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Hybrid iterative algorithms for finding common solutions of a
system of generalized mixed quasi-equilibrium problems and
fixed point problems of nonexpansive semigroups
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Abstract

In this paper, we introduced a hybrid iterative method for finding the set of common solutions for a system of
generalized mixed quasi-equilibrium problems, the set of common fixed points for nonexpansive semigroup and the set
of solutions of quasi-variational inclusion problems with multi-valued maximal monotone mappings and inverse strongly
monotone mappings in Hilbert spaces. Under suitable assumptions, we prove some strong convergence theorems for
the iteration.
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1 Introduction

Let H be a real Hilbert spaces with inner product (-,-) and norm || - ||, C' a nonempty closed convex subset of H
and F(T) denotes the set of all fixed points of the mapping T': C — C.

A bounded linear operator A : H — H is said to be strongly positive if there exists a constant 4 such that
(Az,2) > 7||z||?, Vz e H. (1.1)

Let B : H — H be a single-valued nonlinear mapping and M : H — 2H be a multi-valued mapping. The
generalized quasi-variational inclusion problem is to find u € H such that

0 € Bu + Mu. (1.2)

The set of solutions of problem (1.2} is denoted by VI(H, B, M).
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Example 1.1.
Let C be a nonempty closed convex subset of a Hilbert space H and §¢ : H — [0, 00) be the indicator function of C,
i.e.,
0, xeC,
oo =
+oo, z ¢ C.

If M is the subdifferential of d¢, that is, M = 9d¢, then the variational inclusion problem (|1.2)) is equivalent to find
u € C such that
(Bu,v—u) >0, YueC. (1.3)

(1.3) is called the Hartmann-Stampacchia variational inequality problem ([I6]) and the solution set of (1.3)) is denoted
by VI(B,C).

A mapping B : H — H is called a-inverse strongly monotone if there exists a > 0 such that

(BJ:—By,x—y) > O‘HB(IZ_ByH27 any € H.

A multi-valued mapping M : H — 27 is called monotone if for all z,y € H,u € Mz and v € My implies that
(u—v,z—y) >0,
and M : H — 2 is called maximal monotone if it is monotone and for any (z,u) € H x H such that
(u—v,z—y)>0,Y (y,v) € G(M)

implies that w € Mz, where G(M) is the graph of mapping M.
We can easily prove the following proposition from the definition.
Proposition 1.2. Let B: H — H be an a-inverse strongly monotone mapping. Then,

(i) Bisan é—Lipschitz continuous and monotone mapping;

(ii) if A is any constant in (0, 2a], then the mapping I — AB is nonexpansive, where [ is the identity mapping on H.

Let © : C x C' — R be an equilibrium bifunction and ¢ : C' — R a real valued function. We consider the following
generalized mixed equilibrium problem ([7, 26]) for finding z € C such that

O(z,y) + (Az,y — 2) + o(y) —¢(2) 2 0,Vy € C, (1.4)
where A : C' — C is single-valued mapping and the solution set of (|1.4) is denoted by GM EP(0), i.e.,

GMEP(O)={2e€C:0(z,y) + {(Az,y — 2) + p(y) — p(z) > 0,Vy € C}.

Recently Ceng and Yao ([4]) introduced the following mixed equilibrium problem for finding z € C such that
O(z,y) + ¢(y) — ¥(2) 2 0,Vy € C, (1.5)
and the set of solutions is denoted by M EP(O), i.e.
MEP(©)={2€ C:0(z,y) + ¢(y) — ¢(z) > 0,Vy € C}.

In particular, if ¢ = 0, then (1.5 reduces to the equilibrium problem for finding z € C such that

O(z,y) > 0,Vy € C, (1.6)
and the set of solutions of (|1.6) is EP(©).

On the other hand Li et al. ([15]) introduced two iterative procedures for the approximation of common fixed
points of a one parameter nonexpansive semigroup {7'(s) : 0 < s < oo} on a nonempty closed convex subset C' in a
Hilbert spaces (see [5] 6], 12 13| [18§]).
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Very recently Saeidi ([20, 2I]) introduced the following general iterative algorithm for finding a common element
of the set of solutions of a system of equilibrium problems EP(g) for a family g = {F; : i = 1,2,--- , M} of bifunctions
and of the set of fixed points of a finite family of nonexpansive mappings ¢ = {T; : i = 1,2,--- , N} and a left amenable
semigroup § = {T'(t) : t € S} of nonexpansive mapping with respect to W-mappings and left regular sequence {u, }
of means defined on an approximate space of bounded real valued functions of the semigroup S.

