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HYERS-ULAM STABILITY OF THE QUADRATIC FUNCTIONAL
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Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. In the present paper a solution of the generalized quadratic functional
equation

f(kx + y) + f(kx + σ(y)) = 2k2f(x) + 2f(y), x, y ∈ E

is given where σ is an involution of the normed space E and k is a fixed positive
integer. Furthermore we investigate the Hyers-Ulam-Rassias stability of the func-
tional equation. The Hyers-Ulam stability on unbounded domains is also studied.
Applications of the results for the asymptotic behavior of the generalized quadratic
functional equation are provided.

1. Introduction

In 1940, S. M. Ulam [28] raised a question concerning the stability of group ho-
momorphisms: Let G1 be a group and let G2 be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphisms a : G1 → G2 with d(h(x), a(x)) < ε for all x ∈ G1?
The first partial solution to Ulam’s problem was given by Hyers [8] under the as-
sumption that G1 and G2 are Banach spaces.
Hyers proved that each solution of the functional inequality
‖f(x + y)− f(x)− f(y)‖ ≤ ε, for all x, y ∈ G1, can be approximated by an additive
function a, given by the formula a(x) = limn→+∞ 2−nf(2nx).
In 1978, Th. M. Rassias [16] provided a generalization of Hyers’s stability theorem
which allows the Cauchy difference to be unbounded, as follows:

Theorem 1.1. [16] Let f : V −→ X be a mapping between Banach spaces and let
p < 1 be fixed. Suppose f satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.1)
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for some θ ≥ 0 and for all x, y ∈ V (x, y ∈ V \ {0} if p < 0). Then there exists a
unique additive mapping T : V −→ X such that

‖f(x)− T (x)‖ ≤ 2θ

2p − 2
‖x‖p (1.2)

for all x ∈ V (x ∈ V \ {0} if p < 0).
If, in addition, f(tx) is continuous in t for each fixed x ∈ V , then T is linear.

A particular case of Rassias’s theorem regarding the Hyers-Ulam stability of the
additive mapping was proved by Aoki [1].
The terminology Hyers-Ulam-Rassias stability originates from these historical back-
grounds. Since then, a great deal of works has been published by a number of
mathematicians for other functional equations (see for example [4], [5], [6], [7], [10],
[14], [17], [25] and the references therein).
A Hyers-Ulam stability theorem for the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ E, (1.3)

was proved by Skof [26] and later by S. M. Jung [13] on unbounded domains.
In [5], Czerwik proved the Hyers-Ulam-Rassias stability of equation (1.3).
Recently, the functional equation

f(kx + y) + f(kx− y) = 2k2f(x) + 2f(y), x, y ∈ E, (1.4)

was solved by J.-R. Lee et al. [12]. Indeed ,they proved the Hyers-Ulam-Rassias
stability theorem of equation (1.4).
Throughout this paper, let k denote a fixed positive integer. Let E and F be a vector
space and a Banach space, respectively. Suppose σ : E → E is an automorphism of
E such that σ(σ(x)) = x, for all x ∈ E.
The purpose of the present paper is to extend the results mentioned due to Jung
Rye Lee et al [12] to the generalized quadratic functional equation

f(kx + y) + f(kx + σ(y)) = 2k2f(x) + 2f(y), x, y ∈ E. (1.5)

It’s clear that equation (1.5) is a proper extension of equation (1.4) (σ = −I) and
equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ E. (1.6)

Equation (1.6) has been studied by Stetkær [27] and the Hyers-Ulam-Rassias The-
orem has been obtained by Bouikhalene et al. [2, 3]. So in this paper we consider
the case: k ≥ 2.
Our results are organized as follows: In section 2, we determine the general solution
of the functional equation (1.5). In section 3, we prove the Hyers-Ulam-Rassias sta-
bility of the equation (1.5) in Banach spaces. In section 4, we obtain the Hyers-Ulam
stability of equation (1.5) on unbounded domains.

