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Abstract

In this paper, we introduced a hybrid iterative method for finding the set of common solutions for a system of
generalized mixed quasi-equilibrium problems, the set of common fixed points for nonexpansive semigroup and the set
of solutions of quasi-variational inclusion problems with multi-valued maximal monotone mappings and inverse strongly
monotone mappings in Hilbert spaces. Under suitable assumptions, we prove some strong convergence theorems for
the iteration.
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1 Introduction

Let H be a real Hilbert spaces with inner product ⟨· , ·⟩ and norm ∥ · ∥, C a nonempty closed convex subset of H
and F (T ) denotes the set of all fixed points of the mapping T : C → C.

A bounded linear operator A : H → H is said to be strongly positive if there exists a constant γ̄ such that

⟨Ax, x⟩ ≥ γ̄∥x∥2, ∀x ∈ H. (1.1)

Let B : H → H be a single-valued nonlinear mapping and M : H → 2H be a multi-valued mapping. The
generalized quasi-variational inclusion problem is to find u ∈ H such that

θ ∈ Bu+Mu. (1.2)

The set of solutions of problem (1.2) is denoted by V I(H,B,M).
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Example 1.1.

Let C be a nonempty closed convex subset of a Hilbert space H and δC : H → [0,∞) be the indicator function of C,
i.e.,

δC =

{
0, x ∈ C,

+∞, x ̸∈ C.

If M is the subdifferential of δC , that is, M = ∂δC , then the variational inclusion problem (1.2) is equivalent to find
u ∈ C such that

⟨Bu, v − u⟩ ≥ 0, ∀u ∈ C. (1.3)

(1.3) is called the Hartmann-Stampacchia variational inequality problem ([16]) and the solution set of (1.3) is denoted
by V I(B,C).

A mapping B : H → H is called α-inverse strongly monotone if there exists α > 0 such that

⟨Bx−By, x− y⟩ ≥ α∥Bx−By∥2, ∀x, y ∈ H.

A multi-valued mapping M : H → 2H is called monotone if for all x, y ∈ H,u ∈ Mx and v ∈ My implies that

⟨u− v, x− y⟩ ≥ 0,

and M : H → 2H is called maximal monotone if it is monotone and for any (x, u) ∈ H ×H such that

⟨u− v, x− y⟩ ≥ 0,∀ (y, v) ∈ G(M)

implies that u ∈ Mx, where G(M) is the graph of mapping M .

We can easily prove the following proposition from the definition.

Proposition 1.2. Let B : H → H be an α-inverse strongly monotone mapping. Then,

(i) B is an 1
α -Lipschitz continuous and monotone mapping;

(ii) if λ is any constant in (0, 2α], then the mapping I − λB is nonexpansive, where I is the identity mapping on H.

Let Θ : C ×C → R be an equilibrium bifunction and φ : C → R a real valued function. We consider the following
generalized mixed equilibrium problem ([7, 26]) for finding z ∈ C such that

Θ(z, y) + ⟨Az, y − z⟩+ φ(y)− φ(z) ≥ 0,∀y ∈ C, (1.4)

where A : C → C is single-valued mapping and the solution set of (1.4) is denoted by GMEP (Θ), i.e.,

GMEP (Θ) = {z ∈ C : Θ(z, y) + ⟨Az, y − z⟩+ φ(y)− φ(z) ≥ 0,∀y ∈ C}.

Recently Ceng and Yao ([4]) introduced the following mixed equilibrium problem for finding z ∈ C such that

Θ(z, y) + φ(y)− φ(z) ≥ 0,∀y ∈ C, (1.5)

and the set of solutions (1.5) is denoted by MEP (Θ), i.e.

MEP (Θ) = {z ∈ C : Θ(z, y) + φ(y)− φ(z) ≥ 0,∀y ∈ C}.

In particular, if φ = 0, then (1.5) reduces to the equilibrium problem for finding z ∈ C such that

Θ(z, y) ≥ 0,∀y ∈ C, (1.6)

and the set of solutions of (1.6) is EP (Θ).

On the other hand Li et al. ([15]) introduced two iterative procedures for the approximation of common fixed
points of a one parameter nonexpansive semigroup {T (s) : 0 ≤ s < ∞} on a nonempty closed convex subset C in a
Hilbert spaces (see [5, 6, 12, 13, 18]).
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Very recently Saeidi ([20, 21]) introduced the following general iterative algorithm for finding a common element
of the set of solutions of a system of equilibrium problems EP (g) for a family g = {Fi : i = 1, 2, · · · ,M} of bifunctions
and of the set of fixed points of a finite family of nonexpansive mappings φ = {Ti : i = 1, 2, · · · , N} and a left amenable
semigroup S = {T (t) : t ∈ S} of nonexpansive mapping with respect to W -mappings and left regular sequence {µn}
of means defined on an approximate space of bounded real valued functions of the semigroup S.

xn+1 = αnγf(xn) + βxn + ((1− β)I − αnA)T (µn)WnJ
FM
rM ,n · · · JF2

r2,nJ
F1
r1,nxn.

Recall that a family ℑ = {T (s) : 0 ≤ s < ∞} : C → C of a mapping is called a one parameter nonexpansive
semigroup if it is satisfied the following conditions:

(a) T (s+ t) = T (s)T (t),∀s, t ≥ 0 and T (0) = I;

(b) ∥T (s)x− T (s)y∥ ≤ ∥x− y∥,∀x, y ∈ C;

(c) the mapping T (·)x is continuous for each x ∈ C.

