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APPROXIMATELY HIGHER HILBERT C∗−MODULE
DERIVATIONS

M. B. GHAEMI1 AND B. ALIZADEH2∗

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. We show that higher derivations on a Hilbert C∗−module associated
with the Cauchy functional equation satisfying generalized Hyers–Ulam stability.

1. Introduction

Let A be a C∗−algebra and M be a linear space that is a left A−module with
a scalar multiplication satisfying λ(xa) = x(λa) = (λx)a for x ∈ M,a ∈ A, λ ∈ C.
The space M is called a pre-Hilbert A−module or inner product A−module if there
exists an inner product < ., . >: M ×M → A with the following properties:

1.< x, x >≥ 0; and < x, x >= 0 iff x = 0;
2. < λx+ y, z >= λ < x, z > + < y, z >;
3.< ax, y >= a < x, y >;
4. < x, y >∗=< y, x > .

M is called a (left) HilbertA−module, or a Hilbert C∗−module over the C∗−algebra

A if it is complete with respect to the norm ‖x‖ = ‖ < x, x > ‖
1
2
A. We always assume

that the linear structure of A and M are compatible.
(i) The C∗− algebra A itself can be reorganized to become a Hilbert A−module

if we define the inner product < a, b >= ab∗. The Hilbert Submodules of A are
precisely its closed (left) ideals.

(ii) Every inner product space is a left Hilbert C−module; cf [9, 27].
A linear mapping d : M →M is called a derivation on the Hilbert C∗−module M

if it satisfies the condition d(< x, y > z) =< d(x), y > z+ < x, d(y) > z+ < x, y >
d(z) for every x, y, z ∈M (see [1, 10]). It is clear that every adjointable mapping T
satisfying T ∗ = −T is a derivation. The converse is not true in general; see [1].

Let N be the set of natural numbers. For m ∈ N0 := N ∪ {0}. A sequence
H = {h0, h1, ..., hm} (resp. H = {ho, h1, ..., hn, ...}) of linear maps from Hilbert
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A−module M into Hilbert A−module N is called a higher derivation of rank m
(resp. infinite rank) from M into N if

hn(< x, y > z) =
∑

i+j+k=n

< hi(x), hj(y) > hk(z)

holds for each n ∈ {0, 1, ...,m} (resp. n ∈ N0) and all x, y, z ∈ M. A higher
derivation of rank 0 from M into N is a homomorphism; that is, h0 is linear and
ho(< x, y > z) =< h0(x), ho(y) > ho(z). The higher derivation H from M into N is
said to be onto if ho : M → N is onto. The higher derivation H on M is called strong
if h0 is an identity mapping on M. A strong higher derivation of rank 1 on M is a
derivation. Thus, a higher derivation is a generalization of both a homomorphism
and a derivation (for similar definitions on algebras, see [7]).

The stability of functional equations was first introduced by S. M. Ulam [26]
in 1940. In 1941, D. H. Hyers [5] gave a partial solution of Ulam,s problem for
the case of approximate additive mappings in the context of Banach spaces. In
1978, Th. M. Rassias [24] generalized the theorem of Hyers by considering the
stability problem with unbounded Cauchy differences ‖f(x + y) − f(x) − f(y)‖ ≤
ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)). This phenomenon of stability that was introduced
by Th. M. Rassias [24] is called the Hyers–Ulam–Rassias stability (or the generalized
Hyers-Ulam stability). In 1992, Gǎvruta [4] generalized the Th.M. Rassias theorem
as follows:

Suppose (G,+) is an ablian group and X is a Banach space ϕ : G×G −→ [0,∞)
satisfying

ϕ̃(x, y) =
1

2

∞∑
n=0

2−nϕ(2nx, 2ny) <∞

for all x, y ∈ G. If f : G→ X is a mapping with

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique mapping T : G→ X such that T (x+y) =
T (x) + T (y) and ‖f(x)− T (x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.

R. Badora [2] and T. Miura et al. [11] proved the Ulam-Hyers stability and
the Isaac and Rassias-type stability of derivations [6]; M. Bavand Savadkouhi, M.
Eshaghi Gorrdji, J. M. Rassias, and N. Ghobadipour [3] have contributed works
regarding the stability of ternary Jordan derivations. Yong-Soo Jung and Ick-
Soon Chang [7] investigated the stability and superstability of higher derivations
on rings. Amyari and M. S. Moslehian [1] studied the stability of derivations on
Hilbert C∗−modules (see also [12]–[25]).