Tnt1 = anVf(zn) + By + (1= B — O‘nA)T(Nn)WanJ],n SR S KA

rT2o,mTr1,n

Recall that a family & = {T'(s) : 0 < s < o0} : C — C of a mapping is called a one parameter nonexpansive
semigroup if it is satisfied the following conditions:

(a) T(s+1t)=T(s)T(t),Vs,t >0 and T(0) = I;
(b) [T (s)z = T(s)y| < llz —yll,Va,y € C;

(¢) the mapping T'(-)x is continuous for each x € C.
Motivated and inspired by the recent works [1l [2, [} [8, [, 10, 11} 14, 24, 26], we introduced a hybrid iterative
scheme for finding a set of common solutions for a system of mixed equilibrium problems, the set of common fixed
point for nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problems with multi-valued

maximal monotone mapping and inverse strongly monotone mappings in Hilbert spaces. We also prove some strong
convergence theorem under suitable conditions.

2 Preliminaries
In the sequel, we use z,, — = and x,, — x to denote the weak convergence and strong convergence of the sequence

{z,} in H, respectively.

Definition 2.1. Let M : H — 29 be a multi-valued maximal monotone mapping. Then the single-valued mapping
JM . H — H defined by
JM(u) = (I +AM)"(u),Yu € H,

is called the resolvent operator associated with M, where X is any positive number and I is the identity mapping.
Proposition 2.2. ([27]) Let JM be the resolvent operator associated with M. Then we have:
(i) JM is single-valued and nonexpansive for all A > 0, i.e.,
1T () = I W) < Il —yl, Yz, y € H.
(ii) J is I-inverse strongly monotone, i.e.,
1T () = T W)I1? < (& =y, X (@) = T (9)), Ve, y € H.

Definition 2.3. A single-valued mapping P : H — H is said to be hemicontinuous if for any x,y, z € H, the function
t — (P(x + ty), ) is continuous at 0F.

Remark 2.4. Every continuous mapping must be hemicontinuous.

Lemma 2.5. ([I7]) Let E be a real Banach spaces and E* be the dual space of E. Let T : E — 2" be a maximal
monotone mapping and P : E — E* be a hemicontinuous bounded monotone mapping with D(T) = X, then the
mapping U :=T 4 P : E — 2F" is a maximal monotone mapping.

Lemma 2.6. ([22]) Let {z,} and {z,} be bounded sequences in a Banach space E and let {5,} be a sequence in
[0,1] with 0 < liminf 3, < limsup 3, < 1. Suppose that
n—o0

n—00
Tn+1 = (]- - Bn)zn + ﬁnxn

for all n» > 1 and limsup (||zn+1 — zn|| — [|Zn+1 — 2n]]) < 0. Then we have
n—oo

lim ||z, — x,| = 0.
n— o0



2774 Abd-Allah, Ahmadini, Salahuddin

Lemma 2.7. ([25]) Assume that {a,} is a sequence of nonnegative real numbers such that
Anp+1 S (1 - ’Yn)an + 5navn 2 no,

where ng is some nonnegative integer and ~,, € (0,1) and 4,, are sequences satisfying:

(i) Z;L.Ozl Yn = OC;

(ii) limsup% <0 or Yo% |6, |=oc.

n— oo

Then lim a, =0.

n—oo

Lemma 2.8. ([3]) Let E be a real Banach space and J : E — 2" be the normalized duality mapping. Then for any
z,y € F, we have

lz+ gl < lz)* +(y . j(z +y), Vile +y) € J(z +y).
Especially if E = H is a real Hilbert space, then

lz +yl1* < ll2l® + {y, 2 +y), Yo,y € H.

For solving the equilibrium problems for bifunction © : C x C — R, we assume that O satisfies the following
conditions:

(C1) O(x,x) =0,Vz € C;
(C2) © is monotone i.e.,
O(z,y) +0O(y,z) < 0,Va,y € C;

(C3) for any y € C, x — O(x,y) is concave and weakly upper semi-continuous;
(C4) for each z € C, y — O(z,y) is convex and lower semi-continuous.

A mapping 1 : C' x C' — H is called Lipschitz continuous if there exists a constant L > 0 such that

In(z, )|l < Lllz —yl|, Yo,y € C.

A differentiable function K : C' — R on a convex set C' is called:

(i) n-convex ([4]) if
K(y) — K(z) > (K'(z),n(y, x)),Vz,y € C,

where K'(z) is the Frechet derivative of K at x.
(ii) n-strongly convex ([4]) if there exists a constant x> 0 such that

K(y) - K(x) = (K'@),n(y,2)) = Sz =y Yo,y € C.

