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Abstract

In the present manuscript, we prove some new fixed point results for multivalued mappings in the setting of b-metric
space. Also, we obtain some results for the data dependence of fixed points, the directed graph endowed with a
b-metric and for the fractals of an iterated multifunction system. The proven results extend and generalize some of
the results in the literature.
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1 Introduction and preliminaries

In 1993, Czerwick [10] introduced the concept of the b-metric space which generalized metric spaces. Thereafter,
many theorems has been given by many researchers in the framework of b-metric space. In 1969, Nadler [20] has
considered multivalued contractions for the study of fixed point theorems. Mizoguchi-Takahashi [18], Reich [21] have
generalized the results of fixed point theorems in single-valued metric mappings as well as multivalued mappings in
the b-metric space. Thereafter, many authors worked on multivalued mappings in the setting of b-metric space (see
[1, 4, 12, 15]).

Fractal is set of points whose fractal dimension exceeds its topological dimension. In mathematics and applied
sciences fractals and multivalued fractals has played an important role [3, 7]. Fisher [13] gave Collage Theorems for
iterated multivalued systems and for respective continuation principles. Boriceanu et al. [5] presented the study of
multivalued fractals in the framework of b-metric spaces. In the same paper, the authors raised some open problems
on multivalued fractals in b-metric space assuming continuity of given b-metrics.

The present manuscript has five sections. In the first section, we give introduction of the topic, basic definitions and
notations to be used in the sequel. In the second section, we prove some fixed point results for multivalued mappings
in the framework of b-metric spaces together with some consequences of the proved results. In the third section, we
discuss the data dependance of fixed points for multivalued mappings. In the fourth section, we obtain some results
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for the directed graph endowed with b-metric space. In the last section, we prove some results for the fractals of an
iterated multifunction system.

We shall consider the following notion for the families of subsets of a b-metric space (X, d). P1(X) = {Y : Y ⊂ X},
P (X) = {Y ∈ P1(X) : Y ̸= ϕ}, Pb(X) = {Y ∈ P (X) : Y is bounded}}, Pcl(X) = {Y ∈ P (X) : Y is closed},
Pcp(X) = {Y ∈ P (X) : Y is compact} and Pcl,b(X) = {Y ∈ P (X) : Y is closed and bounded}. The following
definitions are required in sequel.

Definition 1.1. [8] The gap functional D : P (X)× P (X) → R+ ∪ {+∞} is defined as

D(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

In particular case of x0 ∈ X, then D(x0, B) = D({x0}, B).

Definition 1.2. [8] The excess generalized functional ρ : P (X)× P (X) → R+ ∪ {+∞} is defined as

ρ(A,B) = sup{D(a,B) : a ∈ A}.

Definition 1.3. [8] The Pompeiu-Hausdorff generalized functional H : P (X)× P (X) → R+ ∪ {+∞} is defined as

H(A,B) = max{ρ(A,B), ρ(B,A)}.

Definition 1.4. [8] The generalized diameter functional δ : P (X)× P (X) → R+ ∪ {+∞}, is defined as

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

In particular, δ(A) = δ(A,A) is diameter of the set A.

Following the result of [20], one can easily obtained the result on b-metric space.

Lemma 1.5. [20] Let A,B be non empty, closed and bounded subsets of a b-metric space (X, d) and α ∈ A, then for
each ϵ > 0, there exists β ∈ B such that d(α, β) ≤ Hb(A,B) + ϵ.

Lemma 1.6. [8] Let (X, d) be a b-metric space with constant s. Then

D(x,B) ≤ s
(
d(x, y) +D(y,B)

)
, for all x, y ∈ X,B ⊂ X.

Lemma 1.7. [8] Let (X, d) be a b-metric space with constant s, B ∈ P (X) and x ∈ X. Then D(x,B) = 0 if and only
if x ∈ B̄.

2 Fixed point results for multivalued mappings

In this section, we prove some results for multivalued mappings in the setting of b-metric space.

Theorem 2.1. Let (X, d) be a complete b-metric space with constant s ≥ 1 and Let T, S : X → Pcl,b(X) be
multivalued mappings satisfying the conditions;

H(Tx, Sy) ≤ α1D(x, Tx) + α2D(y, Sy) + α3D(x, Sy) + α4D(y, Tx) + α5

(
D(x, Sy) +D(y, Tx)

2

)
+α6

D(x, Tx)D(y, Sy)

1 + d(x, y)
+ α7d(x, y), (2.1)

for all x, y ∈ X and αi ≥ 0, 1 ≤ i ≤ 7, with (α1 + α2)(s+ 1) + (s2 + s)(α3 + α4 + α5) + 2α6 + 2sα7 < 2,
and 2(α2 + α3) + α5 < 2

s . Then T and S have a unique common fixed point.
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Proof . For any fixed x ∈ X, define x0 = x and assume that x1 ∈ Tx0, x2 ∈ Sx1 such that x2n+1 = Tx2n, x2n+2 =
Sx2n+1, Using (2.1), we have

H(Tx0, Sx1) ≤ α1D(x0, Tx0) + α2D(x1, Sx1) + α3D(x0, Sx1) + α4D(x1, Tx0)

+α5

(
D(x0, Sx1) +D(x1, Tx0)

2

)
+ α6

D(x0, Tx0)D(x1, Sx1)

1 + d(x0, x1)
+ α7d(x0, x1)

≤ α1D(x0, x1) + α2D(Tx0, Sx1) + α3s
(
d(x0, x1) +D(Tx0, Sx1)

)
+ α4D(x1, x1)

+α5

(
s(d(x0, x1) +D(Tx0, Sx1)) +D(x1, x1)

2

)
+ α6

D(x0, x1)D(Tx0, Sx1)

1 + d(x0, x1)

+α7d(x0, x1)

≤ α1d(x0, x1) + α2H(Tx0, Sx1) + α3s
(
d(x0, x1) +H(Tx0, Sx1)

)
+ α4d(x1, x1)

+α5

(
s(d(x0, x1) +H(Tx0, Sx1)) + d(x1, x1)

2

)
+ α6H(Tx0, Sx1) + α7d(x0, x1).

