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Abstract

The main objective of this paper is to introduce and study a new type of iterative method to approximate a common
solution of split variational inclusion problem and a finite family of fixed point problems in real Hilbert spaces.
Furthermore, we show that the sequence generated by the proposed iterative method converges strongly to a common
solution to these problems. The method and results presented in this paper extend and unify some recent known
results in this field. Finally, a numerical example is used to demonstrate the convergence analysis of the sequences
generated by the iterative method.

Keywords: Split variational inclusion problem, Nonexpansive mapping, Averaged mapping, Fixed point problem,
Strong convergence, Iterative method
2020 MSC: 47H10, 49J40

1 Introduction

Let H; and Hy be two real Hibert spaces with the inner product (-,-) and the induced norm || - || and let C be
a nonempty closed convex subset of Hj. In 2011, Moudafi [I] introduced the following split monotone variational
inclusion problem (in short, SMVIP): Find Z € H; such that

0 € 91(#) + Bi(#), (1.1)
and w* = AZ € H, solves
0 € ga(w™) + Ba(w"), (1.2)

where, B; : H; — 2™ B, : Hy — 252 are multi-valued maximal monotone mappings and A : H; — Hs is a bounded
linear operator.

The split feasilibity problem, split zero problem, split fixed point problem, split variational inequality problem,
see [11 13, [, [5, 6], (6] are special cases of the split monotone variatianal inclusion problem (L.1)-(L.2). They have been
investigated by numerous authors and solve real life problems essentially in modelling of inverse problems, sensor
networks in computerized tomography, data compression and radiation therapy; for details, see [2, [4, [l [7].
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If g1 = 0 and g2 = 0, then SMVIP ([1.1)-(1.2)) reduces to the following split variational inclusion problem (in short,
SVIP): Find & € H; such that

0e Bl(i‘), (13)
and w* = Az € H, solves

0 € By(w*). (1.4)

When we looked at it independently, is the variational inclusion problem and its solution set represented
by SolVIP(B;). The SVIP — constitutes a pair of variational inclusion problems must be solved so that the
image w* = AZ under a given bounded linear operator A, of the solution & of SVIP in Hj is the solution of
another SVIP (|1.4) in another space Hs, we denote the solution set of SVIP by SolVIP(B3). The solution set
of SVIP (L.3)-(L.4) is denoted by Q = {Z € H; : & € SolVIP(B;) and AZ € SolVIP(B)}. In 2012, Byrne et al.[3]
introduced and studied the following iterative algorithm: For a given xzg € Hj, the sequence {z,,} generated by the
following iterative algorithm:

T = Ty (Tm + OA* (T2 — DAzy,), A > 0.

Under some appropriate conditions, they obtained weak and strong convergence theorems solving for SVIP (|L.3])-
).

In 2013, Kazmi and Rizvi [I2] introduced and studied the following iterative algorithm:

Ui = SO (@ + 6A* (I — T)Azy,),

Tint1 = AmG(Tm) + (1 — o) Tom,.

Under some appropriate conditions, they proved that the sequence {x,,} generated by algorithm converges strongly
to the common solution of fixed point problem and SVIP (|1.3))-(1.4). On the other hand, A fixed point problem for a
nonexpansive mapping 7' : H; — Hj is defined as: Find x € H; such that

Tz =zx. (1.5)

Let {T;}}, be a finite family of nonexpansive mappings on H; such that S = ﬂivzl Fix(T;) # ¢, where Fiz(T;) = {z €
H; : T;z = z}. Zhou and Wang [20] proposed an explicit iterative algorithm for approximating a common solution
of the variatioanal inequality over the set of common fixed points of a finite family of nonexpansive mappings. They
introduced the following iterative algorithm: z; € H; and

Tmgr = (1= ApuF)TRTR_ ... T, m>1,

where F' : H; — H is a k-Lipschitzian and n-strongly monotone mapping and 7)™ = (1—4%,)I+8¢ T;, fori =1,2,... N.
Under some appropriate conditions, they proved that the sequence {z,,} converges to a common fixed point of the
above mapping.

In this paper, we approximate a common solution of split variational inclusion problem and a finite family of fixed
point problems for nonexpaansive mappings in real Hilbert space: Find & € H; such that

N
FeQn () Fix(T).

=1

Recently, in past few years, there have been many authors who have been interested in finding a common solution
of the fixed point problem and split variational inclusion problem (1.3))-(1.4)), see [0} 12} T3] 14].