A mapping F : C — R is called sequentially continuous at zq if F(x,) — F(zo) for each sequence {z,} satisfying
T, — xo. F' is called sequentially continuous on C' if it is sequentially continuous at each point of C.

Lemma 2.9. ([4]) Suppose that for each fixed y € C,n(y,-) : C — H be sequentially continuous from the weak
topology to the weak topology and that K’ : C' — H is sequentially continuous from the weak topology to the strong
topology. Then g, : C'— R defined as g, (z) = (K'(x),n(y, z)) for each fixed y € C is sequentially continuous in the
weak topology.

If an equilibrium bifunction © : C' x C' — R satisfies conditions (C'1)-(C4) and A : C — C a single-valued mapping.
Let r be a positive parameter. For a given point z € C, consider the auxiliary problem for GMEP (for short,
GMEP(x,r)) which consists of finding y € C such that

O(y, 2) + (Az,y — 2) + ¢(2) — ¢(y) + 1<K’(y) — K'(z),1(2,y)) > 0,vz € C,

r
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where 7 : C x C — H and K'(z) is the Frechet derivative of a functional K : C — R at x. Let V® : C — C be the
mapping such that for each z € C, V9 (x) is the solution set of GM EP(x,r), i.e., for all z € C

1
VO(a) = {y € C: 0(y,2) + (Az,y — 2) + 0(2) = () + —(K'(y) = K'(a), n(zy)) 2 0}
We can prove the following lemma by using the same method as Lemma 3.1 in [4].

Lemma 2.10. ([4]) Let C' be a nonempty closed convex subset of a Hilbert space H and let ¢ : C — R be a
lower semicontinuous and convex functional. Let © : C' x C' — R be an equilibrium bifunction satisfying conditions
(C1)-(C4). Assume that

(1) n: C x C — H is Lipschitz continuous with constant L > 0 such that
(&) n(z,y) +n(y,z) =0,Vr,y € C;
(b) n(-,-) is affine in the first variable;
(c) for each fixed y € C,z — n(y, z) is sequentially continuous from the weak topology to the weak topology;

(2) K : C — R is n-strongly convex with constant p > 0 and its derivative K’ is sequentially continuous from the
weak topology to the strong topology;
(3) for each x € C there exists a bounded subset D, C C and z, € C such that for any y € C\D,, we have

Oy, 2) + (Azz, y — 22) + 9(22) — ¢(y) + %<K’(y) - K'(x),n(22,y)) <0.

Then we have:

(i)

(ii)

(iii) F(V®)=GMEP(0);
)

V9 is single-valued;
V9 is nonexpansive if K’ is Lipschitz continuous with constant v > 0 such that u > Lv;

(iv) GMEP(O) is closed and convex.

Lemma 2.11. ([23]) Let C be a nonempty bounded closed convex subset of a Hilbert space H and let & = {T'(s) :
0 < s < 0o} be a nonexpansive semigroup on C. Then for any h > 0 and ¢ > 0,

lim sup H / s)xds — T(h)(% /t T(s)xds) H =0, forallz e C.
0

t—o0 xeC

Lemma 2.12. ([I5]) Let C be nonempty bounded closed convex subset of a Hilbert space H and S = {T'(s) : 0 <
s < oo} be a nonexpansive semigroup on C. If {z,} is a sequence in C satisfying the properties:

(1) zp — z;

(i) limsuplimsup ||T(s)z, — x| = 0.

§—00 n—oo

Then z € F(Q) := DOF(T(S)).

3 Main results

In order to prove the main results, we first give the following lemma.

Lemma 3.1. ([20]) We have the following statements for the solutions of the variational inclusion (|1.2)):
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(i) w € H is a solution of variational inclusion (1.2)) if and only if
u = JY (u— \Bu),¥A > 0,

ie.,

VI(H,B,M) = F(JY(I — AB)), YA > 0.

(i) If A € (0,2¢], then VI(H, B, M) is a closed convex subset in H.

