- Yuk Ming Tang, H.L. Ho, 3D Modeling and Computer Graphics in Virtual Reality, Mixed Reality and Three-Dimensional Computer Graphics, 2020, 10.5772/intechopen.91443.
- Swantje Bargmann, Benjamin Klusemann, Jürgen Markmann, Jan Eike Schnabel, Konrad Schneider, Celal Soyarslan, Jana Wilmers, Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science, Volume 96, July 2018, Pages 322-384.
- Mauro Mazzei and Davide Quaroni, Development of a 3D WebGIS Application for the Visualization of Seismic Risk on Infrastructural Work, Int. J. Geo-Inf. 2022, 11(1), 22; https://doi.org/10.3390/ijgi11010022.
- Rumeng Lv, Xiaobing Chen, and Bingying Zhang, A simplified algorithm for 3D mesh model considering the influence of edge features, Journal of Physics: Conference Series, 2021.
- Guangyou Zhou; Shangda Yuan; Sumei Luo, Mesh Simplification Algorithm Based on the Quadratic Error Metric and Triangle Collapse, IEEE Access, Vol. 8, pp. 196341–196350, 2020.
- Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen. "Decimation of triangle meshes." ACM Siggraph Computer Graphics. Vol. 26. No. 2. ACM, 1992.
- Renze, Kevin J., and James H. Oliver. "Generalized unstructured decimation [computer graphics]." Computer Graphics and Applications, IEEE 16.6 (1996): 24-32.
- Hoppe, Hugues. "Progressive meshes." Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996.
- Garland, Michael, and Paul S. Heckbert. "Surface simplification using quadric error metrics." Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997.
- Cao, Weiqun, Hujun Bao, and Qunsheng Peng. "An algorithm for LOD by merging near coplanar faces based on gauss sphere." Journal of Computer Science and Technology 16.5 (2001): 450-457.
- DeHaemer Jr, Michael J., and Michael J. Zyda. "Simplification of objects rendered by polygonal approximations." Computers & Graphics 15.2 (1991): 175-184.
- Hamann, Bernd. "A data reduction scheme for triangulated surfaces." Computer aided geometric design 11.2 (1994): 197-214.
- Schaefer, Scott, and Joe Warren. "Adaptive vertex clustering using octrees." Geometric Design and Computing 2.5 (2003).
- Bayik, Tolga, and Mehmet B. Akhan. "3d object database simplification using a vertex clustering algorithm." University of West Bohemia, Plzen, Czech Republic. 1999.
- Turk, Greg. "Re-tiling polygonal surfaces." ACM SIGGRAPH Computer Graphics 26.2 (1992): 55-64.
- Campomanes-Álvarez, B. Rosario, Sergio Damas, and Oscar Cordón. "Mesh simplification for 3D modeling using evolutionary multi-objective optimization." Evolutionary Computation (CEC), 2012 IEEE Congress on. IEEE, 2012.
- Huang, Hui-Ling, and Shinn-Ying Ho. "Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm." Pattern Recognition 36.5 (2003): 1065-1081.
- Álvarez, Rafael, et al. "A mesh optimization algorithm based on neural networks." Information Sciences 177.23 (2007): 5347-5364.
- Hoppe, Hugues. "New quadric metric for simplifiying meshes with appearance attributes." Proceedings of the conference on Visualization'99: celebrating ten years. IEEE Computer Society Press, 1999.
- Wei, Jin, and Yu Lou. "Feature preserving mesh simplification using feature sensitive metric." Journal of Computer Science and Technology 25.3 (2010): 595-605.
- Lee, Chang Ha, Amitabh Varshney, and David W. Jacobs. "Mesh saliency." ACM Transactions on Graphics (TOG). Vol. 24. No. 3. ACM, 2005.
- Wu, Jinliang, et al. "Mesh saliency with global rarity." Graphical Models 75.5 (2013): 255-264.
- Chen, Xiaobai, et al. "Schelling points on 3D surface meshes." ACM Transactions on Graphics (TOG) 31.4 (2012): 29
- Hongle Li and SeongKi Kim, A Novel Mesh Simplification Method Based on Vertex Removal Using Surface Angle, International Journal of Engineering Research and Technology. Volume 12, Number 8 (2019), pp. 1313-1320.
- Guangyou Zhou, Shangda Yuan, and Sumei Luo, Mesh Simplification Algorithm Based on the Quadratic Error Metric and Triangle Collapse, IEEE Access, 2020. 10.1109/ACCESS.2020.3034075.
- Rolandos Alexandros Potamias, Stylianos Ploumpis, Stefanos Zafeiriou, Neural Mesh Simplification, CVPR, pp. 18583- 18592, 2022.
- Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J Mitra, and Maks Ovsjanikov. Learning delaunay surface elements for mesh reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22–31, 2021.
- Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy Boubekeur, and Maks Ovsjanikov. Spectral mesh simplification. Computer Graphics Forum, 39(2):315–324, 2020.
|