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Abstract

In this paper, we investigate the global behavior of positive solutions of the system of difference equations

xn+1 = α+
ypn

ypn−2

, yn+1 = α+
xq
n

xq
n−2

, n = 0, 1, 2, ...

where parameters α, p, q ∈ (0,∞) and the initial values xi, yi are arbitrary positive numbers for i = −2,−1, 0.
Moreover, the rate of convergence of positive solutions is established and some numerical examples are given to
demonstrate our theoretical results.
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1 Introduction

Recently, nonlinear difference equations and systems have been received great attention due to their practical
applications [1-20]. These equations appear naturally as mathematical models that describe biological, physical, and
economic phenomena. It has been observed that, difference equations might sometimes have a very simple form,
however, there have not been any effective general methods to deal with the global behavior of their solutions so far.
Therefore, the study of a certain form of difference equations is worth further consideration.

In [12], Stević et al. studied the boundedness character of the positive solutions of the following system of difference
equations

xn+1 = A+
ypn

xq
n−1

, yn+1 = A+
xp
n

yqn−1

, n = 0, 1, . . . ,

where A, p, q ∈ (0,∞) and the initial values xi, yi are positive numbers for i = −1, 0.
In [5], Gümüş introduced the system of two recursive sequences

un+1 = A+
vn−k

vn
, vn+1 = A+

un−k

un
, n = 0, 1, . . . ,

where A ∈ (0,∞), ui, vi are arbitrary positive numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+. The global asymptotic
stability of the unique positive equilibrium point and the rate of convergence of positive solutions of the system were
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examined by the author.
In [17], Taşdemir suggested the following system of difference equations contained quadratic terms

yn+1 = A+B
zn

z2n−1

, zn+1 = A+B
yn

y2n−1

, n = 0, 1, . . . ,

where A,B ∈ (0,∞) and the initial values yi, zi, are positive numbers for i = −1, 0. The author studied the global
asymptotic stability and the rate of convergence of solutions of mentioned system.

All the above-mentioned systems have motivated us to consider the following system of difference equations

xn+1 = α+
ypn

ypn−2

, yn+1 = α+
xq
n

xq
n−2

, n = 0, 1, 2, ... (1.1)

where α, p, q ∈ (0,∞) and the initial values xi, yi ∈ (0,∞), i = −2,−1, 0. To our knowledge, no papers have been
published about the dynamics of this system. In this work, we investigate semi-cycle analysis of solutions of (1.1).
We also study the boundedness of the positive solutions and the global asymptotic stability of the unique equilibrium
point in case α > 1, 0 < p ≤ 1, 0 < q ≤ 1. Furthermore, the rate of convergence of the solutions of (1.1) is established
and some numerical examples are given to verify our theoretical results.

2 Semi-cycle analysis of (1.1)

In this section, we study the behavior of positive solutions of system (1.1) with the help of semi-cycle analysis.
Obviously, the system (1.1) has a unique possitive equilibrium point (x̄, ȳ) = (α+ 1, α+ 1).

Lemma 2.1. Assume that {(xn, yn)}∞n=−2 is a solution of the system (1.1). Then, either {(xn, yn)}∞n=−2 does not
oscillate or it oscillates about the equilibrium (x̄, ȳ) = (α+1, α+1) with semi-cycles that if there is a semi-cycle with
at least two terms, then each successive semi-cycle will have at least three terms.

Proof . Here we limit our consideration to the situation of oscillatory solutions of the system (1.1). Suppose that
{(xn, yn)}∞n=−2 is a solution of (1.1) that oscilates about the equilibrium, and there is n0 ≥ 0 with (xn0 , yn0) is the
last term of a semi-cycle that has at least two terms. Then, the following two cases can occur.
Case 1: . . . , xn0−1, xn0

< α+ 1 ≤ xn0+1 and . . . , yn0−1, yn0
< α+ 1 ≤ yn0+1.