On solving, we get

(1− α2 − sα3 −
sα5

2
− α6)H(Tx0, Sx1) ≤ (α1 + sα3 +

sα5

2
+ α7)d(x0, x1). (2.2)

By symmetry, we have

H(Sx1, Tx0) ≤ α1D(x1, Sx1) + α2D(x0, Tx0) + α3D(x1, Tx0) + α4D(x0, Sx1)

+α5

(
D(x1, Tx0) +D(x0, Sx1)

2

)
+ α6

D(x1, Sx1)D(x0, Tx0)

1 + d(x1, x0)
+ α7d(x1, x0)

≤ α1D(Tx0, Sx1) + α2D(x0, x1) + α3D(x1, x1) + α4s(d(x0, x1) +D(Tx0, Sx1))

+α5

(
d(x1, x1) + s(d(x0, x1) +D(Tx0, Sx1))

2

)
+ α6D(Tx0, Sx1) + α7d(x1, x0)

≤ α1H(Tx0, Sx1) + α2d(x0, x1) + α3d(x1, x1) + α4s(d(x0, x1) +H(Tx0, Sx1))

+α5

(
d(x1, x1) + s(d(x0, x1) +H(Tx0, Sx1))

2

)
+ α6H(Tx0, Sx1) + α7d(x1, x0).

Further, we get

(1− α1 − sα4 −
sα5

2
− α6)H(Tx0, Sx1) ≤ (α2 + sα4 +

sα5

2
+ α7)d(x1, x0). (2.3)

On adding (2.2) and (2.3), we get

H(Tx0, Sx1) ≤ kd(x1, x0), where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
. (2.4)

By Lemma (1.5), we can choose x2 ∈ Sx1 and ϵ = k, such that

d(x1, x2) ≤ H(Tx0, Sx1) + k, where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
. (2.5)

Now, for x3 ∈ Tx2 and using (2.1), we get

H(Tx2, Sx1) ≤ α1D(x2, Tx2) + α2D(x1, Sx1) + α3D(x2, Sx1) + α4D(x1, Tx2)

+α5

(
D(x2, Sx1) +D(x1, Tx2)

2

)
+ α6

D(x2, Tx2)D(x1, Sx1)

1 + d(x2, x1)
+ α7d(x2, x1)

≤ α1D(Sx1, Tx2) + α2D(x1, x2) + α3D(x2, x2) + α4s(d(x1, x2) +D(Sx1, Tx2))

+α5

(
D(x2, x2) + s(d(x1, x2) +D(Sx1, Tx2))

2

)
+ α6D(x2, Tx2) + α7d(x2, x1)

≤ α1H(Sx1, Tx2) + α2d(x1, x2) + α3d(x2, x2) + α4s(d(x1, x2) +H(Sx1, Tx2))

+α5

(
d(x2, x2) + s(d(x1, x2) +H(Sx1, Tx2))

2

)
+ α6H(Sx1, Tx2) + α7d(x2, x1).
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On solving, we get

(1− α1 − sα4 −
sα5

2
− α6)H(Sx1, Tx2) ≤ (α2 + sα4 +

sα5

2
+ α7)d(x1, x2). (2.6)

By symmetry, we have

H(Sx1, Tx2) ≤ α1D(x1, Sx1) + α2D(x2, Tx2) + α3D(x1, Tx2) + α4D(x2, Sx1)

+α5

(
D(x1, Tx2) +D(x2, Sx1)

2

)
+ α6

D(x1, Sx1)D(x2, Tx2)

1 + d(x2, x1)
+ α7d(x1, x2)

≤ α1D(x1, x2) + α2D(Sx1, Tx2) + α3s(d(x1, x2) +D(Sx1, Tx2)) + α4D(x2, x2)

+α5

(
s(d(x1, x2) +D(Sx1, Tx2)) +D(x2, x2)

2

)
+ α6D(Sx1, Tx2) + α7d(x1, x2)

≤ α1d(x1, x2) + α2H(Sx1, Tx2) + α3s(d(x1, x2) +H(Sx1, Tx2)) + α4d(x2, x2)

+α5

(
s(d(x1, x2) +H(Sx1, Tx2)) + d(x2, x2)

2

)
+ α6H(Sx1, Tx2) + α7d(x1, x2).

Further, we get

(1− α2 − sα3 −
sα5

2
− α6)H(Sx1, Tx2) ≤ (α1 + sα3 +

sα5

2
+ α7)d(x1, x2). (2.7)

On adding (2.6) and (2.7), we get

H(Sx1, Tx2) ≤ kd(x1, x2), where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
. (2.8)

By Lemma (1.5), we can choose x3 ∈ Tx2 and ϵ = k2, such that

d(x2, x3) ≤ H(Sx1, Tx2) + k2, where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
. (2.9)

On solving, we get

d(x2, x3) ≤ kd(x1, x2) + k2

≤ k2d(x0, x1) + 2k2, where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
. (2.10)

Continuing this process and by induction, we obtain a sequence {xn}n∈N∪{0} such that x2n+1 ∈ Tx2n, x2n+2 ∈ Sx2n+1,
using (2.1), we get

H(Tx2n, Sx2n+1) ≤ α1D(x2n, Tx2n) + α2D(x2n+1, Sx2n+1) + α3D(x2n, Sx2n+1) +

α4D(x2n+1, Tx2n) + α5

(
D(x2n, Sx2n+1) +D(x2n+1, Tx2n)

2

)
+α6

D(x2n, Tx2n)D(x2n+1, Sx2n+1)

1 + d(x2n, x2n+1)
+ α7d(x2n, x2n+1)

≤ α1D(x2n, x2n+1) + α2D(Tx2n, Sx2n+1) + α3s
(
d(x2n, x2n+1) +D(Tx2n, Sx2n+1)

)
+α4D(x2n+1, x2n+1)

+α5

(
s(d(x2n, x2n+1) +D(Tx2n, Sx2n+1)) + d(x2n+1, x2n+1)

2

)
+α6D(Tx2n, Sx2n+1) + α7d(x2n, x2n+1)

≤ α1d(x2n, x2n+1) + α2H(Tx2n, Sx2n+1) + α3s
(
d(x2n, x2n+1) +H(Tx2n, Sx2n+1)

)
+α4d(x2n+1, x2n+1)

+α5

(
s(d(x2n, x2n+1) +H(Tx2n, Sx2n+1)) + d(x2n+1, x2n+1)

2

)
+α6H(Tx2n, Sx2n+1) + α7d(x2n, x2n+1).
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Further, we obtain

(1− α2 − sα3 −
sα5

2
− α6)H(Tx2n, Sx2n+1) ≤ (α1 + sα3 +

sα5

2
+ α7)d(x2n, x2n+1). (2.11)