Motivated by the work of Moudafi [I], Byrne et al. [3], Kazmi and Rizvi [12], P. Majee and Nahak [I4], Zhou and
Wang [20] and by the continuing work in this direction, we suggest and analyze an iterative method for approximating
a common solution of SVIP — and a finite family of fixed point problems for nonexpansive mappings in the
real Hilbert spaces. Furthermore, we show that the sequences generated by our iterative method converges strongly to
a common solution of SVIP — and a finite family of fixed point problems in real Hilbert spaces. The iterative
method and results discussed in this article are new and can be considered as a generalization and refinement of the
previously published work in this field.
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2 Preliminaries

In order to prove our main results, we need to review some basic definitions and lemmas, which will be needed in
the following section. A mapping T : H; — Hj is said to be
(7) monotone if
(T — Tw,x —w) >0, Ve,weH.

(#4) a-strongly monotone if there exists a > 0 such that
(Tx — Tw,r —w) > a|lr —w|?, VoweH;.

(#i¢) nonexpansive if
Tz — Tw| < ||z —w|, YVz,weH;.

(#v) firmly nonexpansive if
(Tx — Tw,x —w) > |Tx — Tw|?, Yz,w e H.

It is well known that every nonexpansive mapping 71" : H; — H; satisfy the inequality:
((x —Tx) — (w—Tw),Tw —Tx) < %H(Tx —2) = (Tw—w)|?, V(z,w)ecH x H,.
Therefore for all (x,w) € Hy x Fiz (T), we get
(x —Tx,w—Tx) < %H(Tx—m)”2 (2.1)

A mapping ¢ : H; — Hj is called p-Lipschitzian if there exists a constant p > 0 such that
lg(z) — g(w)|| < pllz —wl, Va,weH.

A multi-valued mapping B; : H; — 2ft is called monotone if for all 21, zo € H; there exist v; € Biz; and vo € Bixo
such that
<JJ1 — T2,UV1 — ’U2> Z 0.

A monotone mapping B is maximal if G(Bj), the graph of B; defined as
G(B1) = {(z1,v1) : v1 € Biz1},

is not contained properly in the graph of any other monotone mapping. Remark: It is also well known that a
monotone mapping B; is maximal if and only if for

(Il,’U1) € H; x Hy, <J}1 — T2,V — ’U2> > 0 for each (IQ,’UQ) € G(Bl) implies that v; € Byx;.

Let By : H; — 2% be a multi-valued maximal monotone mapping. Then, the resolvent operator Jﬁ o Hy - Hy
associated with By, is defined by

J)\Bll ((El) = (I+ )\1B1)71({E1), Vr; € Hy, M >0,

where [ is the identity operator on H;. We noticed that the resolvent operator J >]\31 ! is single-valued, nonexpansive and
firmly nonexpansive.
Also, in the Hilbert space Hj, following properties hold:

(a) |lz+w|? < ||lz)* + 2(w, z + w), Va,weH. (2.2)
(®) oz + (1 - aJwl® = allz|® + (1 - o) w]?* —a —a)|z —w|?,  Ya,weH. (2.3)

A mapping A : H; — Hj is said to be strongly positive mapping with cofficient 4, if there exists a constant é > 0
such that

(Az,x) > 0||z||*, Va € H,.

Definition 2.1. [T8] A mapping T : Hy — H is called averaged mapping if there exists some number o € (0,1) such
that T = (1 — a)I + &S, where I : Hy — Hy is the identity mapping and S : Hy — Hy is a nonexpansive mapping. An
averaged mapping is also a nonexpansive mapping and Fix(S) = Fiz(T).
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Lemma 2.2. ([, [§]) If the mapping {T;}Y, are averaged and have a common fived point, then

A", Fiz(T}) = Fiz(T\Ts ... Ty).
In particular, for N = 2, Fiz(Ty) N Fiz(Ty) = Fiz(ThTs) = Fix(TeTY).

Lemma 2.3 (Demiclosedness Principle). [I0] Let C' be a nonempty closed convexr subset of a real Hilbert space
Hy and T : C — C be a nonexpansive mapping. If {x,} is a sequence in C weakly converge to x € C and {(I —T)xm}
converges strongly to w € C, then (I —T)x = w. In particular, if w =0, then x € Fiz(T).