Motivated and inspired by the recent works [1, 2, 4, 8, 9, 10, 11, 14, 24, 26], we introduced a hybrid iterative
scheme for finding a set of common solutions for a system of mixed equilibrium problems, the set of common fixed
point for nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problems with multi-valued
maximal monotone mapping and inverse strongly monotone mappings in Hilbert spaces. We also prove some strong
convergence theorem under suitable conditions.

2 Preliminaries

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and strong convergence of the sequence
{xn} in H, respectively.

Definition 2.1. Let M : H → 2H be a multi-valued maximal monotone mapping. Then the single-valued mapping
JM
λ : H → H defined by

JM
λ (u) = (I + λM)−1(u),∀u ∈ H,

is called the resolvent operator associated with M , where λ is any positive number and I is the identity mapping.

Proposition 2.2. ([27]) Let JM
λ be the resolvent operator associated with M . Then we have:

(i) JM
λ is single-valued and nonexpansive for all λ > 0, i.e.,

∥JM
λ (x)− JM

λ (y)∥ ≤ ∥x− y∥,∀x, y ∈ H.

(ii) JM
λ is I-inverse strongly monotone, i.e.,

∥JM
λ (x)− JM

λ (y)∥2 ≤ ⟨x− y, JM
λ (x)− JM

λ (y)⟩,∀x, y ∈ H.

Definition 2.3. A single-valued mapping P : H → H is said to be hemicontinuous if for any x, y, z ∈ H, the function
t → ⟨P (x+ ty), z⟩ is continuous at 0+.

Remark 2.4. Every continuous mapping must be hemicontinuous.

Lemma 2.5. ([17]) Let E be a real Banach spaces and E∗ be the dual space of E. Let T : E → 2E
∗
be a maximal

monotone mapping and P : E → E∗ be a hemicontinuous bounded monotone mapping with D(T ) = X, then the
mapping U := T + P : E → 2E

∗
is a maximal monotone mapping.

Lemma 2.6. ([22]) Let {xn} and {zn} be bounded sequences in a Banach space E and let {βn} be a sequence in
[0, 1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1. Suppose that

xn+1 = (1− βn)zn + βnxn

for all n ≥ 1 and lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0. Then we have

lim
n→∞

∥zn − xn∥ = 0.
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Lemma 2.7. ([25]) Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn,∀n ≥ n0,

where n0 is some nonnegative integer and γn ∈ (0, 1) and δn are sequences satisfying:

(i)
∑∞

n=1 γn = ∞;

(ii) lim sup
n→∞

δn
γn

≤ 0 or
∑∞

n=1 | δn |= ∞.

Then lim
n→∞

an = 0.

Lemma 2.8. ([3]) Let E be a real Banach space and J : E → 2E
∗
be the normalized duality mapping. Then for any

x, y ∈ E, we have
∥x+ y∥2 ≤ ∥x∥2 + ⟨y , j(x+ y)⟩,∀j(x+ y) ∈ J(x+ y).

Especially if E = H is a real Hilbert space, then

∥x+ y∥2 ≤ ∥x∥2 + ⟨y , x+ y⟩,∀x, y ∈ H.

For solving the equilibrium problems for bifunction Θ : C × C → R, we assume that Θ satisfies the following
conditions:

(C1) Θ(x, x) = 0,∀x ∈ C;

(C2) Θ is monotone i.e.,
Θ(x, y) + Θ(y, x) ≤ 0,∀x, y ∈ C;

(C3) for any y ∈ C, x → Θ(x, y) is concave and weakly upper semi-continuous;

(C4) for each x ∈ C, y → Θ(x, y) is convex and lower semi-continuous.

A mapping η : C × C → H is called Lipschitz continuous if there exists a constant L > 0 such that

∥η(x, y)∥ ≤ L∥x− y∥,∀x, y ∈ C.

A differentiable function K : C → R on a convex set C is called:

(i) η-convex ([4]) if
K(y)−K(x) ≥ ⟨K ′(x), η(y, x)⟩,∀x, y ∈ C,

where K ′(x) is the Frechet derivative of K at x.

(ii) η-strongly convex ([4]) if there exists a constant µ > 0 such that

K(y)−K(x)− ⟨K ′(x), η(y, x)⟩ ≥ µ

2
∥x− y∥2,∀x, y ∈ C.

A mapping F : C → R is called sequentially continuous at x0 if F (xn) → F (x0) for each sequence {xn} satisfying
xn → x0. F is called sequentially continuous on C if it is sequentially continuous at each point of C.

Lemma 2.9. ([4]) Suppose that for each fixed y ∈ C, η(y, ·) : C → H be sequentially continuous from the weak
topology to the weak topology and that K ′ : C → H is sequentially continuous from the weak topology to the strong
topology. Then gy : C → R defined as gy(x) = ⟨K ′(x), η(y, x)⟩ for each fixed y ∈ C is sequentially continuous in the
weak topology.

