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Abstract

Let H be a hypergroup with left Haar measure and let L1(H) be the complex Lebesgue space associated with it. Let
L∞(H) be the set of all locally measurable functions that are bounded except on a locally null set, modulo functions
that are zero locally a.e. Let µ ∈ M(H). We want to find out when µF ∈ L∞(H)∗ implies that F ∈ L1(H). Some
necessary and sufficient conditions is found for a measure µ for which if µF ∈ L1(H) for every F ∈ L∞(H)∗, then
F ∈ L1(H).
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1 Introduction

Locally compact hypergroups were independently introduced around the 1970’s by Dunkl, Jewett and Spector.
They generalize the concepts of locally compact groups with the purpose of doing standard harmonic analysis. Similar
structures had been studied earlier in the 1950’s by Berezansky and colleagues, and even earlier in works of Delsarte
and Levitan, for more information see [1], [11] and [13].
Hypergroups are a suitable generalization of classical locally compact groups. Hypergroups arise as double coset spaces
of locally compact groups. In classical setting, the convolution of two point mass measures is a point mass measure,
while in hypergroup structure, the convolution of two point mass measures is a probability measure with compact
support.
We introduce our notations briefly; for other ideas used here we refer the reader to [5] and [2] . Let H be a locally
compact Hausdorff space. M(H) denotes the space of all bounded Radon measures, M1(H) the subset of all probability
measures and δx the point measure of x ∈ H. The support of a measure µ is denoted by suppµ. The space H is called
a hypergroup if the following conditions are satisfied:

(i) There exists a map: H ×H → M1(H), (x, y) 7→ δx ∗ δy, called convolution, which is continuous, where M1(H)
bears the vague topology. The linear extension to M(H), satisfies δx ∗ (δy ∗ δz) = (δx ∗ δy) ∗ δz;

(ii) suppδx ∗ δy is compact;

(iii) There exists a homeomorphism H → H, x 7→ x, called involution, such that x = x and δx ∗ δy = δy ∗ δx.

(iv) There exists an element e ∈ H, called unit element, such that δx ∗ δe = δe ∗ δx = δx;

Email address: aghaffari@semnan.ac.ir (Ali Ghaffari)

Received: April 2021 Accepted: October 2021

http://dx.doi.org/10.22075/ijnaa.2021.23709.3960


3308 Ghaffari

(v) e ∈ suppδx ∗ δy if and only if x = y;

(vi) The map (x, y) 7→ suppδx ∗ δy of H ×H into the space of nonvoid compact subsets of H is continuous,.

It is still unknown if an arbitrary hypergroup admits a left Haar measure. It particular, it remains unknown whether
every amenable hypergroup admits a left Haar measure. But all the known examples such as commutative hypergroups
and central hypergroups do, for more information see [3] and [12]. In this case, one can define the convolution algebra
L1(H) with multiplication f ∗g(x) =

∫
f(x∗y)g(y)dλ(y) for all f, g ∈ L1(H). Recall that L1(H) is a Banach subalgebra

and an ideal in M(H) with a bounded approximate identity [5]. It should be noted that these algebras include not
only the group algebra L1(G) but also most of the semigroup algebras. Throughout this paper, unless explicitly stated
otherwise, H will denote a hypergroup with a left Haar measure.
In this paper, among the other things, we present a few results in the theory of measures. We want to find out when
µ ∈ M(H) and µF ∈ L∞(H)∗, imply µ ∈ L1(H). Some necessary and sufficient conditions is found for a measure µ
for which if µF ∈ L1(H) for every F ∈ L∞(H)∗, then F ∈ L1(H).

2 Main results

Let H be a hypergroup with left Haar measure λ. The first Arens product on L∞(H)∗ is defined in stages as
follows.

(i) For each µ ∈ L1(H) and for each f ∈ L∞(H) we define fµ ∈ L∞(H) by ⟨fµ, ν⟩ = ⟨f, µ ∗ ν⟩;

(ii) For each F ∈ L∞(H)∗ and for each f ∈ L∞(H) we define Ff ∈ L∞(H) by ⟨Ff, µ⟩ = ⟨F, fµ⟩;

(iii) Lastly, the first Arens product on L∞(H)∗ is the multiplication on L∞(H)∗ defined for all F,G ∈ L∞(H)∗ by
⟨GF, f⟩ = ⟨G,Ff⟩.