Lemma 2.4. [15] Assume that A is a strongly positive bounded linear operator on a Hilbert space Hy with coefficient
§>0and0 < p <A, then |I — pA| <1 —pd.

Lemma 2.5. [19] Assume that S is a k-strictly pseudocontractive mapping on a Hilbert space Hy. Define a mapping
T by Te =ax+ (1—a)Sx for all x € Hy, where a € [k,1). Then, T is nonexpansive mapping with Fix(T) = Fix(S).

Lemma 2.6. [16] Suppose H; is a Hilbert space. Let g : C — C be a p-Lipschitzian mapping and A : Hy — H; be a
strongly positive bounded linear operator with coefficient v > 0. If uy > Bp, then

((nA = Bg)z — (pA = Bg)w, x — w) > (wy — Bp)llx —w|?,  Va,weH; (2.4)

That is, uh — Bg is strongly monotone with coefficient uy — Bp.

Lemma 2.7. [T1] Let {cu,} be a sequence of non negative real numbers such that

Q41 < (1 - 5m)am + Ym-

where {6} is a sequence in (0,1) and {ym} is a sequence in R such that (i) Y~ 1 6y = 00, (i) lim sup 3= <0 or
m—0o0 m

Yoro_1 [Ym| < oo then i _ag, =0.

Lemma 2.8. [T7] Let {x,} and {t;,} be two bounded sequences in a Banach space X and let {om} be a sequence in
[0, 1] which satisfy the following conditions:

0 < lim info, < lim supo,, < 1.
m—00 m— 00

Suppose i1 = (1 — om)tm + OmTm, for all integers m > 0 and

lim sup(|[tm+1 — tmll — [[Tms1 — Tml]) <O then  lm ||t — zm| = 0.
m—r oo m—r oo

3 Main Result

In this section, we prove a strong convergence theorem based on the proposed itrative method for approximating
a common solution of SVIP (1.3))-(1.4) and a finite family of fixed point problems in real Hilbert spaces.

Theorem 3.1. Let H; and Hy be two real Hilbert spaces and C' be a nonempty closed convex subset of H;. Let
A : Hy — H, be a bounded linear operator. Assume that By : H; — 2™ and B, : Hy — 2¥2 are two maximal
monotone operators. Let {S;}Y | is a finite family of nonexpansive mappings on Hj such that J = QS # ¢, where
S = ﬂiil Fixz(S;). Let g : Hy — H; be a p-Lipschitzian mapping with coefficient p > 0 and D : H; — H; be a strongly
positive bounded linear operator with coefficient v > 0. Define a sequence {z,,} as follows: z; € H; and

Um = TN (@ + 6A*(J? — 1) Azyy),
W, = YmTm + (1 — ) SHOW_1...57 U, (3.1)
Tmt1 = AmBG(Tm) + omTm + (1 — o) — @uD)w,,, m>1,

where A1, 8, u > 0, the sequence {ay, }, {om}, {ym} € [0,1],6%, € (0,1) fori =1,2,... N, S™ = (1—6:,)I+6:,5;, 6 €

(0, %)7 L is the spectral radius of the operator A*A, A* is the adjoint operator of A. Also the following conditions are
satisfied:
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1
(7) u’y>6p,0<am§min{1,HDH},Ogamgb<1for some b € (0,1) and 0 < lim info,, < lim supo, <
IJ, m—r00

m— 00
L
(44) nlgnoo am =0and Y~ o, = 00;
(idi) T |64, — o, =0 for i =1,2,..., N;

(iv) 0<c<A, <d<land lm |ymt1 —ym| =0 for some ¢,d € R.
m— 00

Then the sequence {z,,} converges strongly to & € J, which is a unique solution of the subsequent variational
inequality:
(uD — Bg)i, % — ) <0, Yz €J. (3.2)

Proof . We prove the theorem for N = 2. The method is easily adaptable to the general case. The proof is divided
into five steps.

Step 1. From the condition (i) and (i7), we may consider without loss of generality that

amp < (1= o) DI Ym0,

Since D is strongly positive bounded linear operator on Hy, then

D[] = sup{[{Dv, v)|| : v € Hy, [[o]| = 1}.

We observe that

(1= o) — amuD)v,v) =1 = 0, — amu({Du, v)
>1—0m — amp|D]
> 0.