Theorem 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space H, B be an a-inverse strongly
monotone mapping from C into H and M be a multi-valued mapping of C. Let & = {T'(s) : 0 < s < co} be an one
parameter nonexpansive semigroup and ©; : C x C —» R, (i = 1,2,--- , N) be a bifunction which satisfies (C1)-(C4)
such that

Q:=FQ)NGMEPO)NVI(H,B,M) # 0,

where N
GMEP(®) := (| GMEP(©)).
=1
Let ¢; : C = R, (i = 1,2,--- ,N) be a lower semi-continuous and convex functional. Let A be a strongly positive

bounded linear operator with a coefficient ¥ > 0 and f be a contraction of H into itself with a contractive constant
h(0 <h<1)and 0 <~y < {.Let {z,},{pn}, {{n} and {y,} be implicit iterative sequences generated by x; € H and

tn tn
T, = oznvf(tl /0 T(s)xnds) + Bnxn, + ((1 — Bn)I — anA) tl /0 T(s)pnds
pn = JM(I — AB)¢,, (3.1)

— 10 0210
Yn = V¥ V2V ey,

where {r;}(i = 1,2--- N) is a finite family of positive parameters, A € (0,2«],{o},{Bn} C [0,1] and {t,} C (0, 00).
Assume that the following conditions are hold:

(i) For each i =1,2,--- N, n; : C x C' — H is a Lipschitz continuous mapping with constant L; > 0 such that

(a‘) 771(95’9) + 7]1(1/755) = O,VLL', Yy e C;
(b) n;(+,-) is affine in the first variable;
(c) for each fixed y € C,z — n;(y, z) is sequentially continuous from the weak topology to the weak topology;

(ii) For each i = 1,2,--- N, K; : C — R is a n;-strongly convex with constant u; > 0 and its derivative K; is not
only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with
constant v; > 0, u; > L;v;;

(iii) For each x € C there exists a bounded subset D, C C and z, € C such that for any y € C — D,

1, /

Fi(y, z2) + (Aiza, y — 2z2) + @i(22) — @ily) + ;<Ki (y) — K;(2),mi(2z,9)) <0,

(iv) lim o, =0, Y .7 a,, =00, 0 < liminf 3, < limsup 3, <1

and lim ¢, = co.
n—oo

Then {z,} converges strongly to z* € Q provided that Vsi is firmly nonexpansive, and x* is the unique solution of

the following variational inequality:
(A=7f)z*, 2" - 2) <0,z € Q. (3.2)

Proof . We observe that from conditions (iv), we can assume without loss of generality that o, < (1 — 8,,)[ 4] ~*.
Since A is a bounded linear self-adjoint operator on H, we have

[A]l = sup{| (Au,w) |- w € H,[lu] = 1}.
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Since
(1= B — anA)u,u) =1 — B — an(Au, u)

21— fn —anl/A]
>0,

this implies that (1 — 8,)I — a, A is positive. Hence we have

11 = Bu)I — an Al = sup{[ ((1 = Bn)] — anA)u, u) [: w € H,[Juf| =1}
=sup{l — B, — an(Au,u) : u € H,||u|| = 1}

In the sequel, we denote by V! = Vfl)l ~-~V22Vﬁ?1 for i€ {1,2,--- ,N} and VW’ = I.

We divide the proof into serval steps:
Step 1. First prove that sequences {x,,}, {pn}, {¢n} and {y,} are bounded.
For each given n > 1, define the mapping W,, : C' — C as:

I I M 24N
W, = oznvf—/ T(s)ds + BnI + (1 — Bn)I — oznA)—/ T(s)(Jy" (I — AB))*Vds.
tn Jo tn Jo

n
Then we shall show that the mapping W, is a contraction. Indeed for any x,y € C, we have

oz,;yf(tl /Otn T(s)xds) + Bpx

n

W) = Wa()]| = |

* (“ — Bl - O‘"A) ti/o T (s)(IM (I = AB))V N ads

n

~anrs (i [ Tyuas)

+ (1= BT - ana) ti /Ot T(s)(JM (I - AB))QvNdeH

n

1 [ T6rmas) = 1 (- [ T65)| 4 sl

(=801 = a) - [T ITEON T - APV Yads

= T(s)(J" (I = AB))*VVyllds
Sanvhlz =yl + Bullz —yll + (1 = Bn — an?)z -y
<lz =yl

< any

Therefore, W,, : C'— C'is a contraction. Let x,, € C' be the unique fixed point of W,,. Then

1 [t
Ty = an'yf(}f—/ T(s)a:nds) + BnTy
0

n

+((1=B)1 - an4) ti /0 " T(s)(IM(T — AB))?VN zds

n

is well-defined. Let p € Q. Since y, = VNx,,, we have

lym = pll = VN an = pll < llon = pll- (3.4)
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Since p € VI(H, B, M) and p,, = JM(I — AB)&,, we have p = JM(I — AB)p and so

lon = pll = [[JX (I = AB)&, — JY (I — AB)p||
< ||(I = AB)&, — (I — AB)p||

S an 7p||
= [|JY(I = AB)yn — JY' (I = AB)p||
S Hyn _p”
< [lzn — pl|-
Let
1 [t
Uy = —/ T(s)xnds
tn 0
and