If an equilibrium bifunction Θ : C×C → R satisfies conditions (C1)-(C4) and A : C → C a single-valued mapping.
Let r be a positive parameter. For a given point x ∈ C, consider the auxiliary problem for GMEP (for short,
GMEP (x, r)) which consists of finding y ∈ C such that

Θ(y, z) + ⟨Az, y − z⟩+ φ(z)− φ(y) +
1

r
⟨K ′(y)−K ′(x), η(z, y)⟩ ≥ 0,∀z ∈ C,



Hybrid iterative algorithms for finding common solutions of a system of generalized mixed quasi-equilibrium problems2775

where η : C × C → H and K ′(x) is the Frechet derivative of a functional K : C → R at x. Let VΘ
r : C → C be the

mapping such that for each x ∈ C,VΘ
r (x) is the solution set of GMEP (x, r), i.e., for all z ∈ C

VΘ
r (x) =

{
y ∈ C : Θ(y, z) + ⟨Az, y − z⟩+ φ(z)− φ(y) +

1

r
⟨K ′(y)−K ′(x), η(z, y)⟩ ≥ 0

}
.

We can prove the following lemma by using the same method as Lemma 3.1 in [4].

Lemma 2.10. ([4]) Let C be a nonempty closed convex subset of a Hilbert space H and let φ : C → R be a
lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium bifunction satisfying conditions
(C1)-(C4). Assume that

(1) η : C × C → H is Lipschitz continuous with constant L > 0 such that

(a) η(x, y) + η(y, x) = 0,∀x, y ∈ C;

(b) η(·, ·) is affine in the first variable;

(c) for each fixed y ∈ C, x → η(y, x) is sequentially continuous from the weak topology to the weak topology;

(2) K : C → R is η-strongly convex with constant µ > 0 and its derivative K ′ is sequentially continuous from the
weak topology to the strong topology;

(3) for each x ∈ C there exists a bounded subset Dx ⊆ C and zx ∈ C such that for any y ∈ C\Dx we have

Θ(y, zx) + ⟨Azx, y − zz⟩+ φ(zx)− φ(y) +
1

r
⟨K ′(y)−K ′(x), η(zx, y)⟩ < 0.

Then we have:

(i) VΘ
r is single-valued;

(ii) VΘ
r is nonexpansive if K ′ is Lipschitz continuous with constant υ > 0 such that µ ≥ Lυ;

(iii) F (VΘ
r ) = GMEP (Θ);

(iv) GMEP (Θ) is closed and convex.

Lemma 2.11. ([23]) Let C be a nonempty bounded closed convex subset of a Hilbert space H and let ℑ = {T (s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C. Then for any h ≥ 0 and t > 0,

lim
t→∞

sup
x∈C

∥∥∥1
t

∫ t

0

T (s)xds− T (h)
(1
t

∫ t

0

T (s)xds
)∥∥∥ = 0, for all x ∈ C.

Lemma 2.12. ([15]) Let C be nonempty bounded closed convex subset of a Hilbert space H and ℑ = {T (s) : 0 ≤
s < ∞} be a nonexpansive semigroup on C. If {xn} is a sequence in C satisfying the properties:

(i) xn ⇀ z;

(ii) lim sup
s→∞

lim sup
n→∞

∥T (s)xn − xn∥ = 0.

Then z ∈ F (ℑ) :=
⋂
s≥0

F (T (s)).

3 Main results

In order to prove the main results, we first give the following lemma.

Lemma 3.1. ([20]) We have the following statements for the solutions of the variational inclusion (1.2):
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(i) u ∈ H is a solution of variational inclusion (1.2) if and only if

u = JM
λ (u− λBu),∀λ > 0,

i.e.,
V I(H,B,M) = F (JM

λ (I − λB)), ∀λ > 0.

(ii) If λ ∈ (0, 2α], then V I(H,B,M) is a closed convex subset in H.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, B be an α-inverse strongly
monotone mapping from C into H and M be a multi-valued mapping of C. Let ℑ = {T (s) : 0 ≤ s < ∞} be an one
parameter nonexpansive semigroup and Θi : C × C → R, (i = 1, 2, · · · , N) be a bifunction which satisfies (C1)-(C4)
such that

Ω := F (ℑ) ∩GMEP (Θ) ∩ V I(H,B,M) ̸= ∅,

where

GMEP (Θ) :=

N⋂
l=1

GMEP (Θl).

Let φi : C → R, (i = 1, 2, · · · , N) be a lower semi-continuous and convex functional. Let A be a strongly positive
bounded linear operator with a coefficient γ̄ > 0 and f be a contraction of H into itself with a contractive constant
h(0 < h < 1) and 0 < γ < γ̄

h . Let {xn}, {ρn}, {ξn} and {yn} be implicit iterative sequences generated by x1 ∈ H and
xn = αnγf

( 1

tn

∫ tn

0

T (s)xnds
)
+ βnxn +

(
(1− βn)I − αnA

) 1

tn

∫ tn

0

T (s)ρnds

ρn = JM
λ (I − λB)ξn,

ξn = JM
λ (I − λB)yn,

yn = VΘN
rN · · · VΘ2

r2 VΘ1
r1 xn,

(3.1)

where {ri}(i = 1, 2 · · ·N) is a finite family of positive parameters, λ ∈ (0, 2α], {αn}, {βn} ⊂ [0, 1] and {tn} ⊂ (0,∞).
Assume that the following conditions are hold:

(i) For each i = 1, 2, · · ·N , ηi : C × C → H is a Lipschitz continuous mapping with constant Li > 0 such that

(a) ηi(x, y) + ηi(y, x) = 0,∀x, y ∈ C;

(b) ηi(·, ·) is affine in the first variable;

(c) for each fixed y ∈ C, x → ηi(y, x) is sequentially continuous from the weak topology to the weak topology;

(ii) For each i = 1, 2, · · ·N , Ki : C → R is a ηi-strongly convex with constant µi > 0 and its derivative K
′

i is not
only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with
constant υi > 0, µi ≥ Liυi;

(iii) For each x ∈ C there exists a bounded subset Dx ⊆ C and zx ∈ C such that for any y ∈ C −Dx

Fi(y, zx) + ⟨Aizx, y − zx⟩+ φi(zx)− φi(y) +
1

ri
⟨K

′

i(y)−K
′

i(x), ηi(zx, y)⟩ < 0,

(iv) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and lim
n→∞

tn = ∞.