By symmetry, we have

H(Sx2n+1, Tx2n) ≤ α1D(x2n+1, Sx2n+1) + α2D(x2n, Tx2n) + α3D(x2n+1, Tx2n) + α4D(x2n, Sx2n+1)

+α5

(
D(x2n+1, Tx2n) +D(x2n, Sx2n+1)

2

)
+α6

D(x2n+1, Sx2n+1)D(x2n, Tx2n)

1 + d(x2n+1, x2n)
+ α7d(x2n+1, x2n)

≤ α1D(x2n+1, x2n+2) + α2D(x2n, x2n+1) + α3D(x2n+1, x2n+1) + α4s
(
d(x2n, x2n+1)

+D(Tx2n, Sx2n+1)
)

+α5

(
s(d(x2n, x2n+1) +D(Tx2n, Sx2n+1)) +D(x2n+1, x2n+1)

2

)
+α6D(Tx2n, Sx2n+1) + α7d(x2n+1, x2n),

≤ α1H(x2n+1, x2n+2) + α2d(x2n, x2n+1) + α3d(x2n+1, x2n+1) + α4s
(
d(x2n, x2n+1)

+H(Tx2n, Sx2n+1)
)

+α5

(
s(d(x2n, x2n+1) +H(Tx2n, Sx2n+1)) + d(x2n+1, x2n+1)

2

)
+α6H(Tx2n, Sx2n+1) + α7d(x2n+1, x2n).

Further, we get

(1− α1 − sα4 −
sα5

2
− α6)H(Tx2n, Sx2n+1) ≤ (α2 + sα4 +

sα5

2
+ α7)d(x2n, x2n+1). (2.12)

Adding (2.11) and (2.12), we get

H(Tx2n, Sx2n+1) ≤ kd(x2n, x2n+1), where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
.

By Lemma (1.5), we can choose x2n+1 ∈ Tx2n and ϵ = k2n+1, such that

d(x2n+1, x2n+2) ≤ H(Tx2n, Sx2n+1) + k2n+1

≤ kd(x2n, x2n+1) + k2n+1, (2.13)

where k = α1+α2+sα3+sα4+sα5+2α7
2−(α1+α2+sα3+sα4+sα5+2α6)

< 1
s
. Therefore, we have

d(xn, xn+1) ≤ kd(xn−1, xn) + kn, where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
<

1

s
.

Hence,
d(xn, xn+1) ≤ kd(xn−1, xn) + kn ≤ k(kd(xn−2, xn−1) + kn−1) + kn ≤ .... ≤ knd(x0, x1) + nkn.

For 0 < k < 1,
∑

kn and
∑

nkn have same radius of convergence. Then, {xn}n∈N∪{0} is a Cauchy sequence. Also, since
(X, d) is complete b-metric space, there exists z ∈ X such that xn → z. Now, we shall show that z is a common fixed point of
T and S. Consider

D(z, Tz) ≤ s(d(z, x2n+2) +D(Sx2n+1, T z)) ≤ s(d(z, x2n+2) +H(Sx2n+1, T z)),

D(z, Sz) ≤ s(d(z, x2n+1) +D(Tx2n, Sz)) ≤ s(d(z, x2n+1) +H(Tx2n, Sz)). (2.14)

Using (2.1), we have

H(Tx2n, Sz) ≤ α1D(x2n, Tx2n) + α2D(z, Sz) + α3D(x2n, Sz) + α4D(z, Tx2n)

+α5

(
D(x2n, Sz) +D(z, Tx2n)

2

)
+ α6

D(x2n, Tx2n)D(z, Sz)

1 + d(x2n, z)
+ α7d(x2n, z)

≤ α1D(x2n, x2n+1) + α2D(z, Sz) + α3D(x2n, Sz) + α4D(z, x2n+1)

+α5

(
D(x2n, Sz) +D(z, x2n+1)

2

)
+ α6

D(x2n, x2n+1)D(z, Sz)

1 + d(x2n, z)

+α7d(x2n, z). (2.15)
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Using (2.15) in (2.14) and letting n → ∞, we get

D(z, Sz) ≤ s

(
d(z, z) + α1d(z, z) + α2D(z, Sz) + α3D(z, Sz) + α4d(z, z)

+α5

(
D(z, Sz) + d(z, z)

2

)
+ α6

d(z, z)D(z, Sz)

1 + d(z, z)
+ α7d(z, z)

)
.

On solving, we get

(
1− s(α2 + α3 +

α5

2
)
)
D(z, Sz) ≤ 0.

But, since
(
1− s(α2 + α3 +

α5
2
)
)
> 0. Therefore, we obtain D(z, Sz) = 0. Also, S(z) is closed. Hence by Lemma (1.7), we

have z ∈ Sz. Working on similar lines we can show that z ∈ Tz. Hence, z is a common fixed point of T and S. Next, we shall
show that z is a unique common fixed point of T and S. For this consider

d(z, v) ≤ H(Tz, Sv)

≤ α1D(z, Tz) + α2D(v, Sv) + α3D(z, Sv) + α4D(v, Tz) + α5

(
D(z, Sv) +D(v, Tz)

2

)
+α6

D(z, Tz)D(v, Sv)

1 + d(z, v)
+ α7d(z, v)

≤ α1d(z, z) + α2d(v, v) + α3d(z, v) + α4d(v, z) + α5

(
d(z, v) + d(v, z)

2

)
+α6

d(z, z)d(v, v)

1 + d(z, v)
+ α7d(z, v).

On solving, we get(
1− (α3 + α4 + α5 + α7)

)
d(v, z) ≤ 0.

But, since
(
1 − (α3 + α4 + α5 + α7)

)
> 0. Therefore, d(v, z) = 0 i.e v = z. Hence, z is a unique common fixed point of T

and S. □

For T = S, we have the following result.

Corollary 2.2. Let (X, d) be a complete b-metric space with constant s ≥ 1 and T : X → Pcl,b(X) multivalued
mapping satisfying the conditions;

H(Tx, Ty) ≤ α1D(x, Tx) + α2D(y, Ty) + α3D(x, Ty) + α4D(y, Tx) + α5

(
D(x, Ty) +D(y, Tx)

2

)
+α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y), (2.16)

for all x, y ∈ X and αi ≥ 0, 1 ≤ i ≤ 7, with (α1 + α2)(s + 1) + (s2 + s)(α3 + α4 + α5) + 2α6 + 2sα7 < 2 and
2(α2 + α3) + α5 < 2

s . Then T has unique fixed point.