Case 2: . . . , xn0−1, xn0
≥ α+ 1 > xn0+1 and . . . , yn0−1, yn0

≥ α+ 1 > yn0+1.
Now we look at the first case, the second case is similar and is neglected. With the happening of the first case and
from (1.1), we obtain

xn0+2 = α+

(
yn0+1

yn0−1

)p

> α+ 1, yn0+2 = α+

(
xn0+1

xn0−1

)q

> α+ 1. (2.1)

Similarly to (2.1), we have xn0+3 > α + 1 and yn0+3 > α + 1. Hence, the semi-cycle begining with (xn0+1, yn0+1)
has at least three terms. Suppose that the semi-cycle which starts with (xn0+1, yn0+1) has length three, then the
next semi-cycle will begin with (xn0+4, yn0+4) so that xn0+1, xn0+2, xn0+3 ≥ α+ 1 > xn0+4 and yn0+1, yn0+2, yn0+3 ≥
α+ 1 > yn0+4, then

xn0+5 = α+

(
yn0+4

yn0+2

)p

< α+ 1, yn0+2 = α+

(
xn0+4

xn0+2

)q

< α+ 1. (2.2)

By arguing similar to (2.2), we have xn0+6 < α + 1 and yn0+6 < α + 1. From above arguments, we can conclude
that the semi-cycle containing (xn0+1, yn0+1) and every semi-cycle after that has at least three terms. The proof is
completed. □

Lemma 2.2. System (1.1) does not have nontrivial two periodic solutions.

Proof . Suppose that system (1.1) has a two periodic solution. Then (xn−2, yn−2) = (xn, yn), for all n ≥ 0. Therefore,

xn+1 = α+

(
yn

yn−2

)p

= α+ 1, yn+1 = α+

(
xn

xn−2

)q

= α+ 1, for all n ≥ 0.

So, the solution (xn, yn) = (α + 1, α + 1) is the equilibrium solution of system (1.1), which is contradiction with our
assumtion. □
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Lemma 2.3. If system (1.1) has an increasing solution then it is non-oscillatory positive solution.

Proof . Assume that {(xn, yn)}∞n=−2 is an increasing solution of the system (1.1). Then, either α + 1 ≤ x1 and
α + 1 ≤ y1 or x1 < α + 1 and y1 < α + 1. The first case is trivial and therefore left out. The second case is now
considered. If x1 < α + 1 and y1 < α + 1, then we can assert that the negative semi-cycle containing (x1, y1) has at
most three terms. Assume by contradiction that the negative semi-cycle begining with (x1, y1) involves (x4, y4). Then
from

x4 = α+

(
y3
y1

)p

< α+ 1 and y4 = α+

(
x3

x1

)q

< α+ 1

imply that y3 < y1 and x3 < x1 which contradicts the fact that the solution is increasing, so any increasing solution
of system (1.1) is non-oscillatory positive solution. □

Lemma 2.4. Every solution of system (1.1) has no infinite negative semi-cycle.

Proof . Assume contradictorily that the system (1.1) has a solution {(xn, yn)}∞n=−2 that contains an infinite negative
semi-cycle, and assume that this semi-cycle begins with (xN , yN ), where N ≥ −2. Then for all n ≥ N , (xn, yn) <
(α+ 1, α+ 1). From,

xn+1 = α+

(
yn

yn−2

)p

< α+ 1, yn+1 = α+

(
xn

xn−2

)q

< α+ 1, for all n ≥ N + 2,

we imply yn < yn−2 and xn < xn−2. So, we have α < . . . < xn+2 < xn < xn−2 < α + 1 and α < . . . < yn+2 <
yn < yn−2 < α+1 for all n ≥ N +2, which means that {xn}, {yn} have two subsequences {x2n}, {x2n+1} and {y2n},
{y2n+1} that are decreasing and bounded from below. Hence, there exist a1, a2, b1, b2 such that

lim
n→∞

x2n = a1, lim
n→∞

x2n+1 = a2,

lim
n→∞

y2n = b1, lim
n→∞

y2n+1 = b2.

So (a1, b1), (a2, b2) is a periodic solution of period two of system (1.1), which contradicts the Lemma 2.2 unless the
solution is a trivial solution. Therefore, the solution converges to the equilibrium, this will not happen because the
solution moves further and further away from the equilibrium point. Hence, system (1.1) does not have any solution
that includes infinite negative semi-cycle. □

Lemma 2.5. System (1.1) does not have any decreasing non-oscillatory solution.