1 [t
Gn = —/ T(s)pnds.
tn Jo

Then we have

tn

=2l = || = [ 76125 =

IN

1 [t
= [ i), - Tsplds

|zn — pl|-

IA

Similarly, we have
lgn = pll < llpn = plI-

From (3.1))-(3.7)), we have

20 = pll = lleny f (un) + Bzn + (1 = Bu)I — anA)gn — p|
= [lany(f(un) = f(p)) + Bu(@n —p) + (1 = Bu)I — nA)(gn — p)
+ an(vf(p) — Ap)||
< apYhllun —p|l + Bullzn — pll + (1 = Ba)I — an¥)llgn — p|
+ an|vf(p) — Apll
< apyhllzn, — p| + Bullzn — pll + (1 = Bu)I — an?)|lzn — pl|
+ anllvf(p) — Ap]-

And so, we have

1
2n —pll < 7 7hllw”(p) — Apl|.

This implies that {z,} is a bounded sequence in H. Therefore {y,}, {pn}, {&n}, {7/ (us)} and {g,} are also bounded.

Step 2. Next, we prove that for each 0 < s < oo,
|z — T(8)xn|| = 0(n — o0).
Since z,, = anVf(un) + Bnzn + (1 — Bn)I — a,, A)gy, we have

|20 = qull < anllvf(un) — Agnll + Bullzn — gnll-

Hence
Qo

1_ﬁn

20 = gnll < 17 (un) = Aganll.

From «,, — 0, we have
[0 — gnll — 0.
Let
1
3 —=7h

K:{wEC:Hw—pH < ||’Yf(P)—AP||}-

(3.8)



Hybrid iterative algorithms for finding common solutions of a system of generalized mixed quasi-equilibrium prob®ir9

Then K is a nonempty bounded closed and convex subset of C' and T'(s)-invariant. Since {z,} C K, there exists r > 0
such that K C B,. It follows from Lemma [2.11] that

lim |[gn — T (s)gnl = 0. (3.10)

From and -, we have
Hxn - T(S)mnH = Hxn —qnt+qn — T(S)qn + T(S)Qn - T(S)QﬁnH
< lzn = anll + llan — T(s)anll + [ T(s5)gn — T(s)an ||
< ”xn - Qn” + HQn - T(S)Qn” + HQn - an

— 0.
Step 3. Next, we prove that
lim |[V'*z, —Vi,| =0,
n—oo
for alll € {0,1,--- , N — 1}. Especially,
lim VN2, — z,| = lim |y, — 2| = 0. (3.11)
n—o0 n—00
In fact, since VS};I is firmly nonexpansive, for any given p € Q and [ € {0,1,--- , N — 1}, we have
I+1,, 2 e 12 2
v —pllP = Vs (Vi) = V|
e ! !
<Vrll+t1 V'azn) —p,V'en —p)

= <Vl+1 In — P, Vlwn - p>
1
= S (V¥ = pl? 4 [V = p? = [V = V).
It implies that
IV e = pl* < llan = pl* = [V'an = Va1 (3.12)
On the other hane, from (3.1]), we have

20 = plI* = lanvf (un) + Bntn + (1 = Bn)I — anA)gn — plI®
= [lan (7.f (un) — Ap) + Bu(@n — qn) + (I — anA)(gn — p)II?
< = anA)(gn = p) + Bu(Tn — gu)|1?
+ 20, (7 f(Un) — Ap, 2r, — p)
< 1T = anA)(gn — p)I| + Bullzn — gnl]?
+ 200 (v f (un) — Ap, 20 — p)
< = an)llpn = pll + Bullzn — aall)?
+ 200 (7 f (un) — Ap, 2, — p)
< (1= an¥)?llpn — 2l + B2l — gnl?
+2(1 — ) Bullpn — pllll2n — @nl|
+ 20 [[7f (un) — Apllllzn — pl|. (3.13)

And note that
lon = pll < ll&n —pll < VN@n —p|l < [V*'2n —pl, VI€{0,1,---,N -1}

Substituting into , it yields
|z — p||2 (1- an’Y) {llzn — pH2 - Hlen - Vl—Hmn”Q} + 531”5571 - Qn||2
+2(1 — ) Bullon — pllllzn — anll + 2an||vf (un) — Ap||lzn — pl|
= (1= 2007 + (@n7)?)llzn — Pl = (1 = @n?)? Va0 — Va2
+ Ballen = anll® +2(1 = ) Ballon — pllll2n — gnll
+ 207 f (un) — Apllllzn — pl|.
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Simplifying the above inequaity, we have

(1= an)? Vi = V2] < (1 - an¥)?llzn = pl* = llzn = plI* + B2 20 — anl®

+2(1 = @n)Ballpn = pllllzn = gnll
+ 2an|[vf (un) — Apllllzn — pll.