On the lines of Theorem 2.1, we have the following result.

Theorem 2.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and Let T, S : X → Pcl,b(X) be
multivalued mappings satisfying the conditions;

H(Tx, Sy) ≤ α
D(y, Sy)D(x, Tx)

1 + d(x, y)
+ βd(x, y) + γ(D(x, Tx) +D(y, Sy)) + δ(D(y, Tx) +D(x, Sy)),

for all x, y ∈ X, α, β, γ and δ ≥ 0 with α+ sβ + (s+ 1)γ + (s2 + s)δ < 1 and γ + δ < 1
s . Then T and S have unique

common fixed point.
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For T = S, we have the following result.

Corollary 2.4. Let (X, d) be a complete b-metric space with constant s ≥ 1 and Let T : X → Pcl,b(X) be multivalued
mappings satisfying the conditions

H(Tx, Ty) ≤ α
D(y, Ty)D(x, Tx)

1 + d(x, y)
+ βd(x, y) + γ(D(x, Tx) +D(y, Ty)) + δ(D(y, Tx) +D(x, Ty)),

for all x, y ∈ X, α, β, γ and δ ≥ 0 with α + sβ + (s + 1)γ + (s2 + s)δ < 1, and γ + δ < 1
s . Then T has unique fixed

point.

As a consequences of the Theorem (2.1), we have the following result.

Theorem 2.5. Let (X, d) be a complete b-metric space with constant s ≥ 1 and Let T, S : X → Pcl,b(X) be
multivalued mappings satisfying the conditions;

H(Tx, Sy) ≤ α1d(x, Tx) + α2d(y, Sy) + α3d(x, Sy) + α4d(y, Tx) + α5

(
d(x, Sy) + d(y, Tx)

2

)
+α6

d(x, Tx)d(y, Sy)

1 + d(x, y)
+ α7d(x, y), (2.17)

for all x, y ∈ X and αi ≥ 0, 1 ≤ i ≤ 7, with (α1 + α2)(s + 1) + (s2 + s)(α3 + α4 + α5) + 2α6 + 2sα7 < 2 and
2(α2 + α3) + α5 < 2

s . Then T and S have unique common fixed point.

Example 2.6. Let X = R, we define d : X ×X → X by d(x, y) = |x− y| for all x, y ∈ X. Then (X, d) is a complete
b-metric space. Define T : X → Pcl,b(X) by Tx = x

2 for all x, y ∈ X. Then,

H(Tx, Ty) ≤ 1

2
d(x, y)

(
α1 = α2 = α3 = α4 = α5 = α6 = 0 and α7 =

1

2

)
.

Therefore, using Theorem 2.5(for the case when T = S) we obtain that T has a unique fixed point which is 0 ∈ X.

Example 2.7. Let X = {0, 1
2 , 1} and define d : X ×X → R+ as

d(0, 0) = d(1/2, 1/2) = d(1, 1) = 0

and,

d(0, 1) = 10 = d(1, 0)

d(0, 1/2) = 1 = d(1/2, 0)

d(1, 1/2) = 8 = d(1/2, 1).

Then (X, d) is a complete b-metric space with s = 10/9. Define multivalued map T, S : X → Pcl,b(X) as T (x) = 1/2
for all x ∈ X and

S(x) =

{
{0} for x = 1;
{1/2} for x = 0, 1/2.

Clearly from above we have T ̸= S.

Case(i): When x = 0, y = 1 we have Tx = 1/2 and Sy = 0. Then H(Tx, Sy) = 1 and

α1d(x, Tx) + α2d(y, Sy)+ α3d(x, Sy) +α4d(y, Tx) + α5

(
d(x, Sy) + d(y, Tx)

2

)
+α6

d(x, Tx)d(y, Sy)

1 + d(x, y)
+ α7d(x, y) ≥ 2,
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where α5 = 1/2 and αi = 0 for all i = 1, 2, 3, 4, 6, 7.

Case(ii): When x = 1/2, y = 1 we have Tx = 1/2 and Sy = 0. Then H(Tx, Sy) = 1 and

α1d(x, Tx) + α2d(y, Sy)+ α3d(x, Sy) +α4d(y, Tx) + α5

(
d(x, Sy) + d(y, Tx)

2

)
+α6

d(x, Tx)d(y, Sy)

1 + d(x, y)
+ α7d(x, y) ≥ 9/4,

where α5 = 1/2 and αi = 0 for all i = 1, 2, 3, 4, 6, 7.

Case(iii): When x = 1, y = 1 we have Tx = 1/2 and Sy = 0. Then H(Tx, Sy) = 1 and

α1d(x, Tx) + α2d(y, Sy)+ α3d(x, Sy) +α4d(y, Tx) + α5

(
d(x, Sy) + d(y, Tx)

2

)
+α6

d(x, Tx)d(y, Sy)

1 + d(x, y)
+ α7d(x, y) ≥ 9/2,

where α5 = 1/2 and αi = 0 for all i = 1, 2, 3, 4, 6, 7. For any other values of x and y, we have H(Tx, Ty) = 0. Since
all conditions of Theorem 2.5 holds, so we have that T and S have unique common fixed point which is 1/2.

Remark 2.1. For different values of αis in the inequality (2.16), we can extend the following version of well known
results of literature for multivalued mappings in the framework of b-metric space.

1. (Banach type, see [2]) There exists a number r ∈ (0, 1
s ) such that for each x, y ∈ X

H(Tx, Ty) ≤ rd(x, y).

2. (Kannan type, see [16, 17]) There exists a number r ∈ (0, 1
s+1 ) such that for each x, y ∈ X

H(Tx, Ty) ≤ r(D(x, Tx) +D(y, Ty)).

3. (Chatterjea type, see [6]) There exists a number r ∈ (0, 1
s(s+1) ) such that for each x, y ∈ X

H(Tx, Ty) ≤ r(D(x, Ty) +D(y, Tx)).

4. (Hardy and Roger type, see [14]) There exits non-negative αi (for i = 1, 2, 3, 4, 5) satisfying (α1 + α2)(s + 1) +
(s2 + s)(α3 + α4) + 2sα5 < 2 and α2 + α3 < 1

s , such that for each x, y ∈ X

H(Tx, Ty) ≤ α1D(x, Tx) + α2D(y, Ty) + α3D(x, Ty) + α4D(y, Tx) + α5d(x, y).