2. general solution of the generalized quadratic functional
equation (1.5)

In this section we solve the functional equation (1.5) by means of solutions of
equation (1.6).
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Theorem 2.1. Let k ∈ N\{0, 1}. Let E and F be two vector spaces. A mapping
f : E → F satisfies the functional equation

f(kx + y) + f(kx + σ(y)) = 2k2f(x) + 2f(y), x, y ∈ E (2.1)

if and only if f : E → F satisfies

f(x+y)+f(x+σ(y)) = 2f(x)+2f(y) and f(x+σ(x)) = 0 for all x, y ∈ E. (2.2)

Proof. Putting x = 0 and y = 0 in (2.1), we see that f(0) = 0.
Putting y = 0 in (2.1), we obtain

f(kx) = k2f(x), (2.3)

for all x ∈ E. Letting x = 0 in (2.1), we get f(σ(y)) = f(y), for all y ∈ E.
We can now prove the first part of (2.2)

f(kx + y) + f(kx + σ(y)) = 2k2f(x) + 2f(y) = 2f(kx) + 2f(y) (2.4)

for all x, y ∈ E. So the mapping f satisfies (1.6).
Now, we will prove that f satisfies f(x + σ(x)) = 0 for all x ∈ E. By applying the
inductive argument, we show that

f(n(x + σ(x))) = nf(x + σ(x)) (2.5)

for all x ∈ E and for all n ∈ N. Replacing x and y by x + σ(x) in (1.6), we find
f(2(x + σ(x))) = 2f(x + σ(x)). Writting n(x + σ(x)) instead of x and x + σ(x)
instead of y in (1.6), we get

2f((n+1)(x+σ(x))) = 2f(n(x+σ(x)))+2f(x+σ(x)) = 2nf(x+σ(x))+2f(x+σ(x))

= 2(n + 1)f(x + σ(x)).

This proves the validity of (2.5) for all n ∈ N.
By using (2.3) and (2.5), we obtain k2f(x + σ(x)) = kf(x + σ(x)), for all x ∈ E,
since k ≥ 2, then we get f(x + σ(x)) = 0, for all x ∈ E.
We shall now prove the converse. Let f : E → F be a solution of equation (2.2).
Replacing x by (n− 1)x and y by x + σ(x) in (2.2), we obtain

f(nx + σ(x)) = f((n− 1)x), (2.6)

for all x ∈ E and for all n ∈ N∗.
We will prove by mathematical induction that

f(nx) = n2f(x), n ∈ N. (2.7)

By letting x = y in (2.2), we obtain (2.7) for n = 2. The inductive step must be
demonstrated to hold true for the integer n + 1.
By using (2.6) and (1.6) we find that

f(nx + x) + f(nx + σ(x)) = 2f(nx) + 2f(x)

f((n + 1)x) + f(nx + σ(x)) = 2n2f(x) + 2f(x)

f((n + 1)x) + f((n− 1)x) = 2n2f(x) + 2f(x)

f((n + 1)x) + (n− 1)2f(x) = 2n2f(x) + 2f(x).

Finally, we get
f((n + 1)x) = (n + 1)2f(x), proving (2.7).
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By using (1.6) and (2.7) we prove that f is a solution of equation (1.5).

f(kx + y) + f(kx + σ(y)) = 2f(kx) + 2f(y) = 2k2f(x) + 2f(y), x, y ∈ E.

This completes the proof of Theorem 2.1. �

Corollary 2.2. [12] Let k ∈ N\{0}. Let E and F be two vector spaces. A mapping
f : E → F satisfies the functional equation

f(kx + y) + f(kx− y) = 2k2f(x) + 2f(y), x, y ∈ E (2.8)

if and only if f : E → F satisfies the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ E. (2.9)

Corollary 2.3. Let k ∈ N\{0, 1}. Let E and F be two vector spaces. A mapping
f : E → F satisfies the functional equation

f(kx + y) = k2f(x) + f(y), x, y ∈ E (2.10)

if and only if f ≡ 0.

3. Hyers-Ulam-Rassias stability of equation (1.5)

In this section we investigate the Hyers-Ulam-Rassias stability of the functional
equation (1.5).