2. Main results

We start our work with a known fixed point theorem.

Theorem 2.1. (The alternative of fixed point). Suppose (X, d) be a generalized
complete metric space and J : X → X is a strictly contractive mapping; that is ,

d(Jx, Jy) ≤ Ld(x, y)(x, y ∈ X),
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for some L < 1. Then, for each given element x ∈ X, either

d(Jnx, T n+1x) = ∞,∀n ≥ 0,

or

d(Jnx, Jn+1x) <∞,∀n ≥ no,

for some natural n0. Moreover, if the second alternative holds, then:
(i) The sequence {Jnx} is convergent to a fixed point y∗ of J ;
(ii) y∗ is a unique fixed point of J in Y = {y ∈ X : d(Jn0x, y) < ∞}; and

d(y, y∗) ≤ 1
1−L

d(y, Ty)(x, y ∈ Y ).

Lemma 2.2. ([lemma 2, 1]) Let X be a linear space and Y be a Banach space
0 ≤ L < 1 and λ ≥ 0 are given numbers and ψ : X → [0,∞) has the property

ψ(x) ≤ λLψ(
x

λ
),

for all x ∈ X. Assume that S = {g : X → Y : g(0) = 0} and the generalized
metric d on S is defined by

d(g, h) = inf{c ∈ (o,∞) : ‖g(x)− h(x)‖ ≤ cψ(x),∀x ∈ X}.
Then the mapping J : S → S given by Jg(x) = 1

λ
g(λx) is a strictly contractive

mapping.

Theorem 2.3. Let ϕ : M5 → [0,∞) be a control function such that

limn→∞
ϕ(2nx, 2ny, 2nu, 2nt, 2nz)

2n
= 0

for all x, y, u, t, z ∈ M. Suppose that F = {f0, f1, ..., fn, ...} is a sequence of map-
pings from M into N such that fn(0) = 0 and

‖fn(λx+y+ < u, t > z)−λfn(x)−fn(y)−
∑

i+j+k=n

< fi(u), fj(t) > fk(z)‖ ≤ ϕ(x, y, u, t, z),

(2.1)
for all x, y, u, t, z ∈ M,n ∈ N0, λ ∈ T = {z ∈ C : |z| = 1}. Assume that there exists
0 ≤ L < 1 such that the mapping ψ(x) = ϕ(x

2
, x

2
, 0, 0, 0) has the property

ψ(x) ≤ 2Lψ(
x

2
), (2.2)

for all x ∈ M. Then there exists a unique higher derivation H = {h0, h1, ..., hn, ...}
of any rank from M into N such that

‖fn(x)− hn(x)‖ ≤ L

1− L
ψ(x),

for each n ∈ N0 and for all x ∈M.

Proof. Setting λ = 1, y = x, and u = t = z = 0 in (2.1) implies

‖fn(2x)− 2fn(x)‖ ≤ ϕ(x, x, 0, 0, 0), (2.3)

It follows from (2.2) and (2.3) that
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‖1

2
fn(2x)− fn(x)‖ ≤ 1

2
ψ(2x) ≤ Lψ(x).

for each n ∈ N0 and x ∈M. So d(fn, T fn) ≤ L <∞, where the mapping T defined
on S = {gn : M → N : gn(0) = 0} by (Tgn)(x) = 1

2
gn(2x) is a strictly contractive

function as in lemma 2.2. Applying the fixed point alternative, we deduce the
existence of a mapping hn : M → N such that hn is a fixed point of T that is
hn(2x) = 2hn(x) for all x ∈M. Since limm→∞d(T

mfn, hn) = 0, it follows that

limm→∞
fn(2mx)