L∞(H)∗ is a Banach algebra, for more details see [6] and [7]. For an element F fixed in L∞(H)∗ , the mapping
G → GF is weak∗-weak∗ continuous. However, for an element F fixed in L∞(H)∗ , the mapping F → GF is in
general not weak∗-weak∗ continuous unless F is in L1(H). Hence ,by making use of these explanations, the topological
center of L∞(H)∗ with respect to the first Arens multiplication is defined as follows:

Zt(L
∞(H)∗) = {F ∈ L∞(H)∗; The mapping G → FG is weak∗ − weak∗ continuous on L∞(H)∗}.

It is known that Zt(L
∞(H)∗) = L1(H), see [9].

Proposition 2.1. Let H be a hypergroup with left Haar measure λ. Then the following conditions are equivalent:

(i) there exists 0 ̸= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);

(ii) H is discrete.

Proof . (i) implies (ii). Let µ be a nonzero element in L1(H) such that if F ∈ L∞(H)∗ and µF ∈ L1(H), then
F ∈ L1(H). Let {eα} be an approximate identity for L1(H) of bound 1 [5]. Then we may suppose that {eα} converges
in the weak∗-topology on L∞(H)∗, say to E [10]. It is easy to see that FE = F for every F ∈ L∞(H)∗. Since
µE = µ ∈ L1(H), hence so is E ∈ L1(H). Thus the Banach algebra L1(H) admits a norm one identity, hence it is
discrete.
(ii) implies (i). If H is a discrete hypergroup, then δe ∈ L1(H) [8]. It is clear that δeF = F for every F ∈ L∞(H)∗.
The result is immediate if we choose µ = δe. □

The following corollary is a direct consequence of proposition 2.1.

Corollary 2.2. Let H be a compact hypergroup. Then the following conditions are equivalent:

(i) there exists 0 ̸= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);

(ii) H is finite.
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Let H be a compact hypergroup. Let µ ∈ L1(H). The mapping x 7→ δx ∗ µ is weakly continuous [5]. Since
H is compact, {δx ∗ µ; x ∈ H} is relatively weakly compact. By the Krein-Smulian theorem the closed, convex,
circled hull of {δx ∗ µ;x ∈ H} is also weakly compact [4]. It follows that {ν ∗ µ; ν ∈ L1(H), ∥ν∥ ≤ 1} is relatively
weakly compact. It is easy to see that {µF ;F ∈ L∞(H)∗, ∥F∥ ≤ 1} is relatively weakly compact. Suppose that
F ∈ {F ∈ L∞(H)∗; ∥F∥ ≤ 1} and {να} is a net in {ν ∈ L1(H); ∥ν∥ ≤ 1} which converges to F in the weak∗-topology.
Therefore {µ ∗ να} converges to µF in the weak∗-topology. Passing to a subnet if necessary, we can assume that
{µ ∗ να} converges weak to a measure ν ∈ L1(H). Consequently µF = ν ∈ L1(H).
The next corollary is an immediate consequence of above explanation.

Corollary 2.3. Let H be an infinite compact hypergroup. Then L1(H) is a right ideal in L∞(H) and L1(H) is not
reflexive.

Let S be a non-empty subset of M(H). The annihilator of S, denoted Ann(S), is the set of all elements ν in L1(H)
such that, for all µ in S, µ ∗ ν = 0. In set notation,

Ann(S) = {ν ∈ L1(H);µ ∗ ν = 0 for all µ ∈ S}.

Moreover, for every µ ∈ M(H) and S ⊆ M(H), we define µ(S) = {µ ∗ ν; ν ∈ S}.

Theorem 2.4. Let H be a hypergroup with left Haar measure λ. The following two properties of an element µ in
M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);

(ii) if {νn} is a bounded sequence in L1(H) such that {µ ∗ νn} is weakly convergent, then {νn} contains a weakly
convergent subsequence.