This shows that ((1 — 0,,)] — a,,,uD) is positive. It follows that
(1 = o) — apuD)|| = sup{{((1 — o) — ampD)v,v) : v € Hy,||v|| =1}
=sup{l — o, — Qpu{Dv,v) : v € Hy,||v] = 1}
<1—o0pym — apuy.

Next, we show that the sequence {z,,} is bounded. Let p € J, we have p = Jﬁlﬁ, Ap = Jff (Ap) and Sp = p. We
estimate
[vm = BII* = I3 (@m + SA*(J52 = I)Azy) — 5|
= [T (@ + OA™ (L2 — IAzy,) — TP
< [(@m + 0A* (I3 — DAzy) — pII?
= lam = Bl + 8[| A (I — DAz |
+20(Tn, — P, AT (I — I)Axyy). (3.3)

Thus, we have

[vm = PII* = l&m — BII* 4+ 03 ((JR2 — 1) Az, AA*(J32 — T)Axy,)
+20(x — P, AT (T2 — I)Amyy). (3.4)

Now, we have

82((J32 = DAz, AAT (T2 — I)Azp) < L6*((J3? — 1) Az, (J32 — I)Azyy)
= LO?||(J 2 — DAz, >, (3.5)
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Denoting A = 26{x,, — P, A*(Jﬁ2 — I)Axz,,) and using l) we have
A =25(xy — p, A" ({2 — I)Azy,)
= 25<A(xm - ]5)’ (JﬁZ - I)Axm>
= 26(A(@m — D) + (J2 = DAz — (J{2 = DAz, (J{2 — I)Azyy,)
= 26{(J 2 Aay, — AP, (J12 = D)Azp) — ||(J2 — I)Azy|*}

1
<2 {iu(,]ff — DAzn|* —I(J32 — DhAzn |}

< (I D). (36)
Using (3.4]) (3.5) and (3.6, we obtain
lom = BlI* < M|z — BlI* + 6(L6 = DII(I? = DAzl (3.7)
Since & € (0, 1), we obtain
lom = BI1* < [lzm — 5. (3.8)
It follows from (3.1) and (3.8) that
lwm — Bl = lom@m + (1 — 00 )55 ST v — D

< omllem = pll + (1 = om)[[S5" 57" vm — B
S omlem —pl+ 1 = om)lvm =1 |
S omllzm =Pl + (1 = om)llem — bl
= Om||zm — DIl (3.9)
Since 0 < app < ||D|| 71, then by Lemma we get || — amuD|| <1 — apy. It follows that
[#mi1 = DIl = llamBg(wm) + (1 = om)I — apD))wm, — p|
= [l (Bg(zm) — uDP) + O (@m — D) + (1 — o) I — D)) (W — )|
< lem (Bg(@m) — uDp)l| + om|zm — pll + [[(1 = o) — ampuD)) (wm — p)|
< anllBg(zm) — BgD)| + cmllBg(D) — kDp|| + omll@m — Bl + (1 — om — cmpy) || (wm — D)l
< amBpllem = pll + oml@m — Pl + (1 = om — ampy) || (@m = P)|| + cum | Bg(P) — uDp|
189(p) —uDﬁH)

= [1 = am(py = Bo)lllwm — Bl + cm(py = Bp) ( py — Bp

I
< max (lem 5, 1Bg(p) — pll)
py = Bp
5\ _ DB
<... < mex (on 5l 1Bg(p) — pll) .
wy — Bp
Therefore, {x,,} is bounded, and so are {vy, }, {wm }, {7 vm }, {95 ST vm }, {9(xm)} and {D(wy,)}.
Step2. We show that lim 2,41 — @ = 0. Let us consider t,, = =*§=75%=, then
m— o0 m
Tmt1 = (1 — 0m)tm + 0. (3.10)
Now,
o Tn4+2 — Om4+1Tm+1 Tm+1 — OmTm
tm+1 - tm - -
1—0oms1 1—om
_ mi1B89(@ma1) + (L= omi)] — a1 D) w41
1—0omy1
. amﬁg(xm) + ((1 - Um)I - amND)wm
1—0om
Am+1(B9(Tm+1) — pDWmt1)  am(Bg(Tm) — pDwy,)

