defined by (4.8])-(4.10).

N
Let u = u. € W1 (M, T) be the unique weak solution of the problem (P;). Then v = u. — Z upe® = u. — h satisfies

k=0
the following problem

V= D (el W) = Bl H] — F [

+%[(us [v+h] — pe [A) o] + Ee(2,8), 0 <z < 1,0 <t < T,

(4.37)
v (0,t) — hov(0,t) = v(1,t) =0,
v(z,0) = v'(z,0) =0,
where N
E.(x,t) = f[h] — f[uo] +efi [h] + a% [([B] = pluo] + epa [1]) ha] = Y Fre®, (4.38)
k=1
and . .
F.lv]=f <x,t,v,fx,vt,/0 g[v](m,y,t)dy) +efi 1(1:,25,1),113:,11,5,/0 gﬂv](x,y,t)dy) ,
pelel = (.1, [ oblontity) + e (ot [ orblennity). (439)
gl[v}(‘fmyvt) = gl(xayatvv(yvt)a vz(yvt)7vt(y’t))a
Ul[U](l‘,y,t) = 01(x7y7t>v(y7t)ﬂ Ul(yvt))'

Then, we have the following lemma.
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Lemma 4.4. Let (Hy), (Hg) and (Hg) hold. Then there is a positive constant C, depending only on N, T, u, 1, o,
o1, [, f1, 9, 91, uk, 1 <k < N such that

[ Eell oo 0,752y < Oyt (4.40)

Proof . In the case N = 1, the proof of Lemma 4.4 is easy, hence we omit the details. We shall prove (4.40) in the
case N > 2.

By using (4.12)) for fi[h] and uq[h], we obtain

-1

2

J1lh] = filuo] + e [N = 1, fi, g1 €® + VR [f1, 91, w0, T, €], (4.41)

N

N-1
pah] = p1fuo] + pu [N =1, 1, 01) € + eVRY) (w1, 01, w0, 7, €],
k=1
where HR%)_l[fl,gl,uo,ﬁ, E]HLOO(O,T;L2) + HRE\?)_l[H'hUlzan , g]HLOO(O,T;L2) < C, with C is a constant depending only
on N7 Ta f17 gi, M1, 01, Uk, 0 < k < N.
By (4.41), we rewrite € f1[h] and euq[h] as follows
N
efilh] = efiluo] + Z?Tk_l [N — l,fl,g1]8k + sNHRE\l;)_l[fhgl,uoﬂ, el (4.42)
k=2

N
epah] = eprfuo] + Zpk,l [N — 1,u1,01]5k + €N+1R§\2,)71[ﬂ1701,U0,ﬁ7 gl.
k=2

Hence, we deduce from (4.12)) and (4.42)) that
fIR] = fluol + e fi[h] = (m[N, f, g,u0, ©] + fi[uo]) € (4.43)

N
+ Z[Wk[N7f7gaanﬁ] +7Tk—1[N_ 1aflaglﬂu0’ﬁ]] Ek
k=2

+ €N+1R§\1,)[f,g,f1,917uoyﬁ7 el,

where
€N+1R§\})[f7g7 flaglzu07ﬂa E] = €N+1 (RN[fmgauOvﬁa E] + Rg\lf)_l[flaglaumﬁa E]) ) (444)
and
N
(1] — o) + g () b = 3 Vg (1 [N, 0] + pi 1 [N — 1,y 1 ]) (4.45)
k=1
2N N
+Z Z (pl [N,M,O']"‘pi,l[N-l,,lll,O'l])VUj Ek
k=2 | 4,j=1,
i+j=k
+ EN—HRE\?) [,11,70, ,ulvo—lvu07ﬁv 6],
where

RS\?) [u,a, M1a017u0757 5] = (RN[/%(L UOaﬁ’ 5] + Rg\?)—l[lulaglaumgv 5] ) hfb (446)



On a wave equation containing nonlinear integral terms 431

2N N 2N
Separating Z into Z and Z , we deduce from (4.45)) that

k=2 k=2 k=N+1

N
(1t [h] = e [uo] + epaa [1]) by = <Z Vo (pk [N, 1, 0] + p—1 [N =1, 11, 04)) 6’“) (4.47)
k=1
N
Y | D (i [N ol + pica [N =1, 1, 00]) V| €*
i

N

+ E E (pl [N’M7U] + pi—1 [N_ 1aM1’01])Vuj €k
k=N+1 |\ i,j=1,
i+j=k

+ ENHR(Z) [, 0y 1, 01, U0, U, €]

N k
:Z Z pl N w,o +pi—1 [N_ laulval})vuk—i Ek—|—€N+1R§3)[M,U,M1’0’171,[,0711,6]’

k=1 Li=1
where
2N N
~(3 .,
ENHRSV)[M,o,ul,al,uo,u,e] = Z Z (pi [N, p, 0]+ pizi [N — 1, p1, 01]) Vi ek (4.48)
k=N+1 | i,j=1,
itj=k

+ €N+1R§3) [, 0, 11, 01, w0, 4, €].