Proof . Assume that {(xn, yn)}∞n=−2 is a decreasing non-oscillatory solution of system (1.1). Then, either

x1 > α+ 1 and y1 > α+ 1

or
x1 ≤ α+ 1 and y1 ≤ α+ 1

We now consider the first case. If x1 ≤ α+1 and y1 ≤ α+1, then we can say that the positive semi-cycle starts with
(x1, y1) have at most three terms. Suppose contradictorily that the positive semi-cycle containing (x1, y1) ends with
(x4, y4). Then from

x4 = α+

(
y3
y1

)p

> α+ 1 and y4 = α+

(
x3

x1

)q

> α+ 1

imply that y3 > y1 and x3 > x1, which contradicts our assumption that the solution is decreasing. In this case, the
solution has an infinite negative semi-cycle which begins latest from (x4, y4).
If the second case occurs, then we have

. . . ≤ x3 ≤ x2 ≤ x1 ≤ α+ 1 and . . . ≤ y3 ≤ y2 ≤ y1 ≤ α+ 1

In both cases, the solution of system (1.1) has an infinite negative semi-cycle, which contradicts the Lemma 2.4.
Therefore, system (1.1) has no decreasing non-oscillatory solution. □

Lemma 2.6. If 0 < p ≤ 1, 0 < q ≤ 1, then every semi-cycle of system (1.1) has at most five terms and every solution
osillates about equilibrium point (x̄, ȳ) = (α+ 1, α+ 1).
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Proof . Let {(xn, yn)}∞n=−2 be a solution of system (1.1). We now study the case of positive semi-cycle, the case of
negative semi-cycle is similar and is not considered here. Let (xn0

, yn0
) be the beginning term in a positive semi-cycle,

and assume that this semi-cycle has five terms. Then,

xn0
, xn0+1, xn0+2, xn0+3, xn0+4 > α+ 1

and
yn0

, yn0+1, yn0+2, yn0+3, yn0+4 > α+ 1.

We have

xn0+4 = α+

(
yn0+3

yn0+1

)p

< α+
ypn0+3

(α+ 1)p
=

α(α+ 1)p + ypn0+3

(α+ 1)p

<
(α+ 1)ypn0+3

(α+ 1)p
= ypn0+3(α+ 1)1−p < yn0+3,

yn0+3 = α+

(
xn0+2

xn0

)q

< α+
xq
n0+2

(α+ 1)q
=

α(α+ 1)q + xq
n0+2

(α+ 1)q

<
(α+ 1)xq

n0+2

(α+ 1)q
= xq

n0+2(α+ 1)1−q < xn0+2,

so
xn0+4 < yn0+3 < xn0+2. (2.3)

Similarly, we have
yn0+4 < xn0+3 < yn0+2. (2.4)

Now, from (2.3) and (2.4), we obtain

xn0+5 = α+

(
yn0+4

yn0+2

)p

< α+ 1 and yn0+5 = α+

(
xn0+4

xn0+2

)q

< α+ 1

so a positive semi-cycle has at most five terms. Therefore, we can conclude that every semi-cycle of system (1.1) has
at most five terms, this also implies that the solution osillates about equilibrium point (x̄, ȳ) = (α+ 1, α+ 1). □

3 Boundedness and persistence of system (1.1)

In this section, we will examine the boundedness and persistence of system (1.1) in the case of α > 1, 0 < p ≤ 1,
and 0 < q ≤ 1.

Theorem 3.1. Assume that α > 1, 0 < p ≤ 1, and 0 < q ≤ 1. Then every positive solution of system (1.1) is bounded
and persists.

Proof . Assume that {(xn, yn)}∞n=−2 is a positive solution of the system (1.1). Obviously, from (1.1) we have

xn, yn > α for all n ≥ 1. (3.1)

By combining (1.1) and (3.1), we obtain

xn = α+

(
yn−1

yn−3

)p

< α+
1

αp
ypn−1 < α+

1

αp
yn−1,

yn = α+

(
xn−1

xn−3

)q

< α+
1

αq
xq
n−1 < α+

1

αq
xn−1,

(3.2)

for all n ≥ 4.
Assume that {sn, tn} is a solution of coming system

sn = α+
1

αp
tn−1, tn = α+

1

αq
sn−1, for all n ≥ 4, (3.3)

such that
si = xi, ti = yi, i = 1, 2, 3. (3.4)
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By induction we have
xn < sn, yn < tn, for all n ≥ 4. (3.5)

