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Abstract

The purpose of this paper is to investigate the existence and uniqueness of solutions to the Caputo sequential fractional
differential equations and inclusions with integral boundary conditions. When it comes to proving the existence of
solutions, the Krasnoselskii’s fixed point theorem is employed. Further, the Banach’s contraction principle and the
Leray-Schauder alternative are employed to prove the uniqueness of the results. Further, for the multi-valued case, we
employ the nonlinear alternative for Kakutani maps, and Convitz and Nadler’s fixed point theorem. We emphasize
our results with numerical examples.
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1 Introduction

Fractional differential equations (FDEs) have been used in a variety of domains, including biology, applied science,
physics, and bioengineering. Fractional derivatives (FDs) of FDEs include Riemann-Liouville, Grunwald-Letnikov,
Caputo, Hadamard, and others. For foundational notions in the theory of fractional calculus (FCs) and FDEs, we
recommend the article and books [11, 17, 18, 23] as well as the sources given therein [2, 5, 29].

FCs have gotten a lot of attention and popularity in the last few decades. Its extensive theoretical development and
applicability in a variety of technical sciences and technical fields are easy to see. Aerodynamics, operations research,
biological science, and other fields are examples. FCs have been proven to be an effective modeling technique for a
variety of real-world problems [6, 9, 10, 21, 28].

Many researchers have recently studied boundary value problems (BVPs), introducing a range of circumstances
such as multi-point, classical, non-local, periodic/anti-periodic, fractional order, and integral boundary conditions
[1, 3, 4, 8, 19, 20, 22, 25].
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In the study of nonlinear systems and stochastic processes, differential inclusions have proven to be extremely
useful. See [1, 4, 8, 19, 24, 26] for some recent BVPs results for fractional differential inclusions.

For instance, multi-point boundary value problems for fractional differential equations were studied by Mujeeb ur
Rehman et al [27], is of the form

cDαy(τ) = g(τ, y(τ),Dβy(τ)), τ ∈ [0, 1],

y(1) = 0, Dβy(1)−
k−2∑
j=1

ωjDβy(ξj) = y0,

where cDα is the Caputo fractional derivative (CFDs) of order 1 < α ≤ 2, and g: [0, 1]×R → R is a given continuous
function and ωj (j = 1, 2, ..., k − 2) are non-negative real constants.

The boundary value problem (BVP) of the nonlinear fractional differential equation of order q ∈ (1, 2] with three-
point integral boundary conditions (IBCs) was recently solved by the authors in [7], is given by

cDqx(τ) = f(τ, x(τ)), 0 < τ < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = α

∫ η

0

x(ϱ)dϱ, 0 < η < 1,

where cDq is the Caputo fractional derivative, f : [0, 1]× R → R, α is a real positive number .

In [9], the authors discussed a existence of solution of a fractional differential equation of the form

(cDϖ + φcDϖ−1)x(τ) = f(τ, x(τ)), 2 < τ ≤ 3,

supplemented with IBCs

x(0) = 0, x′(0) = 0, x(ζ) = a

∫ η

o

(η − s)β−1

Γ(β)
x(s)ds, β > 0,

where cDϖ is the Caputo fractional derivative of order ϖ, 0 < η < ζ < 1, f : [0, 1]× R → R,and φ, a are non-negative
number. The existence and uniqueness results are established using the Banach’s contraction mapping principle,
Krasnoselkii’s fixed point theorem, and the Leray-Schauder nonlinear alternative. The boundary condition implies
that the value of the unknown function at any point ζ ∈ (η, 1) is proportional to the unknown function’s the Riemann-
Liouville fractional integral. To the reader, we offer a series of articles on coupled systems of fractional differential
equations.

More recently, Bashir Ahmad et al. [8], studied an sequential fractional differential equations and inclusions

(cDϖ + φcDϖ−1)x(τ) = f(τ, x(τ),c Dδ
0+x(τ), Iγx(τ)), τ ∈ J := [0, 1],

(cDϖ + φcDϖ−1)x(τ) ∈ F(τ, x(τ),c Dδ
0+x(τ), Iγx(τ)), τ ∈ J := [0, 1],

with multi-point boundary conditions

x(0) = 0, x′(0) = 0,

m∑
i=1

aix(ζi) = λ

∫ η

0

(η − s)β−1

Γ(β)
x(ϑ)dϑ,

where cDϖ denotes the Caputo derivatives of fractional order, 2 < ϖ ≤ 3, 0 < δ, γ < 1, φ > 0, β > 0 I(.) denotes the
left Riemann -Liouville integral of fractional order (.), f : [0, 1]×R3 → R is given continuous function, F : [0, 1]×R3 → R
is a multi-valued map and λ, ai, i = 1, 2, ·m are constant. Authors discussed both existence and uniqueness results via
standard fixed point theorems for single-valued and multi-valued maps to obtain the desired results.

On the basis of our current understanding, we introduce and investigate the existence of solutions to the Caputo
sequential fractional differential equation and inclusion

(cDϖ + φcDϖ−1)x(τ) = f(τ, x(τ)), τ ∈ J := [0, 1], (1.1)

(cDϖ + φcDϖ−1)x(τ) ∈ F(τ, x(τ)), τ ∈ J := [0, 1], (1.2)

with the IBCs

x(0) = 0, x′(0) = 0, x′′(0) = 0, x(1) + x(ν) = λ

∫ η

0

x(ϑ)dϑ, (1.3)
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where cDϖ denotes the Caputo fractional derivative of order ϖ, φ > 0, ν ∈ (0, 1], f : [0, 1] × R → R is a given
continuous function and λ, φ are appropriate positive real constants.

We prove the existence and uniqueness of the systems (1.1) and (1.3) in this work using basic concepts from
fixed point theory. The existence and uniqueness results are obtained using the Banach contraction mapping concept,
whereas the existence result is obtained using the Leray-Schauder method. (1.2-1.3) while using Covitz and Nadler’s
fixed point theorem and the nonlinear alternative for Kakutani maps. It is essential to understand the concepts
between fractional derivatives and non-sequential Riemann-Liouville derivatives. If you’re interested in some recent
work on sequential fractional differential equations, see [19] and [9]. The overview of this article is given as follows:
Section 2, discusses the basic definitions of fractional calculus. On the other hand, an auxiliary finding about the linear
version of (1.1) and (1.3) is explained. Section 3, establish the existence and uniqueness of the given problem, the
Banach fixed point theorem and the Leray-Schauder alternative are utilized. Section 4 shows the existence of convex
and non-convex valued maps in the system (1.2) - (1.3) by applying a nonlinear alternative of Covitz and Nadler’s
fixed point theorem. Section 5 gives examples of direct results.

2 Preliminaries

Before providing an auxiliary lemma, we shall go over some of the fundamental concepts of FCs in greater detail
[13, 17, 18, 23]. Let (S, ∥ · ∥) be a normed space and that Ucl(S) = {A1 ∈ U(S) : A1 is closed }, Uc,cp(S) = {A1 ∈
U(S) : A1 is convex and compact}. A multi-valued map W : S → U(S) is
(a) convex valued if W(s) is convex ∀s ∈ S;
(b) upper semi-continuous (u.s.c.) on S if, for each w0 ∈ S; the set W(w0) is a non-empty closed subset of S and if,

for each open set T of S containing W(w0), there exists an open neighborhood T0 of w0 such that W(T0) ⊂ T ;
(c) lower semi-continuous (l.s.c.) if the set {m ∈ S : W(m) ∩ A ≠ ⊘} is open for any open set A in F ;
(d) completely continuous (c.c) ifW(A) is relatively compact (r.c) for everyA ∈ Ub(S) = {A1 ∈ U(S) : A1 is bounded}.

A map W : [0, 1] → Ucl(R) of multi-valued is said to be measurable if, for every m ∈ R, the function τ 7−→
d(m,W(τ)) = inf{|m − k| : k ∈ W(τ)} is measurable. A multi-valued map W : [0, 1] × R → U(R) is said to be
Caratheodory if

(i) τ 7−→ W(τ, s) is measurable for each s ∈ R;
(ii) s 7−→ W(τ, s) is u.s.c for almost all τ ∈ [0, 1].

Definition 2.1. The fractional integral of order α with the lower limit zero for a function f is defined as

Iαf(τ) =
1

Γ (α)

∫ τ

0

f(s)

(τ − s)1−α
ds, τ > 0, α > 0.

Provided the right-hand side is point-wise defined on [0.∞), where Γ (.) is the gamma function, which is defined
by Γ (α) =

∫∞
0
τα−1e−τdτ.

Definition 2.2. The (R-L) fractional derivative of order α > 0, n− 1 < α < n, n ∈ N is defined as

Dα
0+f(τ) =

1

Γ (n− α)

(
d

dτ

)n ∫ τ

0

(τ − s)n−α−1f(s)ds, τ > 0,

where the function k has AC derivative up to order (n− 1).

Definition 2.3. The (C-D) of order r ∈ [n− 1, n) for a function f : [0,∞) → (R) can be written as

cDr
0+f(τ) = Dr

0+

(
f(τ)−

n−1∑
k=0

τk

k!
f (k)(0)

)
, τ > 0, n− 1 < r < n.

Note that the CFDs of order r ∈ [n− 1, n) exist almost everywhere on [0,∞) if f ∈ ACn([0,∞), (R)).

Remark 2.4. If f ∈ Cn[0,∞), then

cDr
0+f(τ) =

1

Γ (n− r)

∫ τ

0

f (n)(s)

(τ − s)r+1−n
ds = In−rf(n)(τ), τ > 0, n− 1 < r < n.
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The linear form of the problem (1.1)-(1.3) is stated by the following lemma.