Theorem 3.1. Let E be an abelian group, F a Banach space and f : E → F a
mapping which satisfies the inequality

‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ ≤ δ, (3.1)

for all x, y ∈ E and for some δ ≥ 0. Then there exists a unique mapping q : E → F
solution of (1.5) such that

‖f(x)− q(x)‖ ≤ δ

2k2

k2 + 1

k2 − 1
, x ∈ E. (3.2)

Proof. By letting y = 0 (resp. x = y = 0) in (3.1), we get respectively

‖f(x)− 1

k2
{f(kx)− f(0)}‖ ≤ δ

2k2
, x ∈ E. (3.3)

‖f(0)‖ ≤ δ

2k2
, x ∈ E. (3.4)

By triangle inequality, we deduce that

‖f(x)− 1

k2
{f(kx)}‖ ≤ δ

2k2
+

δ

2k4
, x ∈ E. (3.5)

By applying the inductive assumption we prove

‖f(x)− 1

k2n
{f(knx)}‖ ≤ δ

2k2
(1 +

1

k2
)[1 +

1

k2
+ . . . +

1

k2(n−1)
] (3.6)

for all n ∈ N. From (3.5) it follows that (3.6) is true for n = 1. Assume now that
(3.6) holds for n ∈ N. The inductive step must be demonstrated to hold for n + 1,
that is

‖f(x)− 1

k2(n+1)
{f(kn+1x)}‖
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≤ ‖f(x)− 1

k2n
{f(knx)}‖+

1

k2n
‖f(knx)− 1

k2
{f(kn+1x)}‖

≤ δ

2k2
(1 +

1

k2
)[1 +

1

k2
+ . . . +

1

k2(n−1)
] +

1

k2n

δ

2k2
(1 +

1

k2
)

=
δ

2k2
(1 +

1

k2
)[1 +

1

k2
+ . . . +

1

k2n
].

This proves the validity of the inequality (3.6).
Let us define the sequence of functions

fn(x) =
1

k2n
{f(knx)}, x ∈ E, n ∈ N.

We will show that {fn(x)}n∈N is a Cauchy sequence for every x ∈ E. In fact, by
using (3.5) one has

‖fn+1(x)− fn(x)‖ = ‖ 1

k2(n+1)
{f(kn+1x)} − 1

k2n
{f(knx)}‖

=
1

k2n
‖f(knx)− 1

k2
{f(kn+1x)}‖ ≤ δ

2k2
(1 +

1

k2
)

1

k2n
.

Since 1
k

< 1, it follows that {fn(x)}n∈N is a Cauchy sequence for every x ∈ E. How-
ever, F is a complete normed space, thus the limit function q(x) = limn→+∞ fn(x)
exists for every x ∈ E.
We will now prove that q is a solution of equation (1.5). Let x, y be two elements
of E. From (3.1) and the definition of fn it follows that

‖fn(kx + y) + fn(kx + σ(y))− 2k2fn(x)− 2fn(y)‖

=
1

k2n
‖f(kknx + kny) + f(kknx + σ(kny))− 2k2f(knx)− 2f(kny)‖ ≤ δ

k2n
.

By letting n → +∞, we get the equality

q(kx + y) + q(kx + σ(y)) = 2k2q(x) + 2q(y), x, y ∈ E.

Assume now that there exist two mapping qi : E → F (i = 1, 2) satisfying (1.5) and
(3.2).
By mathematical induction, we can easily verify that

qi(k
nx) = k2nqi(x), (i = 1, 2). (3.7)

For all x ∈ E and all n ∈ N, we have

‖q1(x)− q2(x)‖ =
1

k2n
‖q1(k

nx)− q2(k
nx)‖

≤ 1

k2n
‖q1(k

nx)− f(knx)‖+
1

k2n
‖q2(k

nx)− f(knx)‖

≤ δ

k2(n+1)

k2 + 1

k2 − 1
.