= - + Wit1 — Win- (3.11)
1 —0opt1 l—op
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So,
It = bl < T2 1189 (om 1) = D+ =2 B9 (om) = 1D + myr = |
< THUIBY@m1) = iDwpa ]| + T 1B9(m) = pDw | + s = wrall (3.12)
Now,
lwms1 — Wil = [[Vmr1Tmer + (1 — 'Vm+1)S£n+1S{n+1'Um+1 — YmTm + (1 = Ym) 55" ST U ||
<N = Y1) S5 ST o1 = S35 0m) — (Yt — m) S3"ST 0
+ Ymt1(Tmt1 — Tm) + (Y41 — V)T ||
< Y1l Tmtr — Tl + (1 — 7nb+1)‘|SgL+1S{n+1Um+l — 55" 57" vm||
+ ('Verl - Vm)”S;nS{nUm - me (313)
In addition, we have
155" 1 ST or — S5 ST 0m | < 1185 ST ogsr — SF ST 0m|| + (1S3 ST 01 — S5 ST v
< 185 ST o — S5 ST v |
+ ||S§n+1s?lvm+1 — 85" ST V]l + [[vm1 — vm |
< ||SIn+1'Um+1 = ST 0| + |‘S?+1S?zvm+l = S35 Um1]|
(3.14)

+ [vm+1 — vl

Since, for § € (0, 1), the mapping Jfll (xm + 6A*(Ji312 — I)Ax,,) is averaged and hence nonexpansive, then we

obtain
[Vmt1 = Vil = 1T @mg1 + OA* (T2 = DAz 1) — JOH (@0 + SA™ (L2 — I)Azy, )|

ST + SAT (T2 — DA)Zmg1) — TN+ SA* (T2 — DAz

< Tpgr — Tl (3.15)
Using (3.14)), (3.15) in (3.12)), we get
Am41 «
[tmt1 = tmll = lTmt1 — zm|| < 1m_ b [189(@m+1) — pDWn 41 || + 17_mb||ﬁg(xm) — pDwp |
+ (1= Y ) (IS7 o1 = ST vl + 155" ST 01 — S5 ST 1)
+ (Ym+1 = V)95 ST Vm — |- (3.16)
It follows from the definition S;" that
ST g1 = ST 0mall = (1 = 6p 1 )tng1 + 61 S10ma1 — (1= 05 )Uma1 + 65 S10ma |
< Omi1 = Ol (lvmerll + 1S10m 41 ).
Since mlgnoo 68,41 — 0| =0fori=1,2and {v,,} and {S1v,,} are bounded, we get
lim 157 vmi1 — ST Vi1 = 0. (3.17)
Similarly,
||S;n+1S{nvm+1 - SgnS{nvm-&-IH < |572n+1 - 512n|(||s{nvm+1” + HSS”S{”’U,”_HH),
from which it follows that
Tim (| S5ST g 1 — S5 ST 0| = 0. (3.18)

Hence, by using the conditions (i) and (iv), from (3.16)), (3.17) and (3.19), we get

im sup([tmt1 =t = [[Tme1 — zml]) <0.
m—r 00
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Thus by (3.10) and Lemma [2.8] we conclude that lim ||¢;, — z.,|| = 0, which implies that
—

lm ||Zm41 — zm| = 0.
m—00
Now,
Zm — W < [[2m = Zmiall + | Tma1 — Wil

<Nem = Tmgrll + lamBg(@m) + om@m + (1 — om) ] — apb))wy, — wy,||
< zm = mt1ll + amllBg(xm) — pDwm || + om || Tm — Wi ||

< Nzm = Zmgrll + @ (|1B9(xm)l| — [[#Dw ) + oml|Zm — Wil

that is 1
«
Jom = w0l < T lm = Ema |+ 22— (B9t = D),

which together with the condition (7) and (é¢) implies that

mlgnoO |Zm — W || = 0. (3.19)

Step 3: We will show that the n}gnoo |€m — vm|| = 0. Using 1’ and 1) we observe that
v — B = |TE (2 + 6A*(JP2 = 1) Az,,) — p|?
= |JE (2 + A (JP2 — D)Az,,) — TE 2
< [vm — By T + OA*(JE2 — I) Az, — P
1 . i} . 3
= §{Ilvm = BlI* + |zm + 6A*(J? = DAz — BlI* — ||(vm — D)
— [ + 04" (I — DAz — 5|1}
1 N N
= 5{Ilvm = BlI” + lzm — BII* + 6(L5 = 1)[|(J$2 = I) Az
— (o — @ — SA* (T2 — I)Amm||2}
1 N _ .
§{Ilvm — Bl + llzm = BI° = [lvm — zm | + 67 A*(J22 — 1) Az, |?
= 26(0 — T, A" (I — DAzn)]}

{lom = 8112 + llzm = B2 = llom = @ll? + 26 A(0m = 2p)[1(TFZ = DAz }.