From (3.3) and (3.4), we get

sn+2 =
1

αp+q
sn + α1−p + α, tn+2 =

1

αp+q
tn + α1−q + α, n ≥ 2, (3.6)

for simplicity, let a =
1

αp+q
, b = α1−p + α and c = α1−q + α. Then (3.6) turns into

sn+2 = asn + b, tn+2 = atn + c, n ≥ 2, (3.7)

Solve (3.7), we obtain

s2n+2 = x2a
n +

b

1− a
(1− an), s2n+3 = x3a

n +
b

1− a
(1− an), for all n ≥ 0, (3.8)

and
t2n+2 = y2a

n +
c

1− a
(1− an), t2n+3 = y3a

n +
c

1− a
(1− an), for all n ≥ 0. (3.9)

Then, from (3.1), (3.5), (3.8) and (3.9), it follows that for all n ≥ 0, we have

α < x2n+2 ≤ x2a
n +

b

1− a
(1− an),

α < x2n+3 ≤ x3a
n +

b

1− a
(1− an),

(3.10)

and
α < y2n+2 ≤ y2a

n +
c

1− a
(1− an),

α < y2n+3 ≤ y3a
n +

c

1− a
(1− an).

(3.11)

The proof is finished. □

4 Global behavior of system (1.1)

In the following theorem, the global attractor for system (1.1) will be established.

Theorem 4.1. If α > 1, 0 < p ≤ 1, and 0 < q ≤ 1, then every positive solution of system (1.1) converges to the
equilibrium point (x̄, ȳ) = (α+ 1, α+ 1) as n → ∞.

Proof . Let
l1 = lim inf

n→∞
xn, l2 = lim inf

n→∞
yn,

L1 = lim sup
n→∞

xn, L2 = lim sup
n→∞

yn.

Obviously, 1 < l1 ≤ L1 and 1 < l2 ≤ L2. From system (1.1) we indicate that

l1 ≥ α+

(
l2
L2

)p

≥ α+
l2
L2

, l2 ≥ α+
l1
L1

, L1 ≤ α+
L2

l2
, L2 ≤ α+

L1

l1
. (4.1)

From (4.1), we get
l1L2 ≥ αL2 + l2, (4.2)

l2L1 ≥ αL1 + l1, (4.3)

l2L1 ≤ αl2 + L2, (4.4)

l1L2 ≤ αl1 + L1. (4.5)

From (4.2) and (4.5) imply that
αL2 + l2 ≤ αl1 + L1. (4.6)
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From (4.3) and (4.4) indicate that
αL1 + l1 ≤ αl2 + L2. (4.7)

From (4.6) and (4.7), we obtain
αL2 + l2 − αl2 − L2 ≤ αl1 + L1 − αL1 − l1, (4.8)

which is equivalent to
(α− 1)(L2 − l2 + L1 − l1) ≤ 0. (4.9)

Since α − 1 > 0, so we can infer from (4.9) that (L2 − l2 + L1 − l1) ≤ 0. But L2 − l2 ≥ 0 and L1 − l1 ≥ 0, so
(L2 − l2 + L1 − l1) ≥ 0. Hence, L2 − l2 = 0 and L1 − l1 = 0, so L2 = l2 and L1 = l1. Back to (4.2) and (4.4), we get
l1 ≥ α+ 1 and L1 ≤ α+ 1, so lim

n→∞
xn = L1 = l1 = α+ 1. Similarly, we imply lim

n→∞
yn = L2 = l2 = α+ 1. The proof

is finished. □

Theorem 4.2. Assume that α > 1, 0 < p ≤ 1, and 0 < q ≤ 1, then the unique positive equilibrium (x̄, ȳ) =
(α+ 1, α+ 1) of system (1.1) is locally asymptotically stable.

Proof . Set
u(1)
n = xn, u

(2)
n = xn−1, u

(3)
n = xn−2, u

(4)
n = yn, u

(5)
n = yn−1, u

(6)
n = yn−2,

Un =
(
u(1)
n , u(2)

n , u(3)
n , u(4)

n , u(5)
n , u(6)

n

)T
.