If we let n −→ +∞, we get q1(x) = q2(x) for all x ∈ E. This ends the proof
of the theorem.
By using Theorem 3.1 and Corollary 2.2, we get
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Corollary 3.2. [12] Let E be a vector space, F a Banach space and f : E → F a
mapping which satisfies the inequality

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ ≤ δ, (3.8)

for all x, y ∈ E and for some δ ≥ 0. Then there exists a unique mapping q : E → F
solution of (1.3) such that

‖f(x)− q(x)‖ ≤ δ

2k2

k2 + 1

k2 − 1
, x ∈ E. (3.9)

�

Theorem 3.3. Let E be a normed space and F a Banach space. Suppose a mapping
f : E → F satisfies the inequality

‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p), (3.10)

for some θ ≥ 0, p ∈]0, 2[ and for all x, y ∈ E. Then there exists a unique mapping
q : E → F , that is a solution of the functional equation (1.5) such that

‖f(x)− q(x)‖ ≤ θ

2

‖x‖p

k2 − kp
, (3.11)

for all x ∈ E.

Proof. Suppose that f satisfies the inequality (3.10). Letting x = y = 0 in (3.10),
we get f(0) = 0. Putting y = 0 in (3.10), we get

‖2f(kx)− 2k2f(x)‖ ≤ θ‖x‖p, (3.12)

for all x ∈ E. So

‖f(x)− 1

k2
f(kx)‖ ≤ θ

2k2
‖x‖p, (3.13)

for all x ∈ E.
By mathematical induction we verify that

‖f(x)− 1

k2n
f(knx)‖ ≤ θ

2k2
[1 +

1

k2−p
+ . . . +

1

k(n−1)(2−p)
]‖x‖p, (3.14)

holds for all n ∈ N. Next, we will show that the sequence of functions fn(x) =
1

k2n f(knx) is a Cauchy sequence for every x ∈ E. By using the inequality (3.13), we
get

‖fn+1(x)− fn(x)‖ = ‖ 1

k2(n+1)
f(kn+1x)− 1

k2n
f(knx)‖

=
1

k2n
‖f(knx)− 1

k2
f(kn+1x)‖ ≤ 1

kn(2−p)

θ

2k2
‖x‖p.

Consequently, {fn(x)}n∈N is a Cauchy sequence for all x ∈ E. Since F is a complete
normed space, the limit function q(x) = limn→+∞ fn(x) exists for every x ∈ E. Let
us now show that q is a solution of equation (1.5). Indeed,

‖fn(kx + y) + fn(kx + σ(y))− 2k2fn(x)− 2fn(y)‖

=
1

k2n
‖f(kknx + kny) + f(kknx + σ(kny))− 2k2f(knx)− 2f(kny)‖

≤ θ

kn(2−p)
(‖x‖p + ‖y‖p).
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By letting n → +∞, we get the desired result.
The uniqueness of the mapping q can be proved by using a similar argument as in
the proof of the previous theorem. This completes the proof of the theorem. �

Corollary 3.4. [12] Let E be a normed space and F a Banach space. Assume a
function f : E → F satisfies the inequality

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p), (3.15)

for some θ ≥ 0, p ∈]0, 2[ and for all x, y ∈ E. Then there exists a unique mapping
q : E → F , solution of the quadratic functional equation (1.3) and satisfying the
inequality

‖f(x)− q(x)‖ ≤ θ

2

‖x‖p

k2 − kp
(3.16)

for all x ∈ E.

Theorem 3.5. Let E be a normed vector space, F a Banach space and f : E → F
a mapping which satisfies the inequality (3.10) for some θ ≥ 0, p > 2 and for all
x, y ∈ E. Then there exists a unique mapping q : E → F , that is a solution of the
functional equation (1.5) and satisfying

‖f(x)− q(x)‖ ≤ θ

2

‖x‖p

kp − k2
(3.17)

for all x ∈ E.

Corollary 3.6. [12] Let E be a normed vector space, F a Banach space. Suppose a
function f : E → F satisfies the inequality

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p), (3.18)

for some θ ≥ 0, p > 2 and for all x, y ∈ E. Then there exists a unique mapping
q : E → F , that is a solution of the functional equation (1.3), such that

‖f(x)− q(x)‖ ≤ θ

2

‖x‖p

kp − k2
(3.19)

for all x ∈ E.