5. (Reich Type, see [22]) There exit non-negative αi (for i = 1, 2, 3, 4, 5) satisfying (α1 +α2)(s+1)+ 2sα3 < 2 and
α2 < 1

s , such that for each x, y ∈ X

H(Tx, Ty) ≤ α1D(x, Tx) + α2D(y, Ty) + α3d(x, y).

3 Data Dependence of Fixed Points for Multivalued Mappings

In this section, we discuss the data dependence of fixed points for multivalued mappings in the setting of b-metric
space.

Theorem 3.1. Let (X, d) be a complete b-metric space with constant s ≥ 1, S1, S2 : X → Pcl,b(X) be two multivalued
mappings satisfying the following conditions;

1. there exists ξ > 0 such that H(S1(x), S2(x)) ≤ ξ for all x ∈ X;
2. there exists αji ∈ R+ for j = 1, 2, .., 7, (α1i + α2i)(s+ 1) + (s2 + s)(α3i + α4i + α5i) + 2α6i + 2sα7i < 2

and 2(α2i + α3i) + α5i <
2
s such that

H(Six, Siy) ≤ α1iD(x, Six) + α2iD(y, Siy) + α3iD(x, Siy) + α4iD(y, Six)

+α5i

(
D(x, Siy) +D(y, Six)

2

)
+α6i

D(x, Six)D(y, Siy)

1 + d(x, y)
+ α7id(x, y) for all x, y ∈ X, i ∈ {1, 2}.
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In these conditions, we have

H(FixS1, F ixS2) ≤
sξ

1− smax{k1, k2}
+

s2 max{k1, k2}
(1− smax{k1, k2})2

,

where ki =
α1i+α2i+sα3i+sα4i+sα5i+2α7i

2−(α1i+α2i+sα3i+sα4i+sα5i+2α6i)
< 1

s for i ∈ {1, 2}.

Proof . We shall prove that for every y∗1 ∈ FixS1, there exists y∗2 ∈ FixS2 such that

d(y∗1 , y
∗
2) ≤

sξ

1− sk2
+

s2k2
(1− sk2)2

.

Let y∗1 ∈ FixS1 be chosen arbitrarily and assume that k2 = α12+α22+sα32+sα42+sα52+2α72

2−(α12+α22+sα32+sα42+sα52+2α62)
< 1

s . On the lines of

the Theorem (2.1), we can construct a sequence {yn}n∈N ⊂ X of successive approximations of S2 with y0 = y∗1 and
y1 ∈ S2(y

∗
1) with

d(yn, yn+1) ≤ kn2 d(y0, y1) + nkn2 for each n ∈ N.

If we consider that the sequence {yn}n∈N converges to y∗2 , we have y
∗
2 ∈ FixS2. Moreover, for each n ≥ 0, we have

d(yn, yn+p) ≤ skn2

(
1− (sk2)

p

1− sk2

)
d(x0, x1) + nskn2

(
1− (sk2)

p

1− sk2

)
+ skn2

p−1∑
t=1

t(sk2)
t, p ∈ N.

Letting p → ∞, we get

d(yn, y
∗
2) ≤

(
skn2

1− sk2

)
d(x0, x1) +

(
nskn2
1− sk2

)
+

s2kn+1
2

(1− sk2)2
, n ∈ N. (3.1)

Choosing n = 0 in (3.1), we get

d(y∗1 , y
∗
2) ≤ s

(1− sk2)
d(y∗1 , y1) +

s2k2
(1− sk2)2

≤ s

(1− sk2)
H(S1y

∗
1 , S2y

∗
1) +

s2k2
(1− sk2)2

≤ sξ

(1− sk2)
+

s2k2
(1− sk2)2

.

Interchanging the role of S1 and S2, we have that for every µ ∈ FixS2, there exists ν ∈ FixS1 such that

d(µ, ν) ≤ sξ

1− sk1
+

s2k1
(1− sk1)2

, where k1 =
2− (α11 + α21 + sα31 + sα41 + sα51 + 2α61)

α11 + α21 + sα31 + sα41 + sα51 + 2α71
<

1

s
.

Thus,

H(FixS1, F ixS2) ≤
sξ

1− smax{k1, k2}
+

s2 max{k1, k2}
(1− smax{k1, k2})2

.

□

4 Some fixed point results for the directed graph endowed with b-metric space

Let (X, d) be a b-metric space and ∆ be the diagonal of X ×X. Let G be a directed graph such that the set V (G)
of its vertices coincides with X and ∆ ⊆ E(G), E(G) being the set of edges of the graph. Assuming that G has no
parallel edges we will have that G can be identified with the pair (V (G), E(G)).

If x and y are the vertices of G, then a path in G from x to y of length k ∈ N is a finite sequence {xn}n∈{0,1,2,...,k}
of vertices such that x0 = x, xk = y and (xi−1, xi) ∈ E(G) for i ∈ {1, 2, ..., k}.
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Let the undirected graph obtained from G by ignoring the direction of edges be G̃. We know that a graph G is
connected if there is a path between any two vertices and it is weakly connected if G̃ is connected. Suppose that the
graph obtained by reversing the direction of edges be represented by G−1. Thus,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Since it is more convenient to treat G̃ as a directed graph for which the set of its edges is symmetric, under this
convention, we have

E(G̃) = E(G) ∪ E(G−1).

Definition 4.1. [8] Let (X, d) be a complete b-metric space with constant s ≥ 1 and G be a directed graph. We
say that the triple (X, d,G) has a property (A) if for any sequence {xn}n∈N ⊂ X with xn → x, as n → ∞, and
(xn, xn+1) ∈ E(G), for n ∈ N, we have (xn, x) ∈ E(G).

In this section, we prove some fixed point results for a multivalued mapping satisfying a more general con-
tractive of Hardy and Roger type with respect to functional H. Define a set XT = {x ∈ X : there exists y ∈
T (x) such that (x, y) ∈ E(G)}.

Definition 4.2. Let (X, d) be a complete b-metric space with constant s ≥ 1, G be a directed graph and T : X →
Pb(X) a multivalued mapping. The mapping T is said to be a multivalued G-contraction with constant k if 0 < k < 1

s ,

where k = α1+α2+s(α3+α4+α5)+2α7

2−α1−α2−s(α3+α4+α5)−2α6
and

(a) for all (x, y) ∈ E(G),

H(Tx, Ty) ≤ α1D(x, Tx) + α2D(y, Ty) + α3D(x, Ty) + α4D(y, Tx) +

α5

(
D(x, Ty) +D(y, Tx)

2

)
+ α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y);

(b) for (x, y) ∈ E(G), if u ∈ T (x) and v ∈ T (y) are such that d(u, v) ≤ ad(u, v) + α, for some α > 0, then
(u, v) ∈ E(G).