Since ay, — 0, ||zn — gn]| = 0 from condition (iv). Hence we have

lim [V lz, — Vi, || =0,

n—oo

foralll € {0,1,--- ,N —1}.
Step 4. Now, we prove that for any given p € Q,

lim || By,, — Bpl|| = 0.
n— 00

In fact, it follows from (3.5]) that

lpn = pII* < 160 = pII? = |1JX(I = AB)yn — JX(I — AB)p||®
< |(I = AB)yn — (I = AB)p|?
< lyn = plI* = 2X\(yn — p, Byn — Bp) + \*|| By, — Bp||®
< lyn = plI* + A(X = 20) || By, — Bp|?
< lzn = plI? + A(A = 20) || Byn — Bpl|*.

Substituting (3.15)) into (3.13)), we obtain
lzn =PI < (1 = an¥)* {20 — plI* + A\ = 20)(| By, — Bp|*}
+ 6121”3771 - Qn||2 +2(1 = an¥)Bullon — pllllTn — gnll
+ 2an|[vf (un) — Aplll|lzn — pll-

Simplifying this, we have

(1 = an¥)’A2a = N[ Byn — Bpl* < 1+ an(9)*) 2 — plI* — |20 — pl®
+ Ballzn — anl?
+2(1 — an¥)Bullon — pllllT7n — gl
+ 20am[[7.f (un) — Ap|[lzn — p||
= an(7)? |z — Pl + B llen — gall®
+2(1 — an¥)Bullpn — pllllTn — gl
+ 20 |[7f (un) — Ap|l[|lzn — p||-

(3.14)

(3.15)

Since o, — 0, 0 < liminf 8, < limsup B, < 1, ||xn — qnl| = 0, and {vf(u,) — Ap}, {z,} are bounded, these imply
n—oo

n—oo

that
lim ||By, — Bpl|| = 0.
n—oo

Step 5. Next, we prove that

lim ||y, — pull =0,
n— oo
lim ||z, — pn| = 0.
n—oo

In fact, since
Hyn - an S ||yn - fn” + ||€n - ana

(3.16)
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it is sufficient to prove ||y, — &.|| = 0 and [|£, — pn|| — 0. First we have to prove that ||y, — &,|| — 0. In fact, since

[€n = plI”> = [[JX"(I = AB)yn — JA'(I — AB)p|?
< AYn — AByn — (p — ABp),&n — D)

1

5 {1y = ABya = (0= ABp) |2 + g — pI1?

— lyn — AByn — (p — ABp) — (&n fp)IIQ}

1 2 2 2
5 {0 =PI + 160 =PI = llyn — &0 = A(Byn — Bp)|1*}
1

5 {lym = 12 + 16 = pI> = llym — all

+ 2X(y — &ns By — By) = | By, — Bp|*},

IN

IN

we have
1€ = 2lI? < llyn — PIIZ = 1y — &nll® + 22 (Yn — &n, Byn — Bp) — A\?|| By, — Bp|>. (3.17)

Substituting (3.17)) into (3.13)), it yields that
lzn = pI* < (1= an®)*{yn = pI* = lyn — &all?
+ 2)\<yn - gn,Byn - Bp> - )‘2||Byn - Bp||2}
+ Ballzn = gnll® +2(1 = an¥)Ballpn — pllllzn — gnll
+ 2017 f (un) — Apll[lzn — p|-
Simplifying this, we have
(1- O"V)QHyn - 571”2 < an:ﬂ”xn - pH2 +2(1 - a7z’72)A<y7L —&n, Byn — Bp)
— (1= a7)*>?|| By, — Bpl|?
+ Ballzn = anll? +2(1 = @) Bullon — pllllzn — dnll
+ 20 |7.f (un) — Apl|[|#n — pl|-

Since o, — 0, 0 < liminf 8, <limsup B, <1, ||zn, — ¢l = 0, || By, — Bp|| = 0 (n — o0) and {vf(u,) — Ap}, {zn},
n—oo n— oo

{pn} are bounded, these imply that

Next we prove that

(|6, — pull = 0. (3.18)
Since
160 = pull = TR (I = AB)yn — JY'(I — AB)&||
— 0,
we have

Hyn — pnll = |yn — &n +&n — an
S ”yn - §n|| + Hgn - pn”
— 0.