4. Hyers-Ulam stability of equation (1.5) on unbounded domains

In this section, we will investigate the Hyers-Ulam stability of equation (1.5) on
unbounded domains: {(x, y) ∈ E2 : ‖x‖+ ‖y‖ ≥ d}.

Theorem 4.1. Let d > 0 be given. Assume that a mapping f : E → F satisfies the
inequality

‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ ≤ δ, (4.1)

for all x, y ∈ E with ‖x‖+‖y‖ ≥ d. Then, there exists a unique mapping Q : E → F
solution of equation (1.5) such that

‖f(x)−Q(x)‖ ≤ 2δ

k2

k2 + 1

k2 − 1
, x ∈ E. (4.2)
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Proof. Let x, y ∈ E such that 0 < ‖x‖ + ‖y‖ < d. We choose z = 2nx if x 6= 0 or
z = 2ny if y 6= 0 with n large enough.
Clearly, we see

‖z

k
‖+ ‖kx + y‖ ≥ d, ‖z

k
‖+ ‖kx + σ(y)‖ ≥ d, ‖x‖+ ‖z + σ(y)‖ ≥ d,

‖x‖+ ‖y + z‖ ≥ d, ‖z

k
‖+ ‖y‖ ≥ d, ‖kx + y + σ(z)‖ ≥ d, ‖kx + σ(y) + σ(z)‖ ≥ d.

From inequality (4.1), the triangle inequality and the following equation

2[f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)]

= −[f(z + kx + y) + f(z + σ(kx) + σ(y))− 2k2f(
z

k
)− 2f(kx + y)]

−[f(z + kx + σ(y)) + f(z + σ(kx) + y)− 2k2f(
z

k
)− 2f(kx + σ(y))]

+[f(kx + z + σ(y)) + f(kx + σ(z) + y)− 2k2f(x)− 2f(z + σ(y))]

+[f(kx + y + z) + f(kx + σ(y) + σ(z))− 2k2f(x)− 2f(y + z)]

+2[f(z + y) + f(z + σ(y))− 2k2f(
z

k
)− 2f(y)]

+[f(z + σ(kx) + σ(y))− f(kx + y + σ(z))]− 2k2f(0)

+[f(σ(kx) + z + y)− f(kx + σ(y) + σ(z))] + 2k2f(0)

we get
‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ ≤ 4δ,

for x, y ∈ E with x 6= 0 and y 6= 0.
Now, if x = y = 0, we use the following relation with an arbitrary z ∈ E such that
‖z‖ = kd

2[f(0) + f(0)− 2k2f(0)− 2f(0)]

= [f(z) + f(σ(z))− 2k2f(0)− 2f(z)] + [f(z)− f(σ(z))− 2k2f(0)]

to obtain
‖2k2f(0)‖ ≤ δ.

Consequently, the inequality

‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ ≤ 4δ, (4.3)

holds for all x, y ∈ E. Therefore, by using Theorem 3.1, we get the rest of the
proof. �

Corollary 4.2. Let d > 0 be given. Assume that a mapping f : E → F satisfies the
inequality

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ ≤ δ, (4.4)

for all x, y ∈ E with ‖x‖+‖y‖ ≥ d. Then, there exists a unique mapping Q : E → F
solution of equation (1.3) such that

‖f(x)−Q(x)‖ ≤ 2δ

k2

k2 + 1

k2 − 1
, x ∈ E. (4.5)

Corollary 4.3. A mapping f : E → F is a solution of equation (1.5) if and only if

‖f(kx + y) + f(kx + σ(y))− 2k2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (4.6)
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Corollary 4.4. A mapping f : E → F is a solution of equation (1.4) if and only if

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (4.7)

Corollary 4.5. A mapping f : E → F is a solution of equation (1.3) if and only if

‖f(kx + y) + f(kx− y)− 2k2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (4.8)

Corollary 4.6. [13]A mapping f : E → F is a solution of equation (1.3) if and
only if

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (4.9)
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