Then {xn} converges strongly to x∗ ∈ Ω provided that VΘi
ri is firmly nonexpansive, and x∗ is the unique solution of

the following variational inequality:
⟨(A− γf)x∗, x∗ − z⟩ ≤ 0,∀z ∈ Ω. (3.2)

Proof . We observe that from conditions (iv), we can assume without loss of generality that αn ≤ (1 − βn)∥A∥−1.
Since A is a bounded linear self-adjoint operator on H, we have

∥A∥ = sup{| ⟨Au, u⟩ |: u ∈ H, ∥u∥ = 1}.
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Since

⟨((1− βn)I − αnA)u, u⟩ = 1− βn − αn⟨Au, u⟩
≥ 1− βn − αn∥A∥
≥ 0,

this implies that (1− βn)I − αnA is positive. Hence we have

∥(1− βn)I − αnA∥ = sup{| ⟨((1− βn)I − αnA)u, u⟩ |: u ∈ H, ∥u∥ = 1}
= sup{1− βn − αn⟨Au, u⟩ : u ∈ H, ∥u∥ = 1}
≤ 1− βn − αnγ̄. (3.3)

In the sequel, we denote by V l = VΘl
rl

· · · VΘ2
r2 VΘ1

r1 for l ∈ {1, 2, · · · , N} and V0 = I.

We divide the proof into serval steps:

Step 1. First prove that sequences {xn}, {ρn}, {ξn} and {yn} are bounded.

For each given n ≥ 1, define the mapping Wn : C → C as:

Wn = αnγf
1

tn

∫ tn

0

T (s)ds+ βnI + ((1− βn)I − αnA)
1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds.

Then we shall show that the mapping Wn is a contraction. Indeed for any x, y ∈ C, we have

∥Wn(x)−Wn(y)∥ =
∥∥∥αnγf

( 1

tn

∫ tn

0

T (s)xds
)
+ βnx

+
(
(1− βn)I − αnA

) 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNxds

− αnγf
( 1

tn

∫ tn

0

T (s)yds
)
− βny

+
(
(1− βn)I − αnA

) 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNyds

∥∥∥
≤ αnγ

∥∥∥f( 1

tn

∫ tn

0

T (s)xds
)
− f

( 1

tn

∫ tn

0

T (s)yds
)∥∥∥+ βn∥x− y∥

+
(
(1− βn)I − αnγ̄

) 1

tn

∫ tn

0

∥T (s)(JM
λ (I − λB))2VNxds

− T (s)(JM
λ (I − λB))2VNy∥ds

≤ αnγh∥x− y∥+ βn∥x− y∥+ (1− βn − αnγ̄)∥x− y∥
< ∥x− y∥.

Therefore, Wn : C → C is a contraction. Let xn ∈ C be the unique fixed point of Wn. Then

xn = αnγf
( 1

tn

∫ tn

0

T (s)xnds
)
+ βnxn

+
(
(1− βn)I − αnA

) 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNxnds

is well-defined. Let p ∈ Ω. Since yn = VNxn, we have

∥yn − p∥ = ∥VNxn − p∥ ≤ ∥xn − p∥. (3.4)
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Since p ∈ V I(H,B,M) and ρn = JM
λ (I − λB)ξn, we have p = JM

λ (I − λB)p and so

∥ρn − p∥ = ∥JM
λ (I − λB)ξn − JM

λ (I − λB)p∥
≤ ∥(I − λB)ξn − (I − λB)p∥
≤ ∥ξn − p∥
= ∥JM

λ (I − λB)yn − JM
λ (I − λB)p∥

≤ ∥yn − p∥
≤ ∥xn − p∥. (3.5)

Let

un =
1

tn

∫ tn

0

T (s)xnds

and

qn =
1

tn

∫ tn

0

T (s)ρnds.

Then we have

∥un − p∥ =
∥∥∥ 1

tn

∫ tn

0

T (s)xnds− p
∥∥∥

≤ 1

tn

∫ tn

0

∥T (s)xn − T (s)p∥ds

≤ ∥xn − p∥. (3.6)

Similarly, we have
∥qn − p∥ ≤ ∥ρn − p∥. (3.7)

From (3.1)-(3.7), we have

∥xn − p∥ = ∥αnγf(un) + βnxn + ((1− βn)I − αnA)qn − p∥
= ∥αnγ(f(un)− f(p)) + βn(xn − p) + ((1− βn)I − αnA)(qn − p)

+ αn(γf(p)−Ap)∥
≤ αnγh∥un − p∥+ βn∥xn − p∥+ ((1− βn)I − αnγ̄)∥qn − p∥
+ αn∥γf(p)−Ap∥

≤ αnγh∥xn − p∥+ βn∥xn − p∥+ ((1− βn)I − αnγ̄)∥xn − p∥
+ αn∥γf(p)−Ap∥.