Theorem 4.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and G be a directed graph such that the
triple (X, d,G) has the property (A). If T : X → Pb,cl is a multivalued G-contraction defined by (4.2), then;

1. For any x ∈ XT , T |[x]G̃ has a fixed point;

2. If Y = ∪{[x]G̃;x ∈ XT }, then T |Y has a fixed point in Y ;

3. Fix(T ) ̸= ϕ if and only if XT ̸= ϕ.

Proof . Let x0 ∈ XT , there exist x1 ∈ T (x0) such that (x0, x1) ∈ E(G). On the line of Theorem (2.1), we have the
following result

H(Tx0, Tx1) ≤ kd(x0, x1), where k =
α1 + α2 + sα3 + sα4 + sα5 + 2α7

2− (α1 + α2 + sα3 + sα4 + sα5 + 2α6)
. (4.1)

By Lemma (1.5), for ϵ = k, there exists x2 ∈ T (x1) such that

d(x1, x2) ≤ H(Tx0, Tx1) + k ≤ kd(x0, x1) + k.

We have (x0, x1) ∈ E(G) , x1 ∈ Tx0, x2 ∈ Tx1 and d(x1, x2) ≤ kd(x0, x1) + k. Using definition (4.2), we get
(x1, x2) ∈ E(G). Working on the lines, we get H(Tx1, Tx2) ≤ kd(x1, x2) ≤ k2d(x0, x1) + k2. Using Lemma (1.5), for
ϵ = k2, there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) + k2 ≤ k2d(x0, x1) + 2k2.
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Continuing the same process, we get xn+1 ∈ Txn such that (xn, xn+1) ∈ E(G) and

d(xn, xn+1) ≤ knd(x0, x1) + nkn for each n ∈ N.

Now,

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + ...+ spd(xn+p−1, xn+p)

≤ (sknd(x0, x1) + snkn) + (s2kn+1d(x0, x1) + s2(n+ 1)kn+1)

+...+ (spkn+p−1d(x0, x1) + sp(n+ p− 1)kn+p−1)

= skn
(
1 + (sk) + ...+ (sk)p−1

)
d(x0, x1) + nskn

(
1 + sk + (sk)2 + ...+ (sk)p−1

)
+skn

(
(sk) + 2(sk)2 + ...+ (p− 1)(sk)p−1

)
.

Therefore, d(xn, xn+p) → 0 if n → ∞. Thus the sequence {xn}n∈N is a Cauchy sequence in a complete b-metric
space. Hence, there exists x ∈ X such that xn → x, as n → ∞. Therefore, from property (A) we conclude that
(xn, x) ∈ E(G), for each n ∈ N. Hence, by using the Definition (4.2) and the above property, we get

0 ≤ lim
n→∞

H(Txn, Tx) ≤ lim
n→∞

d(xn, x) = 0.

Next, we shall prove that x ∈ Tx. We have,

D(x, Tx) ≤ s(d(x, xn+1) +D(xn+1, x)) ≤ s(d(x, xn+1) +H(xn+1, x)) → 0, as n → ∞.

Therefore, D(x, Tx) = 0, this implies x ∈ Tx. Also (xn, x) ∈ E(G), for n ∈ N, we conclude that (x0, x1, ..., xkn , x)
is a path in G, and thus x ∈ [x0]G̃.

(2) It can be obtain as the consequences of the above case.

(3) If FixT ̸= ϕ, then there exists x ∈ Tx. As ∆ ⊂ E(G) and we have (x, x) ∈ E(G), thus x ∈ XT . If XT ̸= ϕ,
using case (i) we conclude that FixT ̸= ϕ. □

Example 4.4. Let X = {0, 1, 2, 3, 4} and define d : X × X → R+ as d(x, y) = |x − y|. Then (X, d) is a complete
b-metric space. Define multivalued map T : X → Pb,cl as:

d(x, y) =

{
{0} for x ∈ {0, 1};
{0, 1} for x ∈ {2, 3, 4}.

Let V (G) = {0, 1, 2, 3, 4} and E(G) = {(0, 1), (0, 2), (0, 3), (0, 4)}, where graph G = (V (G), E(G)).

Case(i):If (x, y) = (0, 1). Then H(Tx, Ty) = 0 and

α1D(x, Tx)+ α2D(y, Ty) +α3D(x, Ty) + α4D(y, Tx) +

α5

(
D(x, Ty) +D(y, Tx)

2

)
+ α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 1/2,

for all αi = 0 where i = 1, 2, 3, 5, 6, 7 and α4 = 1/2.

Case(ii):If (x, y) = (0, 2). Then H(Tx, Ty) = 1 and

α1D(x, Tx)+ α2D(y, Ty) +α3D(x, Ty) + α4D(y, Tx) +

α5

(
D(x, Ty) +D(y, Tx)

2

)
+ α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 1,

for all αi = 0 where i = 1, 2, 3, 5, 6, 7 and α4 = 1/2.

Case(iii):If (x, y) = (0, 3). Then H(Tx, Ty) = 1 and

α1D(x, Tx)+ α2D(y, Ty) +α3D(x, Ty) + α4D(y, Tx) +

α5

(
D(x, Ty) +D(y, Tx)

2

)
+ α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 3/2,
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for all αi = 0 where i = 1, 2, 3, 5, 6, 7 and α4 = 1/2.

Case(iv):If (x, y) = (0, 4). Then H(Tx, Ty) = 1 and

α1D(x, Tx)+ α2D(y, Ty) +α3D(x, Ty) + α4D(y, Tx) +

α5

(
D(x, Ty) +D(y, Tx)

2

)
+ α6

D(x, Tx)D(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 2,

for all αi = 0 where i = 1, 2, 3, 5, 6, 7 and α4 = 1/2. Since all conditions of Theorem 4.3 holds, so we obtain that T has a fixed
point which is x = 0.