Proof . Let {νn} be a bounded sequence in L1(H) such that {µ ∗ νn} is weakly convergent to ν ∈ M(H). Put
X = {νn;n ∈ N}. We have

{µ ∗ νn;n ∈ N} = {µ ∗ νn;n ∈ N} ∪ {ν} ⊆ L1(H)

where closure is taken in the weak∗-topology. Let F be a fixed element in X
w∗

and let {να} be a net in X con-
verging to F in the weak∗-topology. Clearly, {µ ∗ να} converges to µF in the weak∗-topology. On the other hand,

{µ ∗ νn;n ∈ N}
w∗

⊆ L1(H). Therefore {µ ∗ να} converges to µF ∈ L1(H) in the weak-topology [6]. By hypothesis,

F ∈ L1(H). This shows that X
w∗

= X
w
. The Banach-Alaoglu theorem imply that X is relatively weakly compact

[10]. Consequently the Eberlein-Smulian theorem imply that {νn} contains a subsequence {νkn} which converges
weakly to some η ∈ L1(H) [4].
To prove the converse, we show first that if F ∈ L∞(H)∗, ∥F∥ ≤ 1 and µF = 0, then F ∈ L1(H). Let V be a

neighborhood of F in the weak∗-topology. Choose a convex neighborhood U of F such that U
w∗

⊆ V . We have

F ∈ U ∩B
w∗w

∗

= U ∩B
w∗

,

where B is the unit ball of L1(H). Now, let η ∈ µ(U ∩B)
w∗

∩ L1(H). There exists a net {ηα} in U ∩ B such that
{µ ∗ ηα} converging to η in the weak∗-topology. Since η, ηα ∈ L1(H) for all α, so that {µ ∗ ηα} converging to η in the
weak-topology. We can write

0 = µF ∈ µ(U ∩B)
w∗

∩ L1(H) ⊆ µ(U ∩B)
w
.

Let {νn} be a bounded sequence in U ∩B such that {µ ∗ νn} is weakly convergent to 0. By assumption, let {νnk
} be a

subsequence in {νn} that converges to some ν ∈ L1(H) in the weak-topology. Therefore {µ∗νnk
} converges to µ∗ν in

the weak-topology. Thus µ∗ν = 0. On the other hand, νnk
∈ U∩B for all k ∈ N, and so ν ∈ U ∩B

w∗

⊆ U
w∗

⊆ V . This

shows that ν ∈ V ∩Ann(µ). Consequently F ∈ Ann(µ)
w∗

. By the Eberlein-Smulian theorem Ann(µ)∩ {F ; ∥F∥ ≤ 1}
is relatively weakly compact [6]. Hence

Ann(µ) ∩ {F ; ∥F∥ ≤ 1}
w∗

= Ann(µ) ∩ {F ; ∥F∥ ≤ 1}
w
.

Therefore {νnk
} converges to F in the weak-topology. Thus F ∈ L1(H).
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Now, let F ∈ L∞(H)∗ and µF ∈ L1(H). An argument similar to the proof of above shows that

µF ∈ µ(U ∩B)
w∗

∩ L1(H) ⊆ µ(U ∩B)
w
.

There exists a sequence {νn} in U ∩ B such that the sequence {µ ∗ νn} converging to µF in the weak-topology. By
assumption, without loss of generality we may assume that {νn} converges to ν in the weak-topology. Therefore
µ ∗ ν = µF , i.e. µ(F − ν) = 0. We can write F − ν ∈ Ann(µ), and so F = ν + η ∈ L1(H) for some η ∈ Ann(µ). This
completes the proof. □
Let S be non-empty subset of L1(H). The unite ball of S, denoted by BS , is the set of all element µ in S such that
∥µ∥ < 1. In set notation, BS = {µ ∈ S; ∥µ∥ < 1}.

Proposition 2.5. Let H be a hypergroup with left Haar measure λ. The following two properties of an element µ in
M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);

(ii) Ann(µ) is reflexive and µBS ⊆ µS for every closed subspace S of L1(H).

Proof . (i) implies (ii). Let {νn} be a sequence contained in ball of Ann(µ). Clearly µ ∗ νn = 0 for all n ∈ N.
In accordance with condition (ii) in theorem 2.4, the sequence {νn} contains a subsequence {νnk

} which is weakly
convergence to some ν ∈ L1(H). Obviously {µ ∗ νnk

} converges to µ ∗ ν in the weak-topology, and so µ ∗ ν = 0. This
shows that ν ∈ Ann(µ). It follows easily that the closed ball in Ann(µ) is relatively weakly compact. Consequently
Ann(µ) is reflexive [10].
A similar argument show that if S is a closed subspace of L1(H), µBS ⊆ µS.
(ii) implies (i). Let Ann(µ) be reflexive and µBS ⊆ µS for every closed subspace S of L1(H). In particular,
µB ⊆ µL1(H). Assