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Abstract

Hyperthermia is a method of cancer treatment wherein the temperature of the tumor is increased to over 315 K
(42◦C) for a specific duration, ultimately leading to cell death by inducing apoptosis or necrosis. Magnetic Particle
Hyperthermia (MPH) is a non-invasive method of cancer treatment in which magnetic nanoparticles are introduced
to the tumor at its center and are then subject to a magnetic field. Magnetic nanoparticles upon being exposed to a
magnetic field exhibit a heating effect by conversion of magnetic field energy into heat energy. Owing to high acidity,
tumor cells are more sensitive to heating than healthy cells, thus if the tumor is heated to 315-319K (42◦–46◦ C), it
will be destroyed with minimal to no damage to healthy tissues surrounding the tumor. During the application of
hyperthermia as a cancer treatment, blood perfusion protects the healthy tissues surrounding the tumor region from
damage due to heat by dissipating any excess heat. In this paper, the temperature profiles were estimated inside
a presumably spherical hepatic tumor mass by solving Pennes’ Bio-heat Equation containing the power term. The
results were obtained using analytic as well as numerical methods using MPH with mineral oil as a carrier liquid and
Magnetite (Fe3O4) nanoparticles with a mean diameter of 10.9 nm subject to Alternating Magnetic Field (AMF) and
Rotating Magnetic Field (RMF).

Keywords: Magnetic Particle Hyperthermia, hepatic cancer treatment, Pennes’ Bioheat Equation, medical
hyperthermia
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1 Introduction

Hyperthermia is the state of a living tissue or an organ in which its temperature gets raised to abnormally high
temperatures. In medical usage this has been modified to treat various types of cancers with an advantage of being
non invasive over surgical ablation and also proving very useful for treatment of inoperable areas of the body [8].
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During the application of hyperthermia treatment, the temperature of the target tissue is increased to over 315 K
(42◦C) for a specific duration, ultimately leading to cell death by inducing apoptosis or necrosis, as the living cells
cannot survive temperatures exceeding 315 K (42◦C).

Hepatic cancer is one of the major causes of death due to cancers worldwide and its onset is mainly caused by
Hepatitis B or C Virus, alcohol consumption, fatty liver disease, etc. Hepatocellular carcinoma (HCC) is the most
common hepatic cancer found in adults. Hepatocellular carcinoma (HCC) has been classified into various subtypes,
the most important being fibrolamellar carcinoma. It is very rare, usually seen in women aged 35 years or more and
provides a better outlook of the Hepatocellular carcinoma (HCC). Marina Galicia-Moreno et al., [8] reviewed first
and second line treatments of Hepatocellular carcinoma (HCC). Dev Kumar et al, [3] discussed the formulations of
superparamagnetic iron oxide, gold nanorods and nanoshells, and carbon nanotubes for magnetic nanoparticle hy-
perthermia. Vahid Darvishi et al., [6] developed a method for analysing drug delivery and distribution of magnetic
nanoparticles in fluid hyperthermia cancer treatment and illustrated that the effect of distribution of nanoparticles in
the treatment.

Magnetic fluids placed in a magnetic field generate heat by converting magnetic field energy into heat energy. The
intensity of the heat generated by this conversion depends on various parameters relating to the magnetic field such
as frequency and amplitude as well as the composition of the magnetic fluid (distribution of the particle size, type of
particles, carrier liquid, surface-active agent, etc.). The behaviour of magnetic fluid exposed to magnetic fields has
been studied since long leading to its application in medical science though still under development for overcoming the
limitation of heating the target tissue to the maximum temperature with minimal to no damage to the surrounding
healthy tissue [18]. Vicky V. Mody et al. [17] reviewed the dependence of magnetic properties of the nanoparticles
on their shape, size, surface coating and doping, and maintained the clinical status of magnetic nanoparticles for the
application of magnetic fluid hyperthermia. Lacis [15] in 1999 attempted to study the fluid movement at some specific
frequencies of applied magnetic field. Zakinyan et al. [25] studied the behavior of a drop of kerosene based magnetic
fluid composed of magnetite nanoparticles of size 10 nm surrounded by a nonmagnetic liquid on a solid horizontal
surface under the action of a low frequency (≃ 1 Hz) uniform Rotating Magnetic Field (RMF). Dieckhoff et al. [7]
used phase-lag research to study the behaviour of magnetic nanoparticles exposed to Rotating Magnetic Field (RMF)
and Alternating Magnetic Field (AMF) at low frequencies. The dynamic behavior of particles in a magnetic field is
also explainable by solutions Fokker–Planck equations as studied in detail by Yoshida T, et al., [24] using numerical
simulation to clarify various dynamic properties including the M-H curve and field dependent relaxation time. Miloš
Beković, et al. [2] proposed a new measuring system for characterising the magnetic flux losses systematically and
generated a high frequency Rotating Magnetic Field (RMF) with adequate amplitudes suitable for making hyperther-
mia applicable in medical science.