And so, we have

∥xn − p∥ ≤ 1

γ̄ − γh
∥γf(p)−Ap∥.

This implies that {xn} is a bounded sequence in H. Therefore {yn}, {ρn}, {ξn}, {γf(un)} and {qn} are also bounded.

Step 2. Next, we prove that for each 0 ≤ s < ∞,

∥xn − T (s)xn∥ → 0(n → ∞). (3.8)

Since xn = αnγf(un) + βnxn + ((1− βn)I − αnA)qn, we have

∥xn − qn∥ ≤ αn∥γf(un)−Aqn∥+ βn∥xn − qn∥.

Hence
∥xn − qn∥ ≤ αn

1− βn
∥γf(un)−Aqn∥.

From αn → 0, we have
∥xn − qn∥ → 0. (3.9)

Let

K =
{
w ∈ C : ∥w − p∥ ≤ 1

γ̄ − γh
∥γf(p)−Ap∥

}
.
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Then K is a nonempty bounded closed and convex subset of C and T (s)-invariant. Since {xn} ⊂ K, there exists r > 0
such that K ⊂ Br. It follows from Lemma 2.11 that

lim
n→∞

∥qn − T (s)qn∥ → 0. (3.10)

From (3.9) and (3.10), we have

∥xn − T (s)xn∥ = ∥xn − qn + qn − T (s)qn + T (s)qn − T (s)xn∥
≤ ∥xn − qn∥+ ∥qn − T (s)qn∥+ ∥T (s)qn − T (s)xn∥
≤ ∥xn − qn∥+ ∥qn − T (s)qn∥+ ∥qn − xn∥
→ 0.

Step 3. Next, we prove that
lim
n→∞

∥V l+1xn − V lxn∥ = 0,

for all l ∈ {0, 1, · · · , N − 1}. Especially,

lim
n→∞

∥VNxn − xn∥ = lim
n→∞

∥yn − xn∥ = 0. (3.11)

In fact, since VΘl+1
rl+1 is firmly nonexpansive, for any given p ∈ Ω and l ∈ {0, 1, · · · , N − 1}, we have

∥V l+1xn − p∥2 = ∥VΘl+1
rl+1

(V lxn)− VΘl+1
rl+1

p∥2

≤ ⟨VΘl+1
rl+1

(V lxn)− p,V lxn − p⟩

= ⟨V l+1xn − p,V lxn − p⟩

=
1

2

(
∥V l+1xn − p∥2 + ∥V lxn − p∥2 − ∥V lxn − V l+1xn∥2

)
.

It implies that
∥V l+1xn − p∥2 ≤ ∥xn − p∥2 − ∥V lxn − V l+1xn∥2. (3.12)

On the other hane, from (3.1), we have

∥xn − p∥2 = ∥αnγf(un) + βnxn + ((1− βn)I − αnA)qn − p∥2

= ∥αn(γf(un)−Ap) + βn(xn − qn) + (I − αnA)(qn − p)∥2

≤ ∥(I − αnA)(qn − p) + βn(xn − qn)∥2

+ 2αn⟨γf(un)−Ap, xn − p⟩
≤ [∥(I − αnA)(qn − p)∥+ βn∥xn − qn∥]2

+ 2αn⟨γf(un)−Ap, xn − p⟩
≤ [(I − αnγ̄)∥ρn − p∥+ βn∥xn − qn∥]2

+ 2αn⟨γf(un)−Ap, xn − p⟩
≤ (1− αnγ̄)

2∥ρn − p∥2 + β2
n∥xn − qn∥2

+ 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥
+ 2αn∥γf(un)−Ap∥∥xn − p∥. (3.13)

And note that
∥ρn − p∥ ≤ ∥ξn − p∥ ≤ ∥VNxn − p∥ ≤ ∥V l+1xn − p∥, ∀l ∈ {0, 1, · · · , N − 1}.

Substituting (3.12) into (3.13), it yields

∥xn − p∥2 ≤ (1− αnγ̄)
2{∥xn − p∥2 − ∥V lxn − V l+1xn∥2}+ β2

n∥xn − qn∥2

+ 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥+ 2αn∥γf(un)−Ap∥∥xn − p∥
= (1− 2αnγ̄ + (αnγ̄)

2)∥xn − p∥2 − (1− αnγ̄)
2∥V lxn − V l+1xn∥2

+ β2
n∥xn − qn∥2 + 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥

+ 2αn∥γf(un)−Ap∥∥xn − p∥.
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Simplifying the above inequaity, we have

(1− αnγ̄)
2∥V lxn − V l+1xn∥2 ≤ (1− αnγ̄)

2∥xn − p∥2 − ∥xn − p∥2 + β2
n∥xn − qn∥2

+ 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥
+ 2αn∥γf(un)−Ap∥∥xn − p∥.