Lemma 2.5. For h ∈ C([0, 1],R), is a solution of linear sequential fractional differential equation

(cDϖ + φcDϖ−1)x(τ) = h(τ), (2.1)

subject to the BCs (1.3) if and only if

x(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

]
,

(2.2)

Proof . Where cDϖ denote the CFDs order ϖ. Rewriting as cDϖ(x(τ) + φcD−1x(τ)) = h(τ). We can write its
solution as

x(τ) = a0e
−φτ +

a1
φ
(1− e−φτ ) +

a2
φ2

(φτ − 1 + e−φτ ) +
a3
φ3

(φ2τ2 − 2φτ + 2− 2e−φτ )

+

∫ τ

0

e−φ(τ−s)
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ, (2.3)

where a0, a1, a2, and a3 are unknown arbitrary constants. Using the BCs (1.3) in (2.4),

x(0) = 0, ′(0) = 0, x′′(0) = 0, x(1) + x(v) = λ

∫ η

0

x(ϑ)dϑ, (2.4)

we find that a0 = 0, a1 = 0, a2 = 0 and

a3 =
φ3

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

)
dϑ−

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

−
∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

}
,

where,

Ω =

{[
φ2 − 2φ− 2e−φ + 2 + φ2ν2 − 2φν2 − 2e−φν + 2

]
−
[
λ

∫ η

0

(φ2ϑ2 − 2φϑ2 − 2e−φϑ + 2)dϑ

]}
̸= 0, (2.5)

where (2.5) provides Ω. Then, (2.4) becomes (2.2) by replacing the values of a0, a1, a2, and a3. Conversely, this is a
direct result of the calculation. This concludes the proof. □

3 Existence of Solutions

Let X = C([0, 1],R) denote the Banach Space of all continuous functions from [0, 1] → R with the usual norm
defined by ||x|| = sup{|x(τ)|, τ ∈ [0, 1]} < ∞. To make proofs easier, it is necessary to set upper and lower limits for
the integrals that will be introduced in future results.
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Lemma 3.1. For h ∈ C ([0, 1],R), with ||h|| = supτ∈[0,1] |h(τ)| we have

(i)

∣∣∣∣∣λ
∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

)
dϑ

∣∣∣∣∣ = λη(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1)||h||;

(ii)

∣∣∣∣∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

∣∣∣∣ = 1

φΓ (ϖ)
(1− e−φ)||h||;

(iii)

∣∣∣∣− ∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

∣∣∣∣ = ν(ϖ−1)

φΓ (ϖ) (1− e−φν)||h||;

(iv)

∣∣∣∣∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

∣∣∣∣ = τ(ϖ−1)

φΓ (ϖ) (1− e−φτ )||h||.

Proof .

(i) Apparently ∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
dς =

ς(ϖ−1)

Γ (ϖ)
,

and ∫ ϑ

0

e−φ(ϑ−ϱ) ς
(ϖ−1)

Γ (ϖ)
dϱ ≤ ϑ(ϖ−1)

Γ (ϖ)

∫ ϑ

0

e−φ(ϑ−ϱ)dϱ =
ϑ(ϖ−1)

Γ (ϖ)

(1− e−φϑ)

φ
,

thus ∣∣∣∣∣λ
∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

)
dϑ

∣∣∣∣∣ ≤||h||λ
∫ η

0

ϑ(ϖ−1)

Γ (ϖ)

(1− e−φϑ)

φ
dϱ

=
λη(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1)||h||.

The proofs of (ii) and (iii) are similar. The proof is completed. □

To make things easier for us, we’ve established a schedule

℘ = sup
τ∈[0,1]

∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

∣∣∣∣ = 1

|Ω|
(φ2 − 2φ− 2e−φ + 2), (3.1)

Π =℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
. (3.2)

A fixed-point problem (1.1)-(1.3) is transformed into an equivalent problem in the context of Lemma (3.1).

x = S(x), (3.3)

where S : X → X is defined by,

(Sx)(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

]
.

(3.4)
If the operator equation (3.3) has fixed points, problem (1.1)-(1.3) has a solution.
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Theorem 3.2. Assume that f : [0, 1]×R→R is a continuous function satisfying the condition

(T1) |f(τ, x)− f(τ, x̄)| ≤ L |x− x̄| . (3.5)

for all τ ∈ [0, 1], x, x̄ ∈ R, where L is the Lipschitz constant. Then the problem (1.1)-(1.3) has a unique solution if
Π< 1/L where Π is given by equation (3.2).

Proof .

As the first step, we show that the operator S given by (3.3) maps X into itself. For that, we set supτ∈[0,1]|f(τ, 0)| =
Q <∞. Then, for x ∈ X , we have

∥S(x)∥ = sup
τ∈[0,1]

∣∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

∣∣∣∣
≤ sup

τ∈[0,1]

∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

∣∣∣∣
×

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x(τ)− f(τ, 0)|+ |f(τ, 0)|)dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x(τ)− f(τ, 0)|+ |f(τ, 0)|)dς

)
dϱ

+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x(τ)− f(τ, 0)|+ |f(τ, 0)|)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x(τ)− f(τ, 0)|+ |f(τ, 0)|)dς

)
dϱ,

≤(L∥x∥+Q)

[
℘

{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
=(L∥x∥+Q)Π <∞.

This shows that S maps X into itself. Now for x1, x2 ∈ X and for each τ ∈ [0, 1], we obtain

∥(Sx1)− (Sx2)∥ = sup
τ∈[0,1]

∥(Sx1)(τ)− (Sx2)(τ)∥

≤ sup
τ∈[0,1]

∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

∣∣∣∣
×

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x1(τ))− f(τ, x2(τ))| dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x1(τ))− f(τ, x2(τ))| dς

)
dϱ

+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x1(τ))− f(τ, x2(τ))| dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|f(τ, x1(τ))− f(τ, x2(τ))| dς

)
dϱ
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≤(L∥x1 − x2∥)
[
℘

{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
≤LΠ ∥x1 − x2∥ ,

where Π is supplied by (3.2), Π < 1
L , S is a contraction. The conclusion of the theorem arises from the contraction

mapping principle. The proof is complete. □

To verify that (1.1)-(1.3) has at least one solution, we require a known result from Krasnoselkii’s [11].

Theorem 3.3. Assume that f : [0, 1]×R → R is a jointly continuous function satisfying (T1). In addition we suppose
that the following assumption holds
(T2)|f(τ, x)| ≤ ξ(τ), forever (τ, x) ∈ [0, 1]× R with ξ ∈ C([0, 1],R). Then the BVP has at least one solution on [0, 1] if,[

℘

{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}]
< 1. (3.6)

where ℘ is given by equation (3.1) and Π are defined by (3.2)

Proof .

sup
τ∈[0,1]

|ξ(τ)| = ∥ξ∥ ,

r ≥ Π ∥ξ∥ ,

where Π is given by equation (3.2) and consider Br = {x ∈ X ; ∥x∥ ≤ r}. Define the operator S1 and S2 on Br as

(S1x)(τ) =

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ,

(S2x)(τ) =
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

}

It follows from that,

∥S1x+S2x∥ ≤
[
p

{
|λ| (η)ϖ−1

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

νϖ−1

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
||ξ|| ≤ r.

S1x+S2x ∈ Br is the result of this equation. The equation (3.6) makes it clear that the continuous function S2

is a contraction of the initial value. As a result of this, it follows that the operator S1 is continuous. The uniformity
of the Br boundary on S2 is also

∥S1x∥ ≤ (1− e−φ) ∥ξ∥
φΓ (ϖ)

.

The compactness of the operatorS1 is now established. It’s easy to see how this works: We define sup(τ,x1)∈Br
|f(τ, x)| =

Mr

|(S1x)(τ1)− (S1x)(τ2)| =
∣∣∣∣∫ τ1

0

e−φ(τ1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

−
∫ τ2

0

e−φ(τ2−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

∣∣∣∣
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≤ Mr

φΓ (ϖ)

(
|τϖ1 − τϖ2 |+

∣∣τϖ1 e−φτ1 − τϖ2 e
−φτ2

∣∣)
As τ2 → τ1 goes to zero, it is independent of x. As a result, S1 is reasonably compact on Br. As a result, according

to the Arzela-Ascoli theorem, S1 is compact on Br. So Theorem 3.3 is satisfied in that all of its assumptions are
satisfied. As a result, according to the conclusion of Theorem 3.2, BVP (1.1)-(1.3) has at least one solution on the
interval [0, 1]. This completes the demonstration. □

Lemma 3.4. Let P be Banach space, Q be a closed, convex subset of P, E be an open subset of Q and 0 ∈ U .
Suppose that F : Ē → C is a continuous, compact (that is, F (Ē) is a relatively compact subset of Q) map. That,
either
i) F has a fixed point in Ē , or
ii) There is u ∈ ∂E (the boundary of Ē in Q) and Ω ∈ (0, 1) with u = ΩF (u).

Theorem 3.5. Suppose that f : [0, 1]×R→ R is a continuous function. Further, it is assumed that the following
conditions hold:

(T3) There exist a function µ ∈ C([0, 1],R+) and a non-decreasing function ψ : R+ → R+ such that |f(τ, x)| ≤
µ(τ)ψ(∥x∥) for all (τ, x) ∈ [0, 1]× R.

(T4) there exists a constants A1 > 0 such that,

A1

ψ(A1) ∥µ∥Π
> 1,

where Π is supplied by (3.2), A solution exists on [0, 1] for the boundary value problem (1.1-1.3).

Proof . consider the operator S : X → X with x = Sx , where

(Sx)(τ) =
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

−
∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ

}
+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
h(ς)dς

)
dϱ.

we show that S maps bounded sets into bounded sets in C([0, 1],R). For a positive number r, Let Br = {x ∈
C([0, 1],R) : ∥x∥ ≤ r} be a bounded set in C([0, 1],R). Then

|S(x(τ))| ≤

∣∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(τ, x(τ))dς

)
dϱ

∣∣∣∣
≤℘

[{
|λ|
∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
µ(τ)ψ(∥x∥)dς

)
dϱ

)
dϑ

+

∫ s

0

e−φ(1−ϱ)

(
(s− u)(ϖ−2)

Γ (ϖ − 1)
µ(τ)ψ(∥x∥)dς

)
dϱ+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
µ(τ)ψ(∥x∥)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
µ(τ)ψ(∥x∥)dς

)
dϱ

]

≤ψ(∥x∥) (µ) (τ)
[
℘

{
|λ| (η)ϖ−1

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

νϖ−1

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
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≤ ψ(∥x∥)(µ)Π.

thus,

∥Sx∥ ≤ ψ(r) ∥µ∥Π.