Magnetic fluid hyperthermia induces heat conversion from magnetic nanoparticles by magnetic energy loss when
subject to a magnetic field such as the Alternating Magnetic Field (AMF) or the Rotating Magnetic Field (RMF).
This heat produced gets transmitted to the surrounding target tissue, thereby raising its temperature and is sufficient
to cause damage to the cancer cells by necrosis and apoptosis, hence destroying the tumor.

Necrosis occurs in cells due to high exposure to extreme conditions that vary from the normal conditions causing
damage to the internal cellular environment which results in rapid cell and tissue damage. It is a passive and unpro-
grammed cell death.

Apoptosis is a programmed cell death (PCD) that regulates and controls the growth and development of an organ-
ism. It is also known as cellular suicide, as in this process, the cell itself takes part in its death by shrinking, drying,
condensing and finally fragmenting.

Both the above processes of cell death are depicted with a diagram in Figure 1 below.



A mathematical study of nanoparticle aided hyperthermia treatment of cancer 2303

Figure 1 : Processes of cell death [19]

Magnetic nanoparticles are delivered to the tumor through direct injection into the tumor region. After the deliv-
ery of magnetic nanoparticles, an alternating magnetic field or a rotating magnetic field is applied to generate heat
in the nanoparticles through an energy conversion based on the principle of the hysteresis loss or the Néelian and
Brownian relaxation. Eventually, this heat generated due hysteresis loss gets dissipated into the surrounding tumor
tissue, thereby increasing its temperature which ultimately leads to cell death [10].
In this paper we consider a host with primary hepatic cancer and approximate the tumor mass to a sphere as shown in
Figure 2 with Gaussian heat source magnetic fluid Figure 3 under applied magnetic fluid hyperthermia consisting
of Magnetite nanoparticles under Alternating Magnetic Field (AMF) and Rotating Magnetic Field (RMF).

Figure 2 : Spherical approximation of tumor mass Figure 3 : Gaussian distributed source

2 Methods

Magnetic relaxation of a single domain magnetic nanoparticle suspended in a fluid is explained by Brownian Re-
laxation [11] and Néel Relaxation [11] theories.
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Magnetic relaxation is a measure of the tendency of a magnetic system to maintain equilibrium or a steady-state
condition upon a change in the magnetic field. The characteristic times that are required to reach this equilibrium are
known as relaxation times. Néel relaxation is caused by magnetisation vector reorientation against an energy barrier
inside the nanoparticle magnetic core. [22] while Brownian relaxation is a result of rotational diffusion of the magnetic
nanoparticle as a whole in the carrier liquid. [22]
The Nél and Brownian relaxation times, τN and τB [11], are given by;

τN = τ0 exp
(KUVM

kbT

)
(2.1)

τB =
3ηVH

kbT
(2.2)

where τ0, KU , VM , kb, T , η, and VH = ( 1+2δ
D )3VM are the characteristic time constant (=10−9), anisotropy constant,

primary volume of the MNPs, Boltzmann constant, temperature, viscosity of the solvent, and hydrodynamic volume
of the MNPs, respectively and δ is the thickness (= 10−9 m) of sorbed layer of the surfactant. It was put forward by
Rosensweig that Néel and Brownian relaxations occur in parallel [22], with an effective relaxation angular frequency
as an inverse of effective relaxation time, given by;