This together with (3.11]) shows that ||, — pn| — 0.

Step 6. Since {z,} is bounded, there exists a subsequence {x,, } of {x,} such that z,,, — z*. In this case, we will
prove that
2 € Q= F(3)NGMEP(©) N VI(H, B, M)
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and z* is the unique solution of the variational inequality ((3.2]).
We first prove that z* € F(SJ). From Lemma and Step 2, we obtain z* € F ().

Next, we prove that
N

z* € GMEP(®) := (| GMEP(©)).
=1

Since z,, — x* and noting Step 3, without loss of generality, we may assume that V'z,, — x*, for all | €
{0,1,2,--- ;N — 1}. Hence for any = € C, we have

K, VHie,,) — K, V'a,,)
< I+l k = k 777l+1(337vl+1$nk)>
Tl4+1

> =01 (V' an,) — e (@) + i (V).

By the assumptions and the condition (C2), we know that the function ¢; and the mapping x — (—©;11(z,y)) are
convex and lower semi-continuous. Hence they are weakly lower semi-continuous. These together with

Kl,+1 (VH_lmnk) - Kl,+1 (lenk)

Ti4+1

—0

and V*1z,, — 2%, we have

K, Wz, ) - K, (Va,
0= hkmlnf< l+1( k) l+1( k)anl+l(xvvl+lmnk)>
—00 Ti4+1

> liminf { - O (Va0 — v (@) + e Ve, )}
This implies that for v € C and [ € {0,1,--- ,N — 1},
Op1(2", 2) + pr1(z) — w41 (2™) =2 0.
Hence, we have
N

z* € (VGMEP(6,) = GMEP(®).
=1

Now, we prove that a* € VI(H, B, M). In fact, since B is a-inverse strongly monotone, it follows from Proposition
that B is an L-Lipschitz continuous monotone mapping and D(B) = H, (where D(B) is the domain of B). From
Lemma [2.5] that M + B is maximal monotone. Let (v, g) € G(M + B), i.e., g— Bv € Mwv. Since x,, — x* and noting
Step 3, without loss of generality, we may assume that V'z,, — x*, in particular we have y,,, = VNz,, — z*. From
|yn — pull = 0, we can prove that p,, — z*. Again since p,, = JM (I — AB)¢,,, we have &, — ABE&,, € (I +AM)py,
i.e., 3 (ény — Pny — AB&n,) € Mpy,. By virtue of the maximal monotonicity of M, we have

1
<U ~ Pnpr 9 — Buv — X(énk — Pny T )\Bfnk» =0,
and so
1
<U - pnk’g> > <U - pntU + X(&le ~ Pny — >\B§nk>>
1
= <U - pntU - Bpnk + Bp’ﬂk - BE’I’LI@ + X(gnk - p’l’Lk>>
1
> 04 (v = pny, Bpny, — Bén,) + (U — py., X(fnk = Pny))-
Since ||€, — pnll = 0, | B&, — Bpn|| — 0 and p,, — z*, we have
lim (v — pp,,9) = (v—2",g) >0.
k—o0
It follows from the maximal monotonicity of M + B that 6 € (M + B)(z*), that is, z* € VI(H, B, M). Consequently,

we have
¥ e Q.
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Finally, we prove that x* is the unique solution of variational inequality (3.2]).

We first prove that x,, — z*. Since for all z € Q,

lzn — 2||* = (xn — 2,2, — 2)
= (anVf(Un) + Bnxn + (1 = Bp)] — anA)gn — 2,7n — 2)
= (an(vf(un) — A2) + Bn(zn — 2) + (1 = Bn)I — anA)(gn — 2),2n — 2)
< an(Vf(un) — Az, 20 — 2) + Ballzn — Z||2
+ (1= B — an¥)lgn — 2llllzn — 2|

— (1= ) n — 22 + @nrf (un) — Az, 20 — 2), (3.19)
it follows that
lon = 21 < 21 (r) = A2, = 2)
< %(vf(un) —7f(2) +7f(2) — Az, 20 — 2)
< %{vhﬂxn —z|*+ (vf(2) — Az, xp, — z}}
Therefore )
zn — 2||> < __7h<'yf(z)—Az,xn—z>. (3.20)

Now replacing n in (3.20) with n; and letting kK — oo and x,, — z*, we have z,, — z*.
On the other hand, since

vzt (i [ T6)ads) 4 Bt + (- 507 =~ and) [ Ty

we have

an(A—fyf)(% /Otn T(s)xnds) = {(1 — Bn)(xp — —/n pnds

+anAd— /t" ()an — T(5)pn)ds

(1~ / D) - AB)VVds)

n

—&—anA%/o n(T(s)xn —T(s)pn)ds.