Hence, we obtain

lom = B1* < llem = Bl° ~ lvm = 2| + 20[|A(vm — zm) [I(IX2 = DAZ]- (3.20)

Also using (2.4)) and (2.3]), we get

Zm+1 —15||2 = [lamBg(zm) + omam + (1 = om)I — apb))wp, — 13”2

= [l (Bg(xm) — pDP) + o (Tm — wm) + (I — amuD))(wy, _15)”2

< lom(@m — wm) + (I — ampD)(wp, 713)”2 + 20 (B9(Tm) — pDp, Tymi1 — P)

< [(1 = amp)lwm — Bl + ol — winll]” + 200 | Bg(2n) — DBl [2ms1 — B

<(1- amM'Y)Q”wm - ﬁHQ + Ufn”xm - wm”2 + 20 (1 — ampy)[wm — Bllllzm — wa|
+ 200 || Bg(xm) — pDpl|f|zmr1 — |

< (1= ) [ (@m = B) + (1= Y ) (SE" S0 = B[] + 02 [0 — w2
+ 200 (1 — ampy)l[wm = plll[zm — wm || + 200m || Bg(zm) — uDpl|l|zm+1 — Bl
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<(1- O‘mWY)Q[’Ymem —l? + (1= 3n) (1S5S v _15”2] + o ||m — wn|®
+20m(1 = ampy)[wm = pllllzm — wm |l + 20m[|Bg(2m) — uDp|l|2mi1 — Dl
< (1= ampy)? ['Ymem = BlI” + (1 =) om — 15”2] +omllzm — wn?
+ 20m(1 — ampy)[wm = Pll|zm — win |l + 2am|[Bg(zm) — pDp|||zm+1 — Dl
< (1= amp)? [ymllzm = BII* + (1= ) {llzm — Bl + 6(L8 = D (J2 = ) Az ?}]
+ 031||33m - wm||2 +20m(1 — ampy)|wm — Bl |Tm — winl| + 20m[|Bg(2m) — pDp|||Tm+1 — Bl
— (1= a2 [lm — B2+ (1 = )0(L8 = VIIE? = DAwml?] + 02 [ — wyll?
+ 20m(1 — ampy) [wm = Plll|zm — win | + 2am||Bg(zm) — pDp|||Zm+1 — |-

So,
(1 = mpy) (1 = 3m)8(1 — Lé)”(Jff — DAz |* < ol ll2m — winl® + 20m (1 = ampy) |wn = Bll|Tm — W
+ 2am||B9(zm) — pDP| |2 m+1 — B
+ (1 = ampy)*||@m = BlI* = l2ms1 — BI1%,
which gives

(1= ampey)* (1 =3m)8(1 = LO(J32 = DAz < (amp)?[|lzm — pII?

+ 20m(1 = ampy) |wm = Bll|Tm — wml| + 2am||Bg9(xm) — uDpll||Tm+1 — Il + 0-72n||x7” - wm||2

= 20y ||m = BI* + lem — emri | (l2m — Bl + l2mrs = Bl). (3.21)
Since (1 — L§) > 0 using the condition (i7) and (3.19)) in (3.21]), we get
lim 1(J{2 = I)Amp,|| = 0. (3.22)
Again, using (3.20)), we get
[zmt1 =B < (1= ampy)? [ymllem = BI7 + (1= ym)llom — BI?] + o llzm — winl®
+ 20 (1 — ampy)[wm = plll[€m — wm |l + 20m [ Bg(zm) — pDpl|l|€m+1 — Bl
< (1= ampy)? [ymllzm = 817 + Q@ =) {llzm = BI% — vm — 2w
+ 20[|A(vm — ) 1(J2 = DAZw|1}] + o[l — win|?
+ 20 (1 — ampy) |wm = B||zm — wnll + 200, [|Bg(2m) — pDp||[|2n41 — Bl
= (1= ampy)*lam = BlI* = (1 = ampy)* (1 = vm) |vm — @mll®
+26(1 - O‘m,wY)2(1 - ’Ym)HA(Um —zm)|l ”(Jﬁz - I)Axm”}] + ‘772n||37m - wm”2
+ 20 (1 — ampy)|wm = Bll[|zm — winll + 200, (| Bg(zm) — pDP||[|[Zmt1 — BI|-
So,
(1= ) (1 = ) om — 22 < 2601 = iy 2 (1 = 3 | (0 — 2} (TE2 = DA
+ Ur2n||xm - wm||2 + 20m (1 — ampy)|wm — Bl |2m — W
+ 20| Bg(2m) — pDp| [ 2mr1 — Bl + (ampy)? | 2m — 5]
= 20y |2 = BI* + [2mr1 = Twll(lzm — Bl + 2mr1 — Bl
Thus, from the conditions (i%), (iv), (3.19) and (3.22), we get
mlgnoo [[vm — zm|| = 0. (3.23)
From (3.23)), we get
lZms1 — V|l < |Zms1 — Tm|| + |Zm — vm|| = 0, as m — cc. (3.24)
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From (3.19) and (3.24), we get