ωeff =
1

τ
=

1

τN
+

1

τB
(2.3)

For an adequately large magnetic field strength, the Néel relaxation time can change by a number of orders of
magnitude, whereas the Brownian relaxation time is appositely insensitive to the strength of the applied magnetic
field and hence the Néel mechanism of relaxation also plays a very significant role. Miloš Beković, et al. [2] gave the
modified expression for power dissipation that takes into account the thermal relaxation of the (restricted case) linear
response theory given by;

P0 = µ0πχ0fH0
2
( 2πfτ

1 + (2πfτ)2

)
(2.4)

where µ0 denotes the magnetic permeability of the free space, χ0 – the equilibrium susceptibility, f and H0 – the

frequency and the amplitude of Alternating Magnetic Field (AMF) and χ = χi
3
ζ (coth ζ −

1
ζ ) where χi =

µ0ϕM
2
dVM

3kBT ,

ζ = µ0MdHVM

kBT , H = H0 cos(2πft), Md is the domain magnetization of a suspended particle, and VM = π
6D

3.

Power Loss P0 in the RMF is calculated using the following equation [2];

P0 = µ0
2πf

2
(mxHx +myHy) (2.5)

where Hx and Hy represent magnetic field strengths along x − direction and y − direction respectively, 2πf is the
angular frequency, mx and my are the resolved magnetisation components of the magnetic field along x- direction and
y-direction respectively. Figure 4 and Figure 5 shows the coil arrangement for AMF and RMF respectively.

Figure 4 : Coil arrangement for AMF [5] Figure 5 : Coil arrangement for RMF [14]
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As the temperature of the tissue increases, the excess heat generated is dissipated by the mechanism of thermoregulation
of the body by increasing the blood flow to the tumor region. In response to temperature rise, the blood flow rate
inside the healthy tissues of the body that surround the tumor increases many folds, while inside the tumor, the blood
flow rate increases only up to twice its normal flow rate, thus protecting the healthy tissues up to a specific point. [9].

2.1 Governing Equation

The equation governing heat transfer in biological tissues is a partial differential equation which was put forward
by H.H. Pennes [20] as given below;

ρpcp
∂T

∂t
= ∇ · (k∇T ) + ρbcbωb(Ta − T ) +Q (2.6)

where ρp and cp are the density and specific heat capacity of the tumor mass, k is the thermal conductivity, ρb and cb
the density and specific heat capacity of blood, ωb the blood perfusion rate, Ta the arterial blood temperature, Q the
constant heat generation due to metabolism.

Its modified radial form that includes a power term P due to a heating source is given by;

ρpcp
∂T

∂t
= k

[ 1

r2
∂

∂r
(r2

∂T

∂r
)
]
+ ρbcbωb(Ta − T ) +Q+ P (2.7)

Since, our domain is a spherical tumor mass with radius R and no effect of the applied heat is on the region surrounding
the tumor, the above equation is subject to the following conditions.

Boundary Conditions:

k ∂T
∂r = 0 when r = 0 and r = R.

Initial Condition:

The temperature at t = 0 is assumed to be the same as core body temperature or the arterial blood temperature Ta.

2.2 Numerical Study

Equation (2.7) on simplification gives;

ρpcp
∂T

∂t
= k

[∂2T

∂r2
+

2

r

∂T

∂r

]
+ ρbcbωb(Ta − T ) +Q+ P (2.8)

To solve equation (2.8) numerically, we use the finite-difference method (forward-difference scheme) and divide the
spatial and time domains into small intervals ∆r and ∆t respectively, such that r = (i− 1) ·∆r, (i = 1, 2, ..., λ) and t
= (j − 1) ·∆t , (j = 1, 2, ..., µ), and we denote the temperature at the nodal point i ·∆r at the time j ·∆t by Ti,j .