2m
= hn(x), (2.4)

for all x ∈ M,n ∈ N0. The mapping hn is the unique fixed point of T in the set
U = {gn ∈ S : d(fn, gn) < ∞}. Hence hn is the unique fixed point of T such that
‖fn(x) − hn(x)‖ ≤ Kψ(x) for some K > 0 and for all x ∈ M. Again, by applying
the fixed point alternative theorem, we infer that

d(fn, hn) ≤ 1

1− L
d(fn, T fn) ≤ L

1− L
,

so

‖fn(x)− hn(x)‖ ≤ L

1− L
ϕ(
x

2
,
x

2
, 0, 0, 0),

for all x ∈M,n ∈ N0. It follows from (2.1) that

‖fn(λx+ y)− λfn(x)− fn(y)‖ ≤ ϕ(x, y, 0, 0, 0),

By replacing x and y in (2.4) by 2nx and 2ny, respectively, dividing both sides by
2n and taking n→∞, we get

hn(λx+ y) = λhn(x) + hn(y),

for all λ ∈ T and all x, y ∈M.
Now, let λ ∈ C(λ 6= 0) and let K be a natural number greater than 4|λ|. Then

| λ
K
| < 1

4
< 1− 2

3
= 1

3
. By Theorem 1 in [8], there exist numbers λ1, λ2, λ3 ∈ T such

that 3 λ
K

= λ1+λ2+λ3. By the additivity of each hn, n ∈ N0, we get hn(1
3
x) = 1

3
hn(x)

for each n ∈ N0 and all x ∈M. Therefore,

hn(λx) = hn(
K

3
.3.

λ

K
x) =

K

3
hn(3.

λ

K
x) =

K

3
hn(λ1x+ λ2x+ λ3x)

=
K

3
(hn(λ1x) + hn(λ2x) + hn(λ3x)) =

K

3
(λ1 + λ2 + λ3)hn(x) = λhn(x),

for each n ∈ N0 and all x ∈M, so that hn is C−linear for each n ∈ N0.
Next, we need to show that the sequence H = {h0, h1, ..., hn, ...} satisfies the

identity

hn(< u, t > z) =
∑

i+j+k=n

< hi(u), hj(t) > hk(z)

for each n ∈ N0 and all x, y, z ∈M. Putting x = y = 0 in (2.1) and

Dn(u, t, z) = fn(< u, t > z)−
∑

i+j+k=n

< fi(u), fj(t) > fk(z), (2.5)
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for each n ∈ No and all u, t, z ∈ A, we see that

limr→∞
Dn(2ru, 2rt, 2rz)

2r
= 0, (2.6)

for each n ∈ N0 and all u, t, z ∈M. By using (2.4), (2.5), and (2.6), we get

hn(< u, t > z) = limr→∞
fn(2r < u, t > z)

2r
= limr→∞

fn(< (2ru), (2rt) > (2rz)

23r

= limr→∞

∑
i+j+k=n < fi(2

ru), fj(2
rt) > fk(2

rz) +Dn(2ru, 2rt, 2rz)

23r

= limr→∞
∑

i+j+k=n

<
1

2r
fi(2

ru),
1

2r
fj(2

rt) >
1

2r
fk(2

ru)

+limr→∞
Dn(2ru, 2rt, 2rz)

23r
=

∑
i+j+k=n

< hi(u), hj(t) > hk(z)

This completes the proof of the theorem. �

As a consequence of the previous theorem, we show the Hyers-Ulam-Rassias sta-
bility of higher derivations.

Corollary 2.4. Let 0 ≤ p < 1, α, β > 0 and F = {fo, f1, ..., fn, ...} is a sequence of
mappings from M into N satisfying f(0) = 0 and

‖fn(λx+ y+ < u, t > z)− λfn(x)− fn(y)−
∑

i+j+k=n

< fi(u), fj(t) > fk(z)]‖

≤ α+ β(‖x‖p + ‖y‖p + ‖u‖p + ‖t‖p + ‖z‖p)

for all λ ∈ T and all x, y, u, t, z ∈M.
Then there exists a unique higher derivation H = {h0, h1, ..., hn, ...} of any rank

from M into N such that

‖fn(x)− hn(x)‖ ≤ α+ β21−p‖x‖p

21−p − 1
,

for all x ∈M.