Combining (£3), (£38), [E43) and (@EI7), we get that

E(wt) = £ [1] ~ £ o] + 2 [0 + 0 (s8] = g o] + 2 (1) ] — gw (4.49)
N
+ ) [mk[N, £, g, w0, @) + w1 [N — 1, fi, g1, uo, 0] €
k;l k 8 N
+ kz:: Z:: 8— (pi [N,y 0+ pic1 [N — 1, u1,01]) Vuk_i]‘| ek — ;erk

+€N+1R [f)g fl).gla:u’70 M1701,UO,U E]
n -
:8N+1R§V [f7g7flaglvﬂao.7/~‘['170-17u0’u7€]’
where

5N+1R§\A/%)[fvgaflaglvu7o—7ﬂlvo-1,u07ﬁ75] (450)

~ B o
= EN+1 (Rg\})[f7gaf17gl7’u07u75] + aﬁR( )[,U,,O' H’lﬂa—l’uO’u E]>

By the boundedness of uy, Vuy, 1 <k < N in L*(0,7T; H'), we obtain from (4.12)), (4.44)), (4.48), and (4.50) that

”EEHLOO(O,T;L?) < CueNt, (4.51)

where C, is a constant depending only on N, T, u, p1, o, o1, f, f1, g9, 91, ug, 1 <k < N.
Lemma 4.4 is proved.[] [J
Proof of Theorem 4.2.
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We consider a sequence {v,,} defined by
Vo = 0,

v;,’l - % (,Ufs[Um—l + h}’Umm) = FE [vmfl + h] - FE [h] + % [(NE [vmfl + h] — He [h]) hm}

+E.(x,t),0<2x<1,0<t<T,
VU (0, 1) — hovm (0,1) = v, (1,t) = 0,
U (2,0) = o), (2,0) =0, m > 1,

where

1 1
F.lv]=f <x,t,v,vx,vt,/ g[v](m,y,t)dy) +efi (z,t,v,vx,vt,/ gﬂv](x,y,t)dy) ,
1 0 1 Q
He [U] =M (mvta/o O'[U](l',y,t)dy> + e (xafv/o Ul[v](xvy7t)dy) ,

g1 [’UKSU, Y, t) =0 (:L’, Y, 1, U(yv t)a vz(yv t)a vt(y’ t))a
Ul[v}(lz?yvt) = 01(m7y,t,v(y7t), Ul(yvt))'

We shall prove that there exists a constant Cr, independent of m and ¢, such that

lvmllw, () < CreN Tl with |e| < 1, for all m.

Indeed, by multiplying both sides of (4.52)); with v/, and after integrating in ¢, we have

t

Zm (1) :2/0 <E5(s),v;n(s)>ds—|—/o 613:’5 (8;Um (), vm(s))ds

2 [ G lomo -+ bl = el bl vt (s)ds
+ 2/0 (F. [vm_1 + h] — F. [h], o1, (s)) ds,

where

Zin(t) = [0l (O + A e (8500 (8), 00 (£)) = |0l (012 + 10 [[0m ()12
A ety u, v) = (e (E)Ug, Vg) + hotim,(0,t)u(0)v(0), Yu,v €V,

1 1
e (2, ) = (wt/ glom—1 + h](x,y,t)dy> + e (mt/ 91[Um—1 + h](x,y,t)dy> ~
0 0

By using Lemmas 4.4, we deduce from (4.55)) that

t t
Zn(®) < TC2N 52 4 [t ()] ds+ [ 22 (50 (5) o (5)) s
0 0
t
9 ,
2 [ el + = e B B ()] s

t
+2/ [1Fx [om—1 + ] — Fe [R]]| [|vr, () ds
0
t
= TC2e2N+2 +/ ol ()| ds + Jy + Jy + Js.
0

We estimate the integrals on the right-hand side of (4.57)) as follows.