Equation (2.8) for i = 2, ..., λ and j = 1, 2, ..., µ reduces to;

ρpcp
Ti,j+1 − Ti,j

∆t
= k

[ 2

i− 1

Ti+1,j − 2Ti,j + Ti−1,j

∆r2
+

Ti+1,j − Ti,j

∆r2

]
+ ρbcbωb(Ta − Ti,j) +Qi,j + Pi,j (2.9)

where Pi,j is the power dissipated by the magnetic fluid heat source at (i, j)th nodal point.

Equation (2.9) on simplification gives;

Ti,j+1 = Ti,j +
k∆t

ρpcp∆r2

[(
1− 2

i− 1

)
(Ti+1,j −Ti,j)− (Ti,j −Ti−1,j)

]
+

ρbcbωb∆t

ρpcp
(Ta −Ti,j)+

∆t

ρpcp
(Qi,j +Pi,j) (2.10)

for i = 2, 3, ...λ and j = 1, 2, ..., µ.

The term ∆t
ρpcp

Qi,j ≃ 0 (as Qij = 7079.3kgm−3 for all i, j, hence ∆t
ρpcp

Qi,j = 0.001∆t ≃ 0 ) and has a negligible

effect on the temperature Ti,j and hence we neglect this term.
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Thus we have;

Ti,j+1 = Ti,j +
k∆t

ρpcp∆r2

[(
1− 2

i− 1

)
(Ti+1,j − Ti,j)− (Ti,j − Ti−1,j)

]
+

ρbcbωb∆t

ρpcp
(Ta − Ti,j) +

∆t

ρpcp
(Pi,j) (2.11)

which gives the temperature T at time any time t and radius r such that 0 < r < R.

For r = 0, we have i = 1 which makes the RHS of equation (2.11) undefined. In this case we apply L’Hopitals
rule to the term 2

r
∂T
∂r , having r in the denominator, of equation (2.8) as given below;

lim
r→0

2

r

∂T

∂r
= lim

r→0

[
2

(
∂T/∂r

r

)]
= lim

r→0

[
2

(
∂2T

∂r2

)]
(2.12)

Hence, the discretization of equation (2.8) for r = 0, i.e., i = 1 using equation (2.12) is;

T1,j+1 = T1,j +
6k∆t

ρpcp

(T2,j − T1,j

∆r2

)
+

ρbcbωb∆t

ρpcp
(Ta − T1,j) +

∆t

ρpcp
P1,j (2.13)

For numerical stability of equation (2.11) and equation (2.13), the following condition [23] must be satisfied;

k∆t

ρpcp∆r2
≤ 0.5 (2.14)

Boundary Conditions:

k ∂T
∂r = 0 when r = 0 and r = R i.e., k (T2,j − T1,j) = 0, or, T2,j = T1,j and (Tλ,j − Tλ−1,j) = 0, or, Tλ,j = Tλ−1,j .

Initial Condition:

The temperature at t = 0 is assumed to be the same as core body temperature or the arterial blood tempera-
ture Ta, i.e., Ti,1 = Ta , (i = 1, 2, . . . , λ).

Using Boundary Condition T2,j = T1,j in equation (2.13), we get;

T1,j+1 = T1,j +
ρbcbωb∆t

ρpcp
(Ta − T1,j) +

∆t

ρpcp
P1,j (2.15)

which gives the Temperature T at the center of the tumor mass at any time t.

The temperature T at various nodal points (i, j) can be represented as the 2-D mesh given in Figure 6 below.

Figure 6 : 2-D mesh representation of the temperature T
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2.3 Integral Transform Solution

Substituting Φ = Ta − T and hence the equation (2.7) becomes;

ρpcp
∂Φ

∂t
= k

[
1

r2
∂

∂r

(
r2

∂Φ

∂r

)]
+ (ρbcbωb)Φ +Q+ P (2.16)

Substituting Φ = φ
r , the above equation then reduces to;

ρpcp
k

∂φ

∂t
=

[
∂2φ

∂r2

]
+ (ρbcbωb)

φ

k
+

r

k
(Q+ P ) (2.17)