Since αn → 0, ∥xn − qn∥ → 0 from condition (iv). Hence we have

lim
n→∞

∥V l+1xn − V lxn∥ = 0,

for all l ∈ {0, 1, · · · , N − 1}.
Step 4. Now, we prove that for any given p ∈ Ω,

lim
n→∞

∥Byn −Bp∥ = 0. (3.14)

In fact, it follows from (3.5) that

∥ρn − p∥2 ≤ ∥ξn − p∥2 = ∥JM
λ (I − λB)yn − JM

λ (I − λB)p∥2

≤ ∥(I − λB)yn − (I − λB)p∥2

≤ ∥yn − p∥2 − 2λ⟨yn − p,Byn −Bp⟩+ λ2∥Byn −Bp∥2

≤ ∥yn − p∥2 + λ(λ− 2α)∥Byn −Bp∥2

≤ ∥xn − p∥2 + λ(λ− 2α)∥Byn −Bp∥2. (3.15)

Substituting (3.15) into (3.13), we obtain

∥xn − p∥2 ≤ (1− αnγ̄)
2{∥xn − p∥2 + λ(λ− 2α)∥Byn −Bp∥2}

+ β2
n∥xn − qn∥2 + 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥

+ 2αn∥γf(un)−Ap∥∥xn − p∥.

Simplifying this, we have

(1− αnγ̄)
2λ(2α− λ)∥Byn −Bp∥2 ≤ (1 + αn(γ̄)

2)∥xn − p∥2 − ∥xn − p∥2

+ β2
n∥xn − qn∥2

+ 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥
+ 2αn∥γf(un)−Ap∥∥xn − p∥

= αn(γ̄)
2∥xn − p∥2 + β2

n∥xn − qn∥2

+ 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥
+ 2αn∥γf(un)−Ap∥∥xn − p∥.

Since αn → 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, ∥xn − qn∥ → 0, and {γf(un) − Ap}, {xn} are bounded, these imply

that
lim
n→∞

∥Byn −Bp∥ = 0.

Step 5. Next, we prove that  lim
n→∞

∥yn − ρn∥ = 0,

lim
n→∞

∥xn − ρn∥ = 0.
(3.16)

In fact, since
∥yn − ρn∥ ≤ ∥yn − ξn∥+ ∥ξn − ρn∥,
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it is sufficient to prove ∥yn − ξn∥ → 0 and ∥ξn − ρn∥ → 0. First we have to prove that ∥yn − ξn∥ → 0. In fact, since

∥ξn − p∥2 = ∥JM
λ (I − λB)yn − JM

λ (I − λB)p∥2

≤ ⟨yn − λByn − (p− λBp), ξn − p⟩

=
1

2

{
∥yn − λByn − (p− λBp)∥2 + ∥ξn − p∥2

− ∥yn − λByn − (p− λBp)− (ξn − p)∥2
}

≤ 1

2

{
∥yn − p∥2 + ∥ξn − p∥2 − ∥yn − ξn − λ(Byn −Bp)∥2

}
≤ 1

2

{
∥yn − p∥2 + ∥ξn − p∥2 − ∥yn − ξn∥2

+ 2λ⟨yn − ξn, Byn −Bp⟩ − λ2∥Byn −Bp∥2
}
,

we have
∥ξn − p∥2 ≤ ∥yn − p∥2 − ∥yn − ξn∥2 + 2λ⟨yn − ξn, Byn −Bp⟩ − λ2∥Byn −Bp∥2. (3.17)

Substituting (3.17) into (3.13), it yields that

∥xn − p∥2 ≤ (1− αnγ̄)
2{∥yn − p∥2 − ∥yn − ξn∥2

+ 2λ⟨yn − ξn, Byn −Bp⟩ − λ2∥Byn −Bp∥2}
+ β2

n∥xn − qn∥2 + 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥
+ 2αn∥γf(un)−Ap∥∥xn − p∥.

Simplifying this, we have

(1− αγ̄)2∥yn − ξn∥2 ≤ αnγ̄
2∥xn − p∥2 + 2(1− αnγ̄

2)λ⟨yn − ξn, Byn −Bp⟩
− (1− αγ̄)2λ2∥Byn −Bp∥2

+ β2
n∥xn − qn∥2 + 2(1− αnγ̄)βn∥ρn − p∥∥xn − qn∥

+ 2αn∥γf(un)−Ap∥∥xn − p∥.

Since αn → 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, ∥xn − qn∥ → 0, ∥Byn −Bp∥ → 0 (n → ∞) and {γf(un)− Ap}, {xn},

{ρn} are bounded, these imply that
∥yn − ξn∥ → 0(n → ∞).

Next we prove that
lim
n→∞

∥ξn − ρn∥ = 0. (3.18)

Since

∥ξn − ρn∥ = ∥JM
λ (I − λB)yn − JM

λ (I − λB)ξn∥
≤ ∥yn − ξn∥
→ 0,

we have

∥yn − ρn∥ = ∥yn − ξn + ξn − ρn∥
≤ ∥yn − ξn∥+ ∥ξn − ρn∥
→ 0.

This together with (3.11) shows that ∥xn − ρn∥ → 0.

Step 6. Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x∗. In this case, we will
prove that

x∗ ∈ Ω := F (ℑ) ∩GMEP (Θ) ∩ V I(H,B,M)
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and x∗ is the unique solution of the variational inequality (3.2).

We first prove that x∗ ∈ F (ℑ). From Lemma 2.12 and Step 2, we obtain x∗ ∈ F (ℑ).
Next, we prove that

x∗ ∈ GMEP (Θ) :=

N⋂
l=1

GMEP (Θl).