5 Some fixed point results for multivalued fractals in b-metric spaces

Let (X, d) be a b-metric space with constant s ≥ 1 and S1, S2, ..., Sm : X → P (X) be multivalued mappings.
The system S = (S1, S2, ..., Sm) is called an iterated multivalued system (IMS). If S = (S1, S2, ..., Sm) is such that
Si : X → Pcp(X), i = 1, 2, ...,m are upper semi-continuous, then the mapping TS defined as

TS(Y ) =

m⋃
i=1

Si(Y ), for each Y ∈ Pcp(X),

is called the multi-fractal mapping generated by the iterated multifunction system S = (S1, S2, ..., Sm). Since the
mappings Si : X → Pcp(X), i = 1, 2, ...,m are upper semi continuous, then TS : Pcp(X) → Pcp(X). A nonempty
compact subset B∗ ⊂ X is said to be a multivalued fractals with respect to the iterated multifunction system S =
(S1, S2, ..., Sm) if and only if it is a fixed point for the associated multi-fractal mapping, i.e TS(B

∗) = B∗.

Theorem 5.1. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X → X be a self mapping defined as

d(Tx, Ty) ≤ α1d(x, Tx) + α2d(y, Ty) + α3d(x, Ty) + α4d(y, Tx) + α5

(
d(x, Ty) + d(y, Tx)

2

)
+α6

d(x, Tx)d(y, Ty)

1 + d(x, y)
+ α7d(x, y) for all x, y ∈ X, (5.1)

with constant k ∈ (0, 1
s ) where k = α1+α2+s(α3+α4+α5)+2α7

2−α1−α2−s(α3+α4+α5)−2α6
. Then

1. Fix T={x∗};
2. For every x ∈ X the sequence {Tn(x)}n∈N

d−→ x∗, as n → ∞.

Proof . The existence of the fixed point and result (2) follows from Theorem (4.3). For uniqueness assume that
x∗, y∗ ∈ FixT , x∗ ̸= y∗, then

d(x∗, y∗) = d(Tx∗, Ty∗)

≤ α1d(x
∗, Tx∗) + α2d(y

∗, T y∗) + α3d(x
∗, Ty∗) + α4d(y

∗, Tx∗)

+α5

(
d(x∗, T y∗) + d(y∗, Tx∗)

2

)
+α6

d(x∗, Tx∗)d(y∗, T y∗)

1 + d(x∗, y∗)
+ α7d(x

∗, y∗) for all x∗, y∗ ∈ X.

On solving, we get (
1− (α3 + α4 + α5 + α7)

)
d(x∗, y∗) ≤ 0.

But,
∑7

i=1 αi < 1. Therefore, d(x∗, y∗) = 0 and hence x∗ = y∗. This implies uniqueness. □

Example 5.2. Let X = [0, 1/2] and d(x, y) = |x− y|2. Then (X, d) is a complete b-metric space with s = 2. Define
T : X → X as:

g(x) =

{
0 for x ∈ [0, 1/4];
1

8
for x ∈ (1/4, 1/2].
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Case(i): When x, y ∈ [0, 1/4], we have d(Tx, Ty) = 0 and,

α1d(x, Tx) + α2d(y, Ty)+ α3d(x, Ty) +α4d(y, Tx) +

α5

(
d(x, Ty) + d(y, Tx)

2

)
+ α6

d(x, Tx)d(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 0,

for all αi = 0 where i = 1, 3, 4, 5, 6, 7 and α2 = 1/2.

Case(ii): When x, y ∈ (1/4, 1/2], we have d(Tx, Ty) = 0 and,

α1d(x, Tx) + α2d(y, Ty)+ α3d(x, Ty) +α4d(y, Tx) +

α5

(
d(x, Ty) + d(y, Tx)

2

)
+ α6

d(x, Tx)d(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 0,

for all αi = 0 where i = 1, 3, 4, 5, 6, 7 and α2 = 1/2.

Case(iii): When x ∈ [0, 1/4] and y ∈ (1/4, 1/2], we have d(Tx, Ty) = 1/64 and,

α1d(x, Tx) + α2d(y, Ty)+ α3d(x, Ty) +α4d(y, Tx) +

α5

(
d(x, Ty) + d(y, Tx)

2

)
+ α6

d(x, Tx)d(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 1/32,

for all αi = 0 where i = 1, 3, 4, 5, 6, 7 and α2 = 1/2.

Case(iv): When x ∈ (1/4, 1/2] and y ∈ [0, 1/4], we have d(Tx, Ty) = 1/64 and,

α1d(x, Tx) + α2d(y, Ty)+ α3d(x, Ty) +α4d(y, Tx) +

α5

(
d(x, Ty) + d(y, Tx)

2

)
+ α6

d(x, Tx)d(y, Ty)

1 + d(x, y)
+ α7d(x, y) ≥ 1/32,

for all αi = 0 where i = 1, 3, 4, 5, 6, 7 and α2 = 1/2. Since the hypothesis of Theorem 5.1 holds, thus T has fixed point which is
x = 0.

Corollary 5.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and Let T : X → X be self mappings
satisfying the conditions

d(Tx, Ty) ≤ α
d(y, Ty)d(x, Tx)

1 + d(x, y)
+ βd(x, y) + γ(d(x, Tx) + d(y, Ty)) + δ(d(y, Tx) + d(x, Ty))

for all x, y ∈ X, α, β, γ and δ ≥ 0 with α+ sβ + (s+1)γ + (s2 + s)δ < 1, γ + δ < 1
s . Then T has a unique fixed point.

Theorem 5.4. Let (X, d) be a complete b-metric space with constants s ≥ 1, such that d : X×X → R+ is continuous
b-metric. Let Si : X → Pcp(X), i = 1, ..,m, be upper semi continuous multivalued mappings of the type

H(Six, Siy) ≤ α1iD(x, Six) + α2iD(y, Siy) + α3iD(x, Siy) + α4iD(y, Six)

+α5i

(
D(x, Siy) +D(y, Six)

2

)
+ α6i

D(x, Six)D(y, Siy)

1 + d(x, y)

+α7id(x, y) for all (x, y) ∈ X with constant ki ∈ (0,
1

s
), (5.2)

where ki =
α1i+α2i+s(α3i+α4i+α5i)+2α7i

2−α1i−α2i−s(α3i+α4i+α5i)−2α6i
. Then, the multivalued mapping TS generated by the iterated multifunction

system S = (S1, S2, ..., Sm), by the relation TS(Y ) =
m⋃
i=1

Si(Y ), for each Y ∈ Pcp(X), verify the following conditions:

1. TS : (Pcp(X), H) → (Pcp(X), H);
2. TS is a multivalued mapping of the type (5.2), in the sense that

H(TS(Y1), TS(Y2)) ≤ α1H(Y1, TS(Y1)) + α2H(Y2, TS(Y2)) + α3H(Y1, TS(Y2)) + α4H(Y2, TS(Y1)) +

α5
(H(Y1, TS(Y2)) +H(Y2, TS(Y1)))

2
+ α6

H(Y1, TS(Y1))H(Y2, TS(Y2))

1 +H(Y1, Y2)
+

α7H(Y1, Y2);
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3. There exists a unique multivalued fractals B∗
TS

, such that (Tn
S (B))n∈N

H−→ B∗
TS

, as n → ∞, for every B ∈ Pcp(X).