Then the linearized equation of system (1.1) about the equilibrium point (x̄, ȳ) = (α+ 1, α+ 1) is

Un+1 = AUn,

where

Un+1 =
(
u
(1)
n+1, u

(2)
n+1, u

(3)
n+1, u

(4)
n+1, u

(5)
n+1, u

(6)
n+1

)T
=

(
α+

(
u
(4)
n

u
(6)
n

)p

, u(1)
n , u(2)

n , α+

(
(u

(1)
n )

(u
(3)
n )

)q

, u(4)
n , u(5)

n

)T

,

and A is the Jacobian matrix, which is determined by

A =



0 0 0
p

α+ 1
0 − p

α+ 1
1 0 0 0 0 0
0 1 0 0 0 0
q

α+ 1
0 − q

α+ 1
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0


.

Let λ1, λ2, . . . , λ6 denote the eigenvalues of matrix A and let

D = diag(d1, d2, . . . , d6)

be a diagonal matrix in which
d1 = d4 = 1, d2 = d5 = 1− 2ϵ, d3 = d6 = 1− 3ϵ, (4.10)

with 0 < ϵ <
1

3
, so detD = (1 − 2ϵ)(1 − 3ϵ) > 0. Therefore, D is an invertible matrix. Computing matrix DAD−1,

we have

DAD−1 =



0 0 0
d1
d4

p

α+ 1
0 −d1

d6

p

α+ 1
d2
d1

0 0 0 0 0

0
d3
d2

0 0 0 0

d4
d1

q

α+ 1
0 −d4

d3

q

α+ 1
0 0 0

0 0 0
d5
d4

0 0

0 0 0 0
d6
d5

0


.
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We know that A and DAD−1 are two similar matrices so they have the same eigenvalues as DAD−1. Therefore, we
imply

ρ(DAD−1) = max |λi|
i∈{1,...,6}

≤ ∥DAD−1∥∞ (4.11)

where ρ(DAD−1) is a spectral radius of DAD−1 and

∥DAD−1∥∞ = max

{
p

α+ 1
(
d1
d4

+
d1
d6

),
d2
d1

,
d3
d2

,
q

α+ 1
(
d4
d1

+
d4
d3

),
d5
d4

,
d6
d5

}
. (4.12)

From (4.10), we imply that
d2
d1

< 1,
d3
d2

< 1,
d5
d4

< 1,
d6
d5

< 1. (4.13)

From (4.12) and (4.13), in oder to show ∥DAD−1∥∞ < 1, we only need

p

α+ 1
(
d1
d4

+
d1
d6

) < 1

and
q

α+ 1
(
d4
d1

+
d4
d3

) < 1.

Now, we consider
p

α+ 1
(
d1
d4

+
d1
d6

) =
p

α+ 1

(2− 3ϵ)

(1− 3ϵ)
<

2p

(α+ 1)(1− 3ϵ)
< 1 (4.14)

it follows

ϵ <
α+ 1− 2p

3(α+ 1)
(4.15)

Similarly, from
q

α+ 1
(
d4
d1

+
d4
d3

) < 1 (4.16)

we imply

ϵ <
α+ 1− 2q

3(α+ 1)
(4.17)

From (4.14)-(4.17), we can choose ϵ such that

0 < ϵ < max

{
α+ 1− 2p

3(α+ 1)
,
α+ 1− 2q

3(α+ 1)

}
, (4.18)

then

max

{
p

α+ 1
(
d1
d4

+
d1
d6

),
q

α+ 1
(
d4
d1

+
d4
d3

)

}
< 1. (4.19)

Combining (4.13) and (4.19), we have
max |λi| ≤ ∥DAD−1∥∞ < 1.

It means that all eigenvalues of A are in the unit disk. This indicates that the unique positive equilibrium (x̄, ȳ) =
(α+ 1, α+ 1) of system (1.1) is locally asymptotically stable. Thus, the proof is finished. □

Connecting Theorem 4.1 and Theorem 4.2, we get the last theorem in this section.

Theorem 4.3. Assume that α > 1, 0 < p ≤ 1, and 0 < q ≤ 1. Then the unique positive equilibrium point
(x̄, ȳ) = (α+ 1, α+ 1) of system (1.1) is globally asymptotically stable.
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5 Rate of convergence

In this section we give the rate of convergence of a solution that converges to the equilibrium point (x̄, ȳ) =
(α+ 1, α+ 1) of the systems (1.1) for α > 1, 0 < p ≤ 1, and 0 < q ≤ 1.

The following results provide the convergence rate of solutions for a system of difference equations

Vn+1 = [A+B(n)]Vn (5.1)

where Vn is a k-dimensional vector, A ∈ Ck×k is a constant matrix, and B : Z+ −→ Ck×k is a matrix function
satisfying

∥B(n)∥ → 0 when n → ∞, (5.2)

where ∥.∥ denotes any matrix norm associated with the vector norm.

Theorem 5.1. (Perron’s Theorem, [9]) Consider system (5.1) and assume that condition (5.2) holds. If Vn is a
solution of system (5.1), then either Vn = 0 for all large n, or

ρ = lim
n→∞

n
√
∥Vn∥

or

ρ = lim
n→∞

∥Vn+1∥
∥Vn∥

exists and is equal to the modulus of one of the eigenvalues of matrix A.

We now present and prove the main result of this section.

Theorem 5.2. Assume that α > 1, 0 < p ≤ 1, 0 < q ≤ 1, and {(xn, yn)} is a solution of the system (1.1) such that
lim
n→∞

xn = x̄, lim
n→∞

yn = ȳ. Then, the error vector

ξn =


ξ1n

ξ1n−1

ξ1n−2

ξ2n
ξ2n−1

ξ2n−2

 =


xn − x̄

xn−1 − x̄
xn−2 − x̄
yn − ȳ

yn−1 − ȳ
yn−2 − ȳ


of every solution of (1.1) satisfies both of the following asymptotic relations:

lim
n→∞

n
√
∥ξn∥ = |λiJF (x̄, ȳ)| for some i ∈ {1, 2, . . . , 6}

or

lim
n→∞

∥ξn+1∥
∥ξn∥

= |λiJF (x̄, ȳ)| for some i ∈ {1, 2, . . . , 6}

where |λiJF (x̄, ȳ)| is equal to the modulus of one of the eigenvalues of the Jacobian matrix evaluated at the equilibrium
(x̄, ȳ).

Proof . In order to find a system satisfied by the error terms, we set

xn+1 − x̄ =

2∑
i=0

ai(xn−i − x̄) +

2∑
i=0

bi(yn−i − x̄)

yn+1 − ȳ =

2∑
i=0

ci(xn−i − x̄) +

2∑
i=0

di(yn−i − x̄)

(5.3)

Let ξ1n = xn − x̄ and ξ2n = yn − ȳ, then system (5.3) can be written as following form

ξ1n+1 =

2∑
i=0

aiξ
1
n−i +

2∑
i=0

biξ
2
n−i,

ξ2n+1 =

2∑
i=0

ciξ
1
n−i +

2∑
i=0

diξ
2
n−i,
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where
a0 = a1 = a2 = 0,

b0 =
pyp−1

n

ypn−2

, b1 = 0, b2 = − pypn

yp+1
n−2

,

c0 =
qxq−1

n

xq
n−2

, c1 = 0, c2 = − qxq
n

xq+1
n−2

,

d0 = d1 = d2 = 0.

Taking the limits of ai, bi, ci and di as n → ∞ for i = 0, 1, 2, we obtain

lim
n→∞

ai = 0, for i = 0, 1, 2,

lim
n→∞

b0 =
p

ȳ
, lim
n→∞

b1 = 0, lim
n→∞

b2 = −p

ȳ
,

lim
n→∞

c0 =
q

x̄
, lim
n→∞

c1 = 0, lim
n→∞

c2 = − q

x̄
,

lim
n→∞

di = 0, for i = 0, 1, 2.

That is
b0 =

p

ȳ
+ βn, b2 = −p

ȳ
+ γn,

c0 =
q

x̄
+ δn, c2 = − q

x̄
+ ηn,

where βn → 0, γn → 0, δn → 0 and ηn → 0 as n → ∞.
Now, we have the following system of the form (5.1):

ξn+1 = [A+B(n)]ξn,

where ξn =
(
ξ1n, ξ

1
n−1, ξ

1
n−2, ξ

2
n, ξ

2
n−1, ξ

2
n−2

)T
and

A = JF (x̄, ȳ) =



0 0 0
p

α+ 1
0 − p

α+ 1
1 0 0 0 0 0
0 1 0 0 0 0
q

α+ 1
0 − q

α+ 1
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0


,

B(n) =


0 0 0 βn 0 γn
0 0 0 0 0 0
0 0 0 0 0 0
δn 0 ηn 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and
∥B(n)∥ → 0 as n → ∞.