Since xnk
⇀ x∗ and noting Step 3, without loss of generality, we may assume that V lxnk

⇀ x∗, for all l ∈
{0, 1, 2, · · · , N − 1}. Hence for any x ∈ C, we have〈K ′

l+1(V l+1xnk
)−K

′

l+1(V lxnk
)

rl+1
, ηl+1(x,V l+1xnk

)
〉

≥ −Θl+1(V l+1xnk
)− φl+1(x) + φl+1(V l+1xnk

).

By the assumptions and the condition (C2), we know that the function φi and the mapping x → (−Θl+1(x, y)) are
convex and lower semi-continuous. Hence they are weakly lower semi-continuous. These together with

K
′

l+1(V l+1xnk
)−K

′

l+1(V lxnk
)

rl+1
→ 0

and V l+1xnk
⇀ x∗, we have

0 = lim inf
k→∞

〈K ′

l+1(V l+1xnk
)−K

′

l+1(V lxnk
)

rl+1
, ηl+1(x,V l+1xnk

)
〉

≥ lim inf
k→∞

{
−Θl+1(V l+1xnk

)− φl+1(x) + φl+1(V l+1xnk
)
}
.

This implies that for x ∈ C and l ∈ {0, 1, · · · , N − 1},

Θl+1(x
∗, x) + φl+1(x)− φl+1(x

∗) ≥ 0.

Hence, we have

x∗ ∈
N⋂
l=1

GMEP (Θl) = GMEP (Θ).

Now, we prove that x∗ ∈ V I(H,B,M). In fact, since B is α-inverse strongly monotone, it follows from Proposition
1.2 that B is an 1

α -Lipschitz continuous monotone mapping and D(B) = H, (where D(B) is the domain of B). From
Lemma 2.5 that M +B is maximal monotone. Let (υ, g) ∈ G(M +B), i.e., g−Bυ ∈ Mυ. Since xnk

⇀ x∗ and noting
Step 3, without loss of generality, we may assume that V lxnk

⇀ x∗, in particular we have ynk
= VNxnk

⇀ x∗. From
∥yn − ρn∥ → 0, we can prove that ρnk

⇀ x∗. Again since ρnk
= JM

λ (I − λB)ξnk
, we have ξnk

− λBξnk
∈ (I + λM)ρnk

i.e., 1
λ (ξnk

− ρnk
− λBξnk

) ∈ Mρnk
. By virtue of the maximal monotonicity of M , we have

⟨υ − ρnk
, g −Bυ − 1

λ
(ξnk

− ρnk
− λBξnk

)⟩ ≥ 0,

and so

⟨υ − ρnk
, g⟩ ≥ ⟨υ − ρnk

, Bυ +
1

λ
(ξnk

− ρnk
− λBξnk

)⟩

= ⟨υ − ρnk
, Bυ −Bρnk

+Bρnk
−Bξnk

+
1

λ
(ξnk

− ρnk
)⟩

≥ 0 + ⟨υ − ρnk
, Bρnk

−Bξnk
⟩+ ⟨υ − ρnk

,
1

λ
(ξnk

− ρnk
)⟩.

Since ∥ξn − ρn∥ → 0, ∥Bξn −Bρn∥ → 0 and ρnk
⇀ x∗, we have

lim
k→∞

⟨υ − ρnk
, g⟩ = ⟨υ − x∗, g⟩ ≥ 0.

It follows from the maximal monotonicity of M +B that θ ∈ (M +B)(x∗), that is, x∗ ∈ V I(H,B,M). Consequently,
we have

x∗ ∈ Ω.
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Finally, we prove that x∗ is the unique solution of variational inequality (3.2).

We first prove that xnk
→ x∗. Since for all z ∈ Ω,

∥xn − z∥2 = ⟨xn − z, xn − z⟩
= ⟨αnγf(un) + βnxn + ((1− βn)I − αnA)qn − z, xn − z⟩
= ⟨αn(γf(un)−Az) + βn(xn − z) + ((1− βn)I − αnA)(qn − z), xn − z⟩
≤ αn⟨γf(un)−Az, xn − z⟩+ βn∥xn − z∥2

+ (1− βn − αnγ̄)∥qn − z∥∥xn − z∥
= (1− αnγ̄)∥xn − z∥2 + αn⟨γf(un)−Az, xn − z⟩, (3.19)

it follows that

∥xn − z∥2 ≤ 1

γ̄
⟨γf(un)−Az, xn − z⟩

≤ 1

γ̄
⟨γf(un)− γf(z) + γf(z)−Az, xn − z⟩

≤ 1

γ̄

{
γh∥xn − z∥2 + ⟨γf(z)−Az, xn − z⟩

}
.

Therefore

∥xn − z∥2 ≤ 1

γ̄ − γh

〈
γf(z)−Az, xn − z

〉
. (3.20)

Now replacing n in (3.20) with nk and letting k → ∞ and xnk
⇀ x∗, we have xnk

→ x∗.

On the other hand, since

xn = αnγf
( 1

tn

∫ tn

0

T (s)xnds
)
+ βnxn + ((1− βn)I − αnA)

1

tn

∫ tn

0

T (s)ρnds,

we have

αn(A− γf)
( 1

tn

∫ tn

0

T (s)xnds
)
= −

{
(1− βn)(xn − 1

tn

∫ tn

0

T (s)ρnds)
}

+ αnA
1

tn

∫ tn

0

(T (s)xn − T (s)ρn)ds

= −(1− βn)
(
I − 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds

)
xn

+ αnA
1

tn

∫ tn

0

(T (s)xn − T (s)ρn)ds.