[wm = vl < [wm = Tl + [[#m — Tl + [Tma1 = vm| = 0, as m — oco. (3.25)

Now,

155" 51" 0m — vml| < (155" ST vm — win || + [[wm — vl

= V195" ST" Vm — T || + | Wm — V|

< Y5357 0m — vl + Y llvm = Tl + [wim — vm]-

So, from the condition (iv), (3.23) and (3.25), we get

Tm 1
[Vm — Tm |l +

STST U — V|| <
H 2 1 m m”f _,y',n 1_’Ym

|wm — vm| = 0, as m — oo. (3.26)

Step 4: We show that
lim sup{(uD — B9)Z, T — xm) < 0.
m—» o0

where Z is the unique solution of the variational inequality (3.2). Since {z,,} is bounded, there exists a subsequence
of {x,} of {,,} such that x,,, — T as j — oo and

hm <(MD - ﬁg)i'vi' - xmj>'

J—00

lim sup((uD — Bg)Z, & — )
m—0o0

Since ||y, —vm || — 0 as m — 00, 50 vy, — . Noticing that {07, } is bounded for ¢ = 1,2, we can assume 6an — 6L
as j — 00, where 0 < 6°, < 1 for i = 1,2. Define S = (1 — 6. )T + 6% S;(i = 1,2). Then we have Fiz(S®) = Fiz(S;)
for i = 1,2. Furthermore, since Fiz(S5°) N Fix(S5°) = Fix(S1) N Fix(S2) = Fix(S) # ¢ and S is §!_-averaged for
i =1,2, by Lemmal[2.2] we get Fiz(55°55°) = Fiz(S°) N Fiz(95°) = Fiz(S). Note that

157 v = S72ull < 165, — O I(lloll + (1S5l

hence, we get

lim sup ||S;"v — S| = 0, (3.27)
)R yeD

where D is a bounded subset of H; that can be chosen at random. We also have
”Umj - SQOOSfOUmJ” < ”Umj - S;njsinjvmj ” + ”S;njsinjvmj - Sgo ;njvmj ” + ||S2oo levmj - SQOOSvamJ”
< ||Umj - S;njsinjvmj ” + ||S;njsinjvmj - 5200 ;njvmj ” + ||S;njvmj - Sfovmj”

< o, = 85787 v, || 4 sup (1850 = 50 + sup (17 — 7], (3.28)

where D’ is bounded subset including {S]"/v,,,} and D” is a bounded subset including {vy,, }. It is as follows that
from (3.26)), (3.27) and (3.28) that lim vy, — S3°S7Vm, | = 0. So by Lemma [2.3} we have z € Fixz(S5°57°) = S.
J—00

On the other hand, v,,, = Jfll (Tm, + 5A*(J/<312 — IAx,,, ) can be written as

(Tmy — Umy) + A*(Jff — DAz,
A1

€ Byom,. (3.29)

Taking £k — oo in and from , and the fact that the graph of maximal monotone operator
is weakly-strongly closed, 0 € B;(Z), i.e & € SolVIP(By). Because {z,,} and {v,,} exhibit the same asymptotical
behaviour, {Az,,, } weakly converges to AZ. Again using and the fact that the resolvent J 51 2 is nonexpansive
and Lemma [2.3] we get AZ € B(AZ), i.e AT € SolVIP(B,). Thus Z € J. So

lim (D — B9)#, & — 2n,) = (uD — Bg),& —7) < 0. (3.30)

Jj—o0
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Step 5: Finally, we show that z,, — & as m — co. From and (3.1)), we have
|Zm+1 — meQ = [lamBg(xm) + omTm + (I — om)] — apmpD)w, — -73”2

= llam(Bg(@m) — uDE) + o (@m — &) + (I = o)1 — apD)(wy, — )|

< llom(@m — &) + (I = o) — @pnuD) (wy, — )|

+ 200 (Bg(Tm) — pDZ, Tri1 — T)

<[ = om — ampy)llwm — 2| + om|lzm — lez + 20 (Bg(Tm) — Bg(T), Tmt1 — T)
+ 20 (Bg(Z) — pDT, Timy1 — T)

<[ =om — ampy)|zm — 2| + omllzm — CEH}Q + 200 Bp||Tm — Z||[|Tms1 — Z|
+ 200 (Bg(T) — pDZ, Ty 1 — )

< (1= 1) e — 5 + amBp(lm — 5P + [2mss — 72)

+ 20, (D — Bg)Z, T — Ty1). (3.31)

Since py > Bp and 0 < a;y, < m < %, we get 1 — apmpup > 1 — ampup > 0. Hence, from 1) we get

1-— am )2 4+ amfBp . 20, .
_ 2 ( Ky _ A2 D— _
lZmt1 — Tm|” < —— lZm —Z||° + T amﬁp«u BY)T, & — Tpy1)
2am 20 (1 — Bp) 2 200, o
<|1- m ——((uD — T — Ty
1 2 = PO 4 2 (D — )2, — )
+ TYLi’:m’YB HJ:»”L .]3”2
200, -
1 2 20, (1Y — Bp) [—t
1—ampBp
20, (y — Bp) {((MD — B9)E, T — Tmt1)
+ +a,L|, 3.32
1 —amfp (ny = Bp) L (3:32)

where L is the constant satisfying L > sup,,> {;3272 |Tm — ;Tc||2} . Now, using the condition (i) and (3.30), we have

DAL PP

m=0 m=0

and

lim sup («ND — Bg)Z, T — Timg1)
wy = Bp

So, according to Lemma we conclude that ||z, — Z|| = 0, as m — co. Which completes the proof. O

+ amL> <0.

m—roo

4 Numerical example
We give a numerical example which justify the theorem. Let H; = Hy; = R, and By : H; — H; defined as

Bi(z) = 2z and By : Hy — Hy defined as Bs(x) = —%x. For \; = i, we compute the resolvent of B; and By as:
2
T @) = (14 MB) ™ (@) = 3 (@),
_ 5
TRH(@) = (14 M\By) ™ (@) = (@),

Define the mapping A : R - RD: R - R, S :R—>R Sy :R— Rand ¢g: R — R by A(z) = —z,D(z) =
3z, 51 (x) = §,9(x) =sin(z) and g(z) = § Vo cR.

It is clear to observe that S; and S5 are nonexpansive mappings, g is a Lipschitzian mapping with coefficient p = l
and D is a strongly positive bounded linear operator with coefficient v = 2 and A is bounded linear operator on R

with adjoint operator A* such that [|A| = ||JA*|] = 1. Now let us choose 8 =1, up =2, v, = Z—ié, Om = #ﬂl)’
and o, = ﬁ. Also, let us consider &}, = % and §}, = nmli?,) It is simple to see that Sp, S2 are nonexpansive
with Fiz(S1) = Fiz(S2) = {0} and hence Q = {0 € H; : 0 € SolVIP(B;) and A(0) € SolVIP(Bs)}={0}. Therefore,

J =QNS = {0} # ¢. The stopping criterian for our proposed iterative method is ||Z,,41 — Tm|| < 1 x 1075,
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Figure 1: Convergence of {x,,} for initial value zg = 15
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Figure 2: Error plotting of ||Zm4+1 — Zm |-
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Table 1: Numerical result of the iterative method with initial value ¢y = 15.

No. of T |Zm+1 — zm ]|
iterations xo =15 To = 15

1 15.000000 13.461888
3 0.303597 2.1967¢~ 01
5 0.028717 1.7303e~92
7 0.005074 2.6130e793
9 0.001279 5.7500e %4
11 0.000407 1.6200e %4
13 0.000152 5.5000e 9%
15 0.000065 2.1000e~95
17 0.000030 9.0000¢~96
19 0.000015 4.0000¢796
21 0.000008 2.0000e 96
23 0.000005 1.0000e—96
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