Estimation of J1. Note that, we are easy to estimate that

Ot e =
Mat’ (l',t) S C17

with (1 = K, (1) [1+ (1+2M.) Hyr (0)] + K () [T+ (1+2M.)Hyy (01)], Mo = (N +2)M.

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)
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Then, it follows from (4.57) that

. t

Ji| < /

0

Estimation of Jo. First, we need to estimate || 2 [(s[vm—1 + h] — u[h]) he]| -
Note that

Y
(55 0 (5), v (5)

t
ds < <1/ [0 (5)]12 ds.
0

lvm—1 + h] = ulBlll co(qy < 2K, (1) Har, (0) [lvm -1l (1
[ Diptlvim—1 + 1] = Diplh]|| < 2Knr. (1) Har, (0) [om—1lly, () » @ = 1.3,
| D1ofvm—1 + h] = Dio[h]|| < 2Hw, (0) [[vm-1llw, (r) »

then, due to the following equality

o [(lvm—1 + 1] = p[h]) he] = (ufvm—1 + h] = p[h]) haw + (D1p[vm—1 + h] = Dip[h]) by

1

—|—D3,u Um—1 + h ( DlU Um—1 + h] DlO'[h]>dy> hz
0

+ (Dsp [vm-1 + h] — Daulh </ Dyalh dy> -

we have that

st (o1 + R = ]} )| < g, 0 M) om 1 oy, )

where d(p, 0, M,) = 2M, Ky, (1) Haz, (0) [1+V2(24 Hum.(0))] .

Using the same estimations above for p. = p + 1, we have
||% [(te[vm—1 + ] — pe[h]) hx]” < 52 ”Umfl”Wl(T) )

where Gy = d(p, 7, M..) + d(ju1, o1, M.).
We derive from (4.63)) that
R t
Jy =2 /
0

= 2 2
<TG omrlPyyry + | ()] ds.
0

Estimation of Js.By

12 [vm—1 + h] = F [R]]| < [|f [vm—1 + h] = f[P]]| + [|f1 [vm—1 + h] = f1 []]

< [2Kar. (£)(1 + Har. (9)) + 2B0r. (£1)(1+ Har, ()] loms s oz

it follows from (4.57) that

J3f2/ 1B ot + b — B[R] [0 (5) ] ds < TG [[vr- 1||W1<T>+/ ) (s)]? ds,

with G = [2Kar, (f)(1+ Har, (9)) + 2K, (f1)(1 + Har (1))

Combining (4.57)), (4.59)), (4.64) and (4.66)), it leads to

t
Zon(t) < TC2e2N+2 4 g2 ||vm,1\|$,V1(T) + (3 + i:) / Zm/(s)ds.
0

Using Gronwall’s lemma, we deduce from (4.67)) that

[vmllw, (1) < o7 [om-1llw, (1) + 07(€), Ym =1,

433

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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where o7 = n7Cs, dr() = Core™ 1, = (14 =) \/TGXP (3 + )7
Due to the dependence of nyr on T as above, we can assume that

or < 1, with a sufficiently small constant 7. (4.69)
Then, to close the proof of Theorem 4.2, we need the following lemma of which the proof is easy.

Lemma 4.5. Let {v,,} is a sequence that satisfies
Ym < 0Ym—_1+ 0 forall m>1, v =0, (4.70)
where 0 < o < 1, § > 0 are given constants. Then

Ym <0/(1 =) for all m > 1.0 (4.71)

Applying Lemma 4.5 to 7, = ||vm||W1(T) ,o=o0r =17 < 1,6 = 0p(e) = CanpeN T, it follows from 1) that

5T(E)

].—O'T

lomllw, () < = Cre ™, (4.72)

C* nr

where Cp = ———.
1—nr¢s

On the other hand, the linear recurrent sequence {v,, } defined by (4.52)) converges strongly in Wi (T") to the solution
v of the problem (4.37)). Hence, taking the limitation as m — +oo in (4.72), we get

lvllw, (ry < Cre™tt, (4.73)

This implies (4.11]).

The proof of Theorem 4.2 is proved completely. [

5 Conclusions

In this work, we have studied an initial-boundary value problem for a class of wave equations with nonlinear
integral terms. After linearizing the nonlinear integral terms, the Feado-Galerkin method has been used to find the
finite dimensional approximate solution. Then, the existence and uniqueness have been established by constructing a
recurrent sequence that converges to the weak solution of the proposed problem. In addition, a high-order asymptotic
expansion of solutions for the perturbed problem in a small parameter has also been considered, in which the necessary
lemmas of expanding multivariable polynomials have been used to get the desired results.
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