Hence for any z ∈ Ω, we have

αn

〈
(A− γf)

( 1

tn

∫ tn

0

T (s)xnds
)
, xn − z

〉
= −(1− βn)

〈(
I − 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds

)
xn

−
(
I − 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds

)
z, xn − z

〉
+ αn

〈
A

1

tn

∫ tn

0

(T (s)xn − T (s)ρn)ds, xn − z
〉
.
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Then 〈
(A− γf)

( 1

tn

∫ tn

0

T (s)xnds
)
, xn − z

〉
= −1− βn

αn

〈(
I − 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds

)
xn

−
(
I − 1

tn

∫ tn

0

T (s)(JM
λ (I − λB))2VNds

)
z, xn − z

〉
+
〈
A

1

tn

∫ tn

0

(T (s)xn − T (s)ρn)ds, xn − z
〉
. (3.21)

It is easily seen that I − 1
tn

∫ tn
0

T (s)(JM
λ (I − λB))2VNds is monotone. Thus from (3.21) we have that

〈
(A− γf)

( 1

tn

∫ tn

0

T (s)xnds
)
, xn − z

〉
≤

〈
A

1

tn

∫ tn

0

(T (s)xn − T (s)ρn)ds, xn − z
〉
. (3.22)

Now in (3.22) replacing n by nk and letting k → ∞ and xnk
→ x∗, from Step 3 and Step 5, we have

∥xn − ρn∥ → 0.

Then
1

tnk

∫ tnk

0

(T (s)xnk
− T (s)ρnk

)ds → 0.

So, we have for all z ∈ Ω,
⟨(A− γf)x∗, x∗ − z⟩ ≤ 0.

That is, x∗ is the solution of the variational inequality (3.2). It follows from [19] that x∗ is a unique solution of (3.2).

Step 7. Next, we prove that
lim sup
n→∞

⟨γf(x∗)−Ax∗, xn − x∗⟩ ≤ 0. (3.23)

First, we prove that

lim sup
n→∞

〈 1

tn

∫ tn

0

T (s)ρnds− x∗, γf(x∗)−Ax∗
〉
≤ 0. (3.24)

Indeed, there exists a subsequence {ρni} of {ρn} such that

lim sup
n→∞

〈 1

tn

∫ tn

0

T (s)ρnds− x∗, γf(x∗)−Ax∗
〉

= lim
i→∞

〈 1

tni

∫ tni

0

T (s)ρnids− x∗, γf(x∗)−Ax∗
〉
.

We may also assume that ρni
⇀ w. This together with (3.9) and (3.16) show that

qni
=

1

tni

∫ tni

0

T (s)ρni
ds → w.

Since ∥xn − qn∥ → 0, we have xni
⇀ w. Again by the same way as given in Step 6, we can prove that w ∈ Ω. Hence,

we have

lim sup
n→∞

〈 1

tn

∫ tn

0

T (s)ρnds− x∗, γf(x∗)−Ax∗
〉

= lim
i→∞

〈 1

tni

∫ tni

0

T (s)ρni
ds− x∗, γf(x∗)−Ax∗

〉
= lim

i→∞
⟨qni

− x∗, γf(x∗)−Ax∗⟩

= ⟨w − x∗, γf(x∗)−Ax∗⟩
≤ 0.
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On the other hand, from ∥xn − qn∥ → 0 and (3.24), we have

lim sup
n→∞

⟨γf(x∗)−Ax∗, xn − x∗⟩ = lim sup
n→∞

⟨γf(x∗)−Ax∗, xn − qn + qn − x∗⟩

≤ lim sup
n→∞

⟨γf(x∗)−Ax∗, xn − qn⟩

+ lim sup
n→∞

⟨γf(x∗)−Ax∗, qn − x∗⟩

≤ 0.

Step 8. Finally, we prove that xn → x∗. Indeed from (3.1),(3.5) and (3.7), we have

∥xn − x∗∥2 = ∥αn(γf(un)−Ax∗)− βn(xn − x∗) + ((1− βn)I − αnA)(qn − x∗)∥2

≤ ∥βn(xn − x∗) + ((1− βn)I − αnA)(qn − x∗)∥2

+ 2αn⟨γf(un)−Ax∗, xn − x∗⟩
≤ [βn∥xn − x∗∥+ ∥((1− βn)I − αnA)(qn − x∗)∥]2

+ 2αnγ⟨f(un)− f(x∗), xn − x∗⟩+ 2αn⟨γf(x∗)−Ax∗, xn − x∗⟩
≤ [βn∥xn − x∗∥+ ∥(1− βn − αnγ̄)∥ρn − x∗∥]2

+ 2αnγh∥xn − x∗∥2 + 2αn⟨γf(x∗)−Ax∗, xn − x∗⟩
≤ ((1− αnγ̄)

2 + 2αnγh)∥xn − x∗∥2 + 2αn⟨γf(x∗)−Ax∗, xn − x∗⟩.

This implies that

∥xn − x∗∥2 ≤ 2

2(γ̄ − γh)− γ̄2

〈
γf(x∗)−Ax∗, xn − x∗

〉
. (3.25)

Combining (3.23) and (3.25), we obtain that xn → x∗. This completes the proof. □
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