Applying Fourier sine transform to (2.17), we have;√
2

π

∫ ∞

0

ρpcp
k

∂φ

∂t
sin(γr)dr =

√
2

π

∫ ∞

0

[
∂2φ

∂r2
+ (ρbcbωb)

φ

k
+

r

k
(Q+ P )

]
sin(γr)dr (2.18)

which implies,

K
∂φ̄

∂t
= −

(
ω2 + γ2

)
φ̄+

F (γ)

k
(2.19)

where K =
ρpcp
k , ω2 = ρbcbωb

k , φ̄ =
√

2
π

∫∞
0

φ sin (γr) dr and F (γ) =
√

2
π

∫∞
0

rP (r) sin(γr)dr and γ is the Fourier

transform variable and γϵ(0,∞). Here, the metabolic heat generation term, Q has been omitted due to the same
reason as in case of equation (2.10).

Solution of (2.19) is given by;

φ̄ =
[
e−(ω

2+γ2)t
]
φ̄0 +

F (γ)

k (ω2 + γ2)

[
1− e−

(ω2+γ2)t
K

]
(2.20)

Assuming that T0 = Ta, the arterial blood temperature we get we get φ̄0 = 0 and applying the inverse Fourier

transformation φ =
√

2
π

∫∞
0

φ̄ (γ) sin (γr) dγ , we obtain;;

φ =

√
2

π

∫ ∞

0

F (γ)

k (ω2 + γ2)

[
1− e−

(ω2+γ2)t
K

]
sin (γr) dγ (2.21)

Using φ
r = Φ and Φ− Ta = T , we get the following equation;

T = Ta +
1

r

√
2

π

∫ ∞

0

F (γ)

k (ω2 + γ2)

[
1− e−

(ω2+γ2)t
K

]
sin (γr) dγ (2.22)

which gives the temperature profile inside the tumor mass at any time.

In our case, i.e, when the heat source is a Gaussian Distributed source we have P = P0 e
− r2

r20 , F (γ) = 1
2
√
2
P0r0

3γe−
γ2r0

2

4 ,

where r0 is the extent of radial length covered by the magnetic fluid. The temperature inside the tumor mass at ant
time t can be obtained in two cases discussed below;

Case I: Temperature For 0 < r < R at any time t.
Using the above relation for F (γ) in equation (2.22), we get the following equation;

T = Ta +
P0r0

3

2
√
πkr

∫ ∞

0

γe−
γ2r0

2

4

(ω2 + γ2)

[
1− e−

(ω2+γ2)t
K

]
sin (γr)dγ (2.23)

which gives the temperature T at any time t and raidus 0 < r < R.

Case II: Temperature for r = 0 at any time t.
To obtain the temperature T at time t and r = 0, we substitute for F (γ) and use L’hopital’s Rule and Leibniz Rule
in succession in equation (2.22). Thus at r = 0, we have;

T = Ta +
P0r0

3

2
√
πk

∫ ∞

0

γ2e−
γ2r0

2

4

(ω2 + γ2)

[
1− e−

(ω2+γ2)t
K

]
sin (γ)dγ (2.24)
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2.4 Steady State

Almost every steady state biological process is passes through a transient state before steady state is reached. For
Steady state, i.e, as t → ∞, we have;

T = Ta +
P0r0

3

2
√
πkr

∫ ∞

0

γe−
γ2r0

2

4

(ω2 + γ2)
sin (γr)dγ (2.25)

which gives the steady state temperature inside the tumor mass at time t and 0 < r < R.

Steady state temperature at r = 0 is obtained by letting t → ∞ in (2.24) as;

T = Ta +
P0r0

3

2
√
πk

∫ ∞

0

γ2e−
γ2r0

2

4

(ω2 + γ2)
sin (γr)dγ (2.26)

3 Results

The temperature profiles in a primary hepatic cancer with a diameter of 2 cm with Gaussian source magnetic fluid
at the center are analysed using the values of the physiological parameters and other numerical values characteristic
of the magnetic fluid given in Table 1 below. The governing equation (2.7) was solved both numerically (with spatial

and time step as 3× 10−4 m and
ρpcp∆r2

2k respectively) and analytically and obtained from (2.11), (2.15), (2.23), (2.24),
(2.25) and (2.26) were plotted, clearly showing a significant agreement between the two methods used. The results
obtained herein are also in agreement with the existing literature [2, 1] further validating our model.