Hence for any z € 2, we have

— (- g,,)<(1 . tl/ot T(s)(JM (I - )\B))QVNds)xn
- (I _ 1 /t" T(s)(JY(T — )\B))2VNds)z,xn - z>
0

n

+ an<A% /Otn (T(8)xn — T(8)pn)ds, xpn — z>
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Then

A vf) t/ mnds —z>
™

( i/ T(s)(JM(I - )\B))QVNds)xn
tn Jo
1
( —/ M(1 - \B)) VNds>z,a:n - z>
1
<A—/ $)xn — T(s)pn)ds, Ty — z> (3.21)
tn Jo
Tt is easily seen that I — ti fot” T(s)(JM(I — AB))2VNds is monotone. Thus from we have that
1 tn 1 tn
<(A - 'yf)<—/ T(s)xnds)mn - z> < <A—/ (T(S)xn —T(8)pn)ds, xn — z> (3.22)
tn 0 n Jo

Now in (3.22) replacing n by ny and letting k — oo and z,, — z*, from Step 3 and Step 5, we have
[0 = pnll = 0.
Then ,
Tk
= [ @G, - T )ds 0
0

thn,
So, we have for all z € €,
(A=7f)z", 2" —2) <0.

That is, 2* is the solution of the variational inequality (3.2)). It follows from [I9] that z* is a unique solution of (3.2]).

Step 7. Next, we prove that

lim sup(vyf(z*) — Az™, x,, — z*) < 0. (3.23)
n—o0
First, we prove that
I
lim sup <t—/ T(8)pnds — x*,vf(z") — Ax*> <0. (3.24)
n— o0 n Jo

Indeed, there exists a subsequence {py,,} of {p,} such that
1 [t
limsup<t—/ T(s)pnds — x*,vf(z") — Ax*>
n Jo

n—oo
1 [t
= lim <—/ T(s)pnidsfx*,’yf(x*)fAz*>.
i—00 tni 0

We may also assume that p,, — w. This together with (3.9)) and (3.16]) show that

IR
Qn; = — T(s)pn,ds — w.
tni 0

Since ||z, — ¢n|| — 0, we have z,,, — w. Again by the same way as given in Step 6, we can prove that w € Q. Hence,
we have

1 tn
limsup<t— / T(8)pnds — x*,vf(z*) — A:U*>
n Jo

n—00

tn,
= lim <ti/0 T(s)pn,ds — x*,vf(z") — Ax*>

1— 00
11120<Qn1 -z a’yf(x ) — Az >

(w—a" yf(a") — Az)
0.

IN
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On the other hand, from ||z, — g,|| — 0 and (3.24]), we have

limsup(yf(z*) — Az™*, x, — 2*) = limsup(yf(a*) — Ax™, zp, — qn + @ — 27)

n—oo n— oo

<limsup(yf(z*) — Az™, x,, — qn)

n— oo

+ limsup(yf(z*) — Az*, q,, — x™)

n— oo

<0.

Step 8. Finally, we prove that x,, — x*. Indeed from (3.1]),(3.5) and (3.7]), we have

lon = 2*|1* = llan (vf (un) = Az*) = Ba(@n — 2*) + (1 = Ba)I — anA)(gn — 27)|?
< B(wn — %) + (1 = Ba)] — anA)(gn —z7)|
+ 20, (v f(un) — Ax™, 2 — )
< [Bullzn — 2| + (L = Ba)I — anA)(gn — ™))
+ 20671’}/<f(un) - f(m*),xn - l'*> + 20(»”<’}/f(33*) - AJE*, T — 33*>
< Ballzn — 2| + (1 = Bn — an¥)llon — x*”]Q
+ 2, 7h||z, — || + 200, (v f(2*) — Az*, x), — 2%)
< ((1 = an¥)? + 2a07h) |2 — 2 ||* + 2000 (v f(2¥) — Az™, x,, — 2*).

This implies that

* 2 * * *
llzn — %)% < W<fyf(x )— Az x, — > (3.25)

Combining (3.23)) and (3.25]), we obtain that z, — z*. This completes the proof. [J
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