Thus, the limiting system of error terms can be written as:


ξ1n+1

ξ1n
ξ1n−1

ξ2n+1

ξ2n
ξ2n−1

 =



0 0 0
p

α+ 1
0 − p

α+ 1
1 0 0 0 0 0
0 1 0 0 0 0
q

α+ 1
0 − q

α+ 1
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0




ξ1n

ξ1n−1

ξ1n−2

ξ2n
ξ2n−1

ξ2n−2

 .

The above system is an exactly linearized system of (1.1) calculated at the equilibrium (x̄, ȳ) = (α+1, α+1). From
Theorem 5.1, we deduce the result. □
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6 Examples

To verify our theoretical results, let us look at some interesting numerical examples. These examples perform
different kinds of qualitative behavior of solutions of the system (1.1). All the graphics in this section are drawn using
MATLAB.

Example 6.1. Consider α = 1.3, p = 0.9, q = 0.8 and initial conditions x−2 = 2.6, x−1 = 1.8, x0 = 3, y−2 = 3,
y−1 = 5, y0 = 1. Then system (1.1) can be written as

xn+1 = 1.3 +

(
yn

yn−2

)0.9

, yn+1 = 1.3 +

(
xn

xn−2

)0.8

(6.1)

In this case, the unique positive equilibrium (x̄, ȳ) = (2.3, 2.3) is globally asymptotically stable (see Figure 1, Theorem
4.3).

Figure 1: The plot of system (6.1).

Example 6.2. Consider α = 2, p = 1, q = 1 and initial conditions x−2 = 2.5, x−1 = 6, x0 = 2, y−2 = 4, y−1 = 2,
y0 = 5. Then system (1.1) can be written as

xn+1 = 2 +
yn

yn−2
, yn+1 = 2 +

xn

xn−2
. (6.2)

In this case, the unique positive equilibrium point (x̄, ȳ) = (3, 3) is also globally asymptotically stable (see Figure 2,
Theorem 4.3).

Example 6.3. Consider α = 0.6, p = 0.8, q = 1.9 and initial conditions x−2 = 1.6, x−1 = 2.8, x0 = 4, y−2 = 4,
y−1 = 1.5, y0 = 6. Then system (1.1) can be written as

xn+1 = 0.6 +

(
yn

yn−2

)0.8

, yn+1 = 0.6 +

(
xn

xn−2

)1.9

(6.3)

In this system, since α < 1 and q > 1 are not satisfied conditions of Theorem 4.3 so the unique positive equilibrium
point (x̄, ȳ) = (1.6, 1.6) is not globally asymptotically stable, see Figure 3.

Example 6.4. Consider α = 0.3, p = 1.2, q = 1.5 and initial conditions x−2 = 6, x−1 = 8, x0 = 3, y−2 = 3, y−1 = 5,
y0 = 1. Then system (1.1) can be written as

xn+1 = 0.3 +

(
yn

yn−2

)1.2

, yn+1 = 0.3 +

(
xn

xn−2

)1.5

. (6.4)

In this case, the conditions for α, p and q in Theorem 4.3 are not satisfied, so the unique positive equilibrium point
(x̄, ȳ) = (1.3, 1.3) is not globally asymptotically stable, see Figure 4.
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Figure 2: The plot of system (6.2)

Figure 3: The plot of system (6.3)

Figure 4: The plot of system (6.4)

Acknowledgements

This research is funded by University of Transport and Communications (UTC) under grant number T2023-CB-008.

References

[1] Q. Din, On the system of rational difference equations, Demonstr. Math. 47 (2014), no. 2, 324–335.

[2] Q. Din, T.F. Ibrahim and K.A. Khan, Behavior of a competitive system of second order difference equations, Sci.
World J. 2014 (2014) doi: 10.1155/2014/283982.

[3] S. Elaydi, An Introduction to Difference Equations, 2nd edition, Springer-Verlag, NewYork, 1999.



3200

[4] S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, Chapman and Hall/CRC, Boka Raton,
FL, 2007.
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