Next we show that S that maps bounded sets into equi-continuous sets of C ([0, 1],R). Let τ1,τ2 ∈ [0, 1] with
τ1 < τ2 and x ∈ Br, where Br is a bounded set of C ([0, 1],R) . We then arrive at

|(Sx)(τ2)− (Sx)(τ1)|

≤
∣∣∣∣∫ τ1

0

e−φ(τ2−ϱ) − e−φ(τ1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(ς, x(ς))dς

)
dϱ+

∫ τ2

τ1

e−φ(τ2−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(ς, x(ς))dς

)
dϱ

∣∣∣∣
+

∣∣∣∣∣ (φ2(τ22 − τ21 )− 2φ(τ2 − τ1)− 2(e−φτ2 − e−φτ1)

Ω
×

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(ς, x(ς))dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(ς, x(ς))dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
f(ς, x(ς))dς

)
dϱ

}∣∣∣∣∣
≤
∣∣∣∣∫ τ1

0

e−φ(τ2−ϱ) − e−φ(τ1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
ψ(r)µ(ς)dς

)
dϱ+

∫ τ2

τ1

e−φ(τ2−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
ψ(r)µ(ς)dς

)
dϱ

∣∣∣∣
+

∣∣∣∣∣ (φ2(τ22 − τ21 )− 2φ(τ2 − τ1)− 2(e−φτ2 − e−φτ1)

Ω
×

{
λ

∫ η

0

(∫ ϑ

0

e−φϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
ψ(r)µ(ς)dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
ψ(r)µ(ς)dς

)
dϱ+

∫ ν

0

e−φν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
ψ(r)µ(ς)dς

)
dϱ

}∣∣∣∣∣ .
The right-hand side of the inequality above, regardless of x ∈ Br as τ2 − τ1 → 0, obviously tends to zero. This

implies that S : C ([0, 1],R) → C ([0, 1],R) is totally continuous because S satisfies the aforementioned conditions.

The Leray-Schauder nonlinear alternative will yield the desired outcome (Lemma 3.4). Once the set of all solutions
to equations x = βS(x) for β ∈ (0, 1) has been proven to be bounded.

Let x be the answer. For τ ∈ [0, 1], and using the computations used to prove that S is bounded, we obtain

|x(τ)| = |β(Sx)(τ)|

≤ψ(∥x∥) ∥µ∥
[
p

{
|λ| (η)ϖ−1

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

νϖ−1

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
=ψ(∥x∥) ∥µ∥Π.

as a result of this,

∥x∥
ψ(∥x∥) ∥µ∥Π

≤ 1.

To put it another way, there exists a (T4) in which A1 such that ∥x∥ ≠ A1. Let’s get started

V = x ∈ C([0, 1],R) : ∥x∥ < A1.

Be aware that the operator S : V̄ → C([0, 1],R) is both continuous and completely continuous. It can be seen in
the following equation: If V is chosen, then there is no x ∈ ∂V there is no x ∈ βS(x) for some β ∈ (0, 1). Since the
nonlinear alternative of Leray-Schauder type (Lemma 3.1) leads to a solution of problem (1.1) − (1.3), we conclude
that the function S has the fixed point x ∈ V̄. Finally, we have conclusive proof. □

4 Main results (1.2) and (1.3)

4.1 The Lipschitz case

We prove the existence of solutions for the problem (1.2)-(1.3) with a non-convex valued right-hand side by applying
a fixed theorem for multi-valued map due to Covitz and Nadler [[12]].
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Definition 4.1. A multi-valued operator N : Y → Qcl(Y) is called

(a) ð- Lipschitz if and only if there exists ð > 0 such that, Hd(N(y),N(z)) ≤ ðd(y, z) for each y, z ∈ Y; and

(b) a contraction if and only if is ð -Lipschitz with ð < 1.

Definition 4.2. Let A be a subset of [0, 1] × R. A is L
⊗

B measurable if A belongs to the ϖ - algebra generated
by all sets of the form T × D, where T is Lebesgue measurable in [0, 1] and D is Borel measurable in R.

Lemma 4.3. [26] let (Y, d) be a complete metric space. If N : Y → Qcl(Y) is a contraction, then fix N ̸= µ.

Theorem 4.4. Assume that the following conditions hold:

(A1) F : [0, 1]× R → Ucp(R) is such that F(., x(τ)) : [0, 1] → Ucp(R) is measurable for each x ∈ R.
(A2)Hd(F(τ, x),F(τ, x)) ≤ U(τ)|x− x̄| for almost all τ ∈ [0, 1] and x, x̄ ∈ R with U ∈ (C([0, 1],R+) and d(0,F(τ, 0)) ≤

χ1(τ) for almost all τ ∈ [0, 1]. Then the boundary value problem has at least one solution on [0, 1], if

||χ1||
(
℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}])
< 1.

Proof . Define the operator ΥF : (C([0, 1],R)→U(C([0, 1],R)). Since set SF,x is nonempty by Inference x ∈ (C([0, 1],R)
for each SF,x, (A1) has a spectrum that can be calculated. We will now see if operator ΥF conforms to the lemma
(4.3) assumptions. To show that ΥF(x) ∈ Ucl(((C[0, 1],R)) for each y ∈ (C([0, 1]), let Un≥0 ∈ ΥF(x) ,such that
Un → U(n→ ∞) in (C([0, 1],R). Then U ∈ (C([0, 1],R) and exists vn ∈ SF,x such that, τ ∈ [0, 1],

Un(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

]
.

(4.1)

as F has compact values, we pass onto a sub-sequence to obtain that vn converges to v in L1([0, 1], (R)). Thus, v
∈ SF,x and for each τ ∈ [0, 1], we have

Un(τ) → U(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

]
.

(4.2)

Hence, U ∈ ΥF(x). Next, we show that there exists. Such that, Hd(ΥF(x),ΥF(x̄)) ≤ θ̂ ∥x− x̄∥x for each x, x̄ ∈
AC4([0, 1],R). Let x, x̄ ∈ AC4([0, 1], (R)) and h1 ∈ ΥF(x). Then there exists v1(τ) ∈ F(τ, x(τ)) such that, for each
τ ∈ [0, 1],

h1(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v1(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v1(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v1(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v1(ς)dς

)
dϱ

]
.

(4.3)
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(A2), We’ve got it Hd(F(τ, x),F(τ, x̄)) ≤ χ1(τ)[|x(τ)− x̄(τ)|]. So, there w ∈ F(τ, x̄(τ)) such that

|v1(τ)−w| ≤ χ1(τ)|x(τ)− x̄(τ)|, τ ∈ [0, 1].

Define U : [0, 1] → U(R)by

U(τ) = {w ∈ R : |v1(τ)−w| ≤ χ2(τ)|x(τ)− x̄(τ)|}.

As the multivalued operator U(τ) ∩ F(τ, x̄)) is measurable, which is a measurable selection for U(τ) ∩ F(τ, x̄)). So
v2(τ) ∈ F(τ, x̄)) and for each τ ∈ [0, 1], we have |v1(τ)− v2(τ)| ≤ χ2(τ)|x(τ)− x̄(τ)|. For each τ ∈ [0, 1], let us define

h2(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v2(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v2(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v2(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v2(ς)dς

)
dϱ

]
.

(4.4)

thus,

|h1(τ)− h2(τ)| ≤

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

]
≤

[
℘

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v1(ς)− v2(ς)|dς

)
dϱ

]
≤||χ1||

(
℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}])
||x− x̄||.

(4.5)
Hence

||h1 − h2|| ≤

||χ1||
(
℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}])
||x− x̄||.

Analogously, interchanging the role of x and x̄, we obtain

Hd(ΥF(x),ΥF(x̄))

≤||χ1||
(
℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}])
||x− x̄||.
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Since ΥF is a contraction, it follows by Lemma (2.5) that ΥF has a fixed point x by Lemma 4.3, which is a solution
of (1.2 and 1.3). This completes the proof. □

4.2 The Upper Semi-Continuous case.

In this case when F has convex values we prove an existence results based nonlinear alternative of Leray-Schauder
type.

Lemma 4.5. [13] If V : Y → Qcl(Z)is u.s.c., then Gr(V) is a closed subset of Y × Z; i.e., for every sequence
{yn}n∈N ⊂ Y and {Yn}n∈N ⊂ Z if when n → ∞, yn → y∗, zn → z∗ and zn ∈ V(yn), then z∗ ∈ V(y∗). Conversely, if V
completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 4.6. Let Y be a Banach space. Let F : [0, 1]× R2 → Qcp,c(Y) be n L1-Caratheodory multi-valued map and
let Θ be a linear continuous mapping from L1([0, 1],Y) to C([0, 1],Y). Then the operator

Θ ◦SF,y : C([0, 1],Y) → Qcp,c(C([0, 1],Y)), y ↣ (Θ ◦SF,y)(y) = Θ ◦ (SF,y,z),

is a closed graph operator in C([0, 1],Y × C([0, 1],Y).

Lemma 4.7. Let E be a Banach space, C a closed convex subset of E,U an open subset of C and 0 ∈ U. Suppose that
F: Ū → Qcp,c(C) is a upper semi-continuous compact map, then either
(i)F has a fixed point in Ū, or
(ii) there is a u ∈ ∂U and λ ∈ [0, 1] with u ∈ λF(u).

Definition 4.8. A subset A of L1([0, 1],R) is decomposable if for all u, v ∈ A and measurable T ⊂ [0, 1] = T , the
function uYT + vYJ−T ∈ A, where YT stands for the characteristic function of T .

Theorem 4.9. Assume that;
(H1) F : [0, 1]× R → U(R) is L1-Caratheodory and has nonempty compact and convex values;
(H2) There exists a function µ ∈ (C([0, 1],R+), and a non decreasing, sub-homogeneous function
Υ : R+ → R+ such that

∥F(τ, x)∥U := sup{|w| : w ∈ F(τ, x)} ≤ µ(τ)Υ(∥x∥) for each (τ, x) ∈ [0, 1]× R;

(H3) There exists a contact M > 0 such that

M

Π||µ||Υ(M)
> 1,

where Π are defined by equation (3.2). Then the boundary value problem (BVP) (1.2)−(1.3) has at least one solution
on [0, 1].

Proof . Define an operator ΥF : C([0, 1],R) → U(C([0, 1],R)) by ΥF(x) = {h ∈ C([0, 1],R) as h(τ) = N(x)(τ)} where

N(x)(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

]
, v ∈ SF,x.

(4.6)

We will show that ΥF satisfies the assumptions of the nonlinear alternative of Leray-Schauder type. The proof
consists of several steps. As a first step, we show that ΥF is convex for each x ∈ C([0, 1],R). This step is obvious since
SF,x is convex F has convex values, and therefore we omit the proof.
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In the second step, we show that ΥF maps bounded sets into bounded sets in C([0, 1],R). For a positive number
ρ, let Bρ = {x ∈ C([0, 1],R) : ||x|| ≤ ρ} be a bounded ball in C([0, 1],R). Then, for each h ∈ ΥF(x), x ∈ Bρ, there exists
v ∈ SF,x such that

h(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

]
.

(4.7)

Then, for τ ∈ [0, 1] we have

|h(τ)| ≤

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v(ς)|dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v(ς)|dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v(ς)|dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
|v(ς)|dς

)
dϱ

]
≤||µ||Υ(||x||)

(
℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}])
,

≤Π||µ||Υ(||x||X)

Consequently,

||h|| ≤ Π||µ||Υ(||x||X).

Now we show that ΥF maps bounded sets into equi-continuous sets of C([0, 1],R). Let τ1,τ2 ∈ [0, 1]
with τ1 < τ2 and x ∈ Bρ. For each h ∈ ΥF(x). We obtain

|h(τ2)− h(τ1)| ≤

[∣∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}∣∣∣∣∣
+

∣∣∣∣∫ τ

0

(
e−φ(τ2−ϱ) − e−φ(τ1−ϱ)

)(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

+

∫ τ2

τ1

e−φ(τ2−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

∣∣∣∣]
≤

[∣∣∣∣∣ (φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

+

∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ+

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}∣∣∣∣∣
+

∣∣∣∣∫ τ

0

(
e−φ(τ2−ϱ) − e−φ(τ1−ϱ)

)(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

+

∫ τ2

τ1

e−φ(τ2−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

∣∣∣∣] .
Obviously, the right hand side of the above inequalities tends to zero independently of x ∈ Bρ as τ2 − τ1 → 0. As

ΥF satisfies the above assumption, therefore it follows by the Arzela-Ascoli Theorem [? ], that ΥF : U(C([0, 1],R) →
U(C([0, 1],R)) is completely continuous.
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In our next step, we show that ΥF is upper semi-continuous. To this end it is sufficient to show that ΥF has a close
graph, by Lemma 4.5. Let xn → x∗, hn ∈ ΥF(xn) and hn → h∗. Then we need to show that h∗ ∈ ΥF(y∗). Associated
with hn ∈ ΥF(xn), there exists vn ∈ SF,xn such that for each τ ∈ [0, 1],

hn(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
vn(ς)dς

)
dϱ

]
.

(4.8)

Thus its suffices to show that there exists v∗ ∈ SF,x∗ such that for each τ ∈ [0, 1],

h∗(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

]
.

(4.9)

Let us consider the linear operator Θ : L1([0, 1],R) → C([0, 1],R) given by

v ↣ Θ(v)(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v(ς)dς

)
dϱ

]
.

Observe that

||hn(τ)− h∗(τ)|| =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
(vn(ς)− v∗(ς))dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
(vn(ς)− v∗(ς))(ς)dς

)
dϱ

−
∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
(vn(ς)− v∗(ς))(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
(vn(ς)− v∗(ς))(ς)dς

)
dϱ

]
→ 0, as n→ ∞.

Thus, it follows by Lemma 4.6, that Θ ◦SF is a closed graph operator. Further, we have hn(τ) ∈ Θ(SF,xn). Since
xn → x∗, therefore, we have

h∗(τ) =

[
(φ2τ2 − 2φτ − 2e−φτ + 2)

Ω

{
λ

∫ η

0

(∫ ϑ

0

e−φ(ϑ−ϱ) ×
(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

)
dϑ

−
∫ 1

0

e−φ(1−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ−

∫ ν

0

e−φ(ν−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

}

+

∫ τ

0

e−φ(τ−ϱ)

(∫ ϱ

0

(ϱ− ς)(ϖ−2)

Γ (ϖ − 1)
v∗(ς)dς

)
dϱ

]
, for some h∗ ∈ SF,x.
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Finally, we show there exists an open Z ⊆ C([0, 1],R) with x /∈ ΥF(x) for any θ ∈ (0, 1) and x ∈ ∂(Z). Let θ ∈ (0, 1)
and x ∈ θΥF(x). Then there exists v ∈ L1([0, 1],R) with v ∈ SF,x such that for τ ∈ [0, 1], we can obtain

||x||X =℘

[{
|λ| η

(ϖ−1)

φ2Γ (ϖ)
(φη + e−φη − 1) +

1

φΓ (ϖ)
(1− e−φ) +

ν(ϖ−1)

φΓ (ϖ)
(1− e−φν)

}
+

{
1

φΓ (ϖ)
(1− e−φ)

}]
≤||µ||Υ(||x||X),

which implies that

||x||X
Π||µ||Υ(||x||X)

≤ 1.

In view of (H3), there exists M such that ||x|| ≠ M. Let us put it in place

Z = {x ∈ C([0, 1],R) : ||x|| <M}.

In the upper case, operator ΥF : Z̄ → U(C([0, 1],R)) is semi-continuous, while in the lower case, it is continuous. It’s
nothing like x ∈ ∂Z such that x ∈ θΥF(x) about any of Z, options θ ∈ (0, 1). As a result, we can deduce that ΥF has
a fixed point x ∈ Z̄, which is a solution to the problem (1.2 amd 1.3) by the nonlinear form of the Leray-Schauder
alternative (Lemma 4.7). This contributes to the proof. □

5 Example

The following is an example of a Theorem 3.2 that is illustrated.

Example 5.1. Consider the problem{
cD3/2(D + 2)x(τ) = L 1

2 (
√
τ2 + 1 + sin(τ) + x(τ) + tan−1x(τ)), 0 ≤ τ ≤ 1,

x(0) = 0, x′(0) = 0, x′′(0) = 0, x(1) + x(ν) = λ
∫ η

0
x(ϑ)dϑ.

(5.1)

Here, ϖ = 5/2, f(τ, x(τ)) = L 1
2 (
√
τ2 + 1 + sin(τ) + x(τ) + tan−1x(τ)), ν = 1/2, η = 1/3 Clearly

|f(τ, x)− f(τ, z)| ≤ L
2

∣∣x− z + tan−1x− tan−1z
∣∣ ≤ L|x− z|.

Using the provided values, we can calculate that Ω is approximately 1.54196, ℘ is approximately 1.1121513, and Π
is approximately 1.0628829. As long as the Theorem 3.2 is followed, the example problem (5.1) has a unique solution
for L < 1/Π ≈ 0.94083.

Example 5.2. Using the nonlinear function f given by, we then demonstrate the applicability of Theorem 3.3

f(τ, x(τ)) =
1

9 + τ
(sin(x)(τ)) +

1

10
. (5.2)

Using this formula, the value of L= 1
9 and L℘Π ≈ 0.132435. The conditions of Theorem 3.3 are manifestly met.

That theorem’s conclusion implies at least one solution in [0, 1] for the problem (5.1) with the given value of f .

Example 5.3. For the illustration of Theorem 4.4 , let us choose{
cD3/2(D + 2)x(τ) ∈ F(τ, x(τ)), 0 ≤ τ ≤ 1,
x(0) = 0, x′(0) = 0, x′′(0) = 0, x(1) + x(ν) = λ

∫ η

0
x(ϑ)dϑ.

(5.3)

Here, ϖ = 5/2, ν = 1/2, φ = 1 , η = 1/3. Clearly, F(τ, x(τ)) =
[
0, 1

12+τ2

(
|x|

8(4+|x|)

)
+ 1

(15+τ)

]
Hd(F(τ, x),F(τ, x)) ≤

1

12 + τ2
||x− x̄||X. (5.4)

Letting χ1(τ) = 1
12+τ2 . It is easy to check that d(0,F(τ, 0)) ≤ χ1(τ) holds for all τ ∈ [0, 1] and that ||χ1||Π ≤

0.97430 < 1. As the hypothesis of theorem are satisfied. we conclude that the problem (5.3) with F given by (5.4) has
at least one solution on [0, 1].
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6 Conclusion

We have constructed particular existence and uniqueness results for a boundary value problem of the Caputo type
sequential fractional differential equations and inclusions with integral boundary conditions using Banach’s contraction
mapping principle, Krasnoselkii’s fixed point theorem, and the Leray-Schauder alternative. In the multi-valued case
we proved existence results for both convex and non-convex multi-valued map via the nonlinear alternative for Covitz
and Nadler’s point theorem. We realize that new outcomes follow from altering the variables involved in a given
problem. The results of this work, for example, apply to a sequential fractional differential equation and inclusions

with integral boundary conditions of the form x(0) = 0, x′(0) = 0, x”(0) = 0, x(1) =
∫ η

0
(η−s)β−1

Γ (β) x(s)ds.
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