Proof . (1) By the upper semi continuous mapping Si, i = 1, 2, ...,m, we have that TS : (Pcp(X), H) → (Pcp(X), H).

(2) We will firstly prove that for any Y1, Y2 ∈ Pcp(X), we have

H(Si(Y1), Si(Y2)) ≤ α1iH(Y1, Si(Y1)) + α2iH(Y2, Si(Y2)) + α3iH(Y1, Si(Y2)) + α4iH(Y2, Si(Y1)) +

α5i

(
H(Y1, Si(Y2)) +H(Y2, Si(Y1))

2

)
+ α6i

H(Y1, Si(Y1))H(Y2, Si(Y2))

1 +H(Y1, Y2)
+

α7iH(Y1, Y2) for all i = 1, 2, ...,m.

For this assume that Y1, Y2 ∈ Pcp(X). For each i = 1, 2, ...,m, we have

ρ(Si(Y1), Si(Y2)) = sup
x∈Y1

ρ(Si(x), Si(Y2))

= sup
x∈Y1

( inf
y∈Y2

(ρ(Si(x), Si(y))))

≤ sup
x∈Y1

( inf
y∈Y2

(H(Si(x), Si(y))))

= sup
x∈Y1

(
inf
y∈Y2

(
α1iD(x, Si(x)) + α2iD(y, Si(y)) + α3iD(x, Si(y)) + α4iD(y, Si(x))

+α5i

(
D(x, Si(y)) +D(y, Si(x))

2

)
+ α6i

D(x, Si(x))D(y, Si(y))

1 + d(x, y)
+ α7id(x, y)

))
= α1iρ(Y1, Si(Y1)) + α2iρ(Y2, Si(Y2)) + α3iρ(Y1, Si(Y2)) + α4iρ(Y2, Si(Y1))

+α5i

(
ρ(Y1, Si(Y2)) + ρ(Y2, Si(Y1))

2

)
+ α6i

ρ(Y1, Si(Y1))ρ(Y2, Si(Y2))

1 +H(Y1, Y2)

+α7iH(Y1, Y2)

≤ α1iH(Y1, Si(Y1)) + α2iH(Y2, Si(Y2)) + α3iH(Y1, Si(Y2)) + α4iH(Y2, Si(Y1))

+α5i

(
H(Y1, Si(Y2)) +H(Y2, Si(Y1)

2

)
+ α6i

H(Y1, Si(Y1))H(Y2, Si(Y2))

1 +H(Y1, Y2)

+α7iH(Y1, Y2).

Hence, for each i = 1, 2, ..m, we have

H(Si(Y1), Si(Y2)) ≤ α1iH(Y1, Si(Y1)) + α2iH(Y2, Si(Y2)) + α3iH(Y1, Si(Y2)) + α4iH(Y2, Si(Y1))

+α5i

(
H(Y1, Si(Y2)) +H(Y2, Si(Y1)

2

)
+ α6i

H(Y1, Si(Y1))H(Y2, Si(Y2))

1 +H(Y1, Y2)

+α7iH(Y1, Y2).

Using the property,

H

( m⋃
i=1

Si(Y1),

m⋃
i=1

Si(Y2)

)
≤ max

{
H(S1(Y1), S1(Y2)), ...,H(Sm(Y1), Sm(Y2))

}
,

we get,

H(TS(Y1), TS(Y2)) ≤ max
i∈{1,2,...,m}

{
H(Si(Y1), Si(Y2))

}
,

H(TS(Y1), TS(Y2)) ≤ max
i∈{1,2,...,m}

{
α1iH(Y1, Si(Y1)) + α2iH(Y2, Si(Y2)) + α3iH(Y1, Si(Y2))

+α4iH(Y2, Si(Y1)) + α5i
(H(Y1, Si(Y2)) +H(Y2, Si(Y1)))

2

+α6i
H(Y1, Si(Y1))H(Y2, Si(Y2))

1 +H(Y1, Y2)
+ α7iH(Y1, Y2)

}
,



Multivalued operators, data dependence of fixed points and fractals 2857

≤ max
i∈{1,2,...,m}

(α1i)H

(
Y1,

m⋃
i=1

Si(Y1)

)
+ max

i∈{1,2,...,m}
(α2i)H

(
Y2,

m⋃
i=1

Si(Y2)

)

+ max
i∈{1,2,...,m}

(α3i)H

(
Y1,

m⋃
i=1

Si(Y2)

)
+ max

i∈{1,2,...,m}
(α4i)H

(
Y2,

m⋃
i=1

Si(Y1)

)
+

+ max
i∈{1,2,...,m}

(α5i)

(H

(
Y1,

m⋃
i=1

Si(Y2)

)
+H

(
Y2,

m⋃
i=1

Si(Y1)

)
2

)

+ max
i∈{1,2,...,m}

(α6i)

H

(
Y1,

m⋃
i=1

Si(Y1)

)
H

(
Y2,

m⋃
i=1

Si(Y2)

)
1 +H(Y1, Y2)

+ max
i∈{1,2,...,m}

(α7i)H(Y1, Y2).

Let αj = maxi∈{1,2,...,m}(αji), where j = 1, 2, ..., 7. Therefore, we get

H(TS(Y1), TS(Y2)) ≤ α1H(Y1, TS(Y1)) + α2H(Y2, TS(Y2)) + α3H(Y1, TS(Y2)) + α4H(Y2, TS(Y1))

+α5
(H(Y1, TS(Y2)) +H(Y2, TS(Y1)))

2
+ α6

H(Y1, TS(Y1))H(Y2, TS(Y2))

1 +H(Y1, Y2)

+α7H(Y1, Y2).

(3) From (2), we have TS is a single valued mapping on the complete b-metric space (Pcp(X), H) and by the
Theorem (5.1), we get Fix(TS) = {B∗

TS
} and Tn

S → B∗
TS

and n → ∞, for each B ∈ Pcp(X). □
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