Proof. Put ϕ(x, y, u, t, z) = α+β(‖x‖p +‖y‖p +‖u‖p +‖t‖p +‖z‖p), and let L = 1
21−p

in the previous theorem. Then ψ(x) = α + 21−pβ‖x‖p, and there exists a sequence
H = {h0, h1, ..., hn, ...} with required properties. �

In a similar fashion to theorem 2.3, we can prove the following theorem:

Theorem 2.5. Let ϕ : M5 → [0,∞) be a control function with the property

limn→∞2nϕ(2−nx, 2−ny, 2−nu, 2−nt, 2−nz) = 0

for all x, y, u, t, z ∈ A. Assume that F = {fo, f1, ..., fn, ...} is a sequence of mappings
from M into N satisfying f(0) = 0 and

‖fn(λx+y+ < u, t > z)−λfn(x)−fn(y)−
∑

i+j+k=n

< fi(u), fj(t) > fk(z)‖ ≤ ϕ(x, y, u, t, z),

(2.7)
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for all x, y, u, t, z ∈ M,λ ∈ T = {z ∈ C : |z| = 1}. Assume that there exists
0 ≤ L < 1 such that the mapping ψ(x) = ϕ(x

2
, x

2
, 0, 0, 0) has the property

ψ(x) ≤ 1

2
Lψ(2x),

for all x ∈ M. Then there exists a unique higher derivation H = {h0, h1, ..., hn, ...}
of any rank from M into N such that

‖fn(x)− hn(x)‖ ≤ 1

1− L
ψ(x),

for each n ∈ N0 and for all x ∈M.

Proof. Setting λ = 1, y = x, and u = t = z = 0 in (2.7) implies

‖fn(2x)− 2fn(x)‖ ≤ ϕ(x, x, 0, 0, 0), (2.8)

Replacing x by x
2

in (2.8), we obtain

‖fn(x)− 2fn(
x

2
)‖ ≤ ψ(x).

for each n ∈ N0 and x ∈ M. Thus, d(fn, T fn) ≤ L < ∞, where the mapping
T defined on S = {gn : M → N : gn(0) = 0} by (Tgn)(x) = 2gn(1

2
x) is a strictly

contractive function, as in lemma 2.2. Applying the fixed point alternative, we
deduce the existence of a mapping hn : M → N such that hn is a fixed point of T
that is hn(1

2
x) = 1

2
hn(x) for all x ∈ M. Since limm→∞d(T

mfn, hn) = 0, it follows
that

limm→∞2mfn(2−mx) = hn(x)

for all x ∈ M,n ∈ N0. The mapping hn is the unique fixed point of T in the set
U = {gn ∈ S : d(fn, gn) < ∞}. Hence, hn is the unique fixed point of T such that
‖fn(x) − hn(x)‖ ≤ Kψ(x) for some K > 0 and for all x ∈ M. Again, by applying
the fixed point alternative theorem, we infer that

d(fn, hn) ≤ 1

1− L
d(fn, T fn) ≤ 1

1− L
,

so

‖fn(x)− hn(x)‖ ≤ 1

1− L
ϕ(
x

2
,
x

2
, 0, 0, 0),

for all x ∈M,n ∈ N0. The rest is similar to the proof of theorem 2.3. �

The following corollary is similar to corollary 2.4 for the case where p > 1.

Corollary 2.6. Let p > 1, α, β > 0 and F = {fo, f1, ..., fn, ...} is a sequence of
mappings from M into N satisfying f(0) = 0 and

‖fn(λx+ y+ < u, t > z)− λfn(x)− fn(y)−
∑

i+j+k=n

< fi(u), fj(t) > fk(z)‖

≤ α+ β(‖x‖p + ‖y‖p + ‖u‖p + ‖t‖p + ‖z‖p)
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for all λ ∈ T and all x, y, u, t, z ∈M. Then there exists a unique higher derivation
H = {h0, h1, ..., hn, ...} of any rank from M into N such that

‖fn(x)− hn(x)‖ ≤ α2p−1 + β‖x‖p

21−p − 1
,

for all x ∈M.

Proof. Put ϕ(x, y, u, t, z) = α+β(‖x‖p +‖y‖p +‖u‖p +‖t‖p +‖z‖p), and let L = 1
2p−1

in the previous theorem. Then ψ(x) = α + 21−pβ‖x‖p and there exists a sequence
H = {h0, h1, ..., hn, ...} with required properties. �
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