Qty. Value Qty. Value Qty. Value
Ta 310 K [4] cb 3600 J kg−1 K−1 [21] Md 412 kA/m [12]
k 0.57 W m−1 K−1 [4] cp 4180 J kg−1 K−1 [4] KU 9 kJ/m−3 [12]
ρp 1079 Kg m−3 [21] Q 7079.3 kg m−3 s−1 [4] D 10.9× 10−9m [12]
ρb 1050 Kg m−3 [21] wb 6.4× 10−3 s−1 [16] ϕ 0.003 [12]

Table 1 : Various physiological and numerical values used in calculations.

The radial temperature profile of the tumor mass at various times under the Alternating Magnetic Field (AMF)
and Rotating Magnetic Field (RMF) both with H0 = 2.0kA and f = 244kHz with r0 = 3 mm and 5 mm are are
given in Figures 7 - 10.

The graphs show the temperature distribution along the radial distance of the tumor mass at different temperatures.
Steady state temperatures, i.e, the maximum temperatures that are achieved and are time-independent subject to the
boundary conditions of equation (2.7) have also been obtained and depicted in the graphs for the treatment under
both the AMF and RMF.
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Figure 7 : Temperature Profile of the tumor under AMF r0 = 3 mm.

Figure 8 : Temperature Profile of the tumor under AMF r0 = 5 mm.
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Figure 9 : Temperature Profile of the tumor under RMF, r0 = 3 mm.

Figure 10 : Temperature Profile of the tumor under RMF, r0 = 5 mm.

4 Discussion and Conclusions

Magnetic Fluid Hyperthermia treatment of cancer is an emerging line of non-invasive treatment for destroying
tumors in hard to reach areas and/or inoperable areas inside the body of a living organism. During the Hyperthermic
treatment, it is essential that the temperature of the surrounding tissue is kept well within the cell survival limit
i.e., under 315 K (42◦) C. In practice, this would be ensured by using high sensitivity temperature sensors around
the tumor region thus making the treatment invasive and inapplicable to areas that are inoperable. However, in this
study we have used the well known Pennes’ Bio Heat equation in validation with existing literature, that governs
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the heat transfer in biological tissues subject to suitable boundary conditions which ensures that the temperature of
healthy tissues surrounding the tumor region remains under the limit which is ensured by applying the magnetic fields
only until their corresponding steady-state temperatures are achieved. We have made an attempt to mathematically
study nanoparticle aided hyperthermia treatment of cancer under different types of applicated magnitic fields, i.e,
Alternating Magnetic Field (AMF) and Rotating Magnetic Field (RMF). Our study shows that the identical solution
of the same amount of magnetite nanoparticles under Rotating Magnetic Field (RMF) produces a greater heating
effect by potentially increasing the temperature at the center of the tumor to over 330 K which is more damaging to
the cancer cells compared to 325 K in case of Alternating Magnetic Field (AMF) with the same magnetic field intensity.
Also, the time required to raise the temperature at the center and the rest of the tumor to above 315 K (42◦C) is
less in case of Rotating Magnetic Field (RMF) arrangement. The calculated steady state temperatures for Rotating
Magnetic Field (RMF) were also higher than that of Alternating Magnetic Field (AMF) at same field intensities.
Our findings lead to the conclusion that the application of Hyperthermia using a Rotating Magnetic Field (RMF)
arrangement to heat the tumor seems to be a more promising approach which can lead to destruction of the tumor
more effectively. Ongoing research has also indicated magnetic fluid consisting of Magnetite (Fe3O4) nanoparticles of
sizes comparable to that used in our study in phosphate buffer saline to the potential candidate of Magnetic Fluid
Hyperthermia owing to its high biocompatibility and stability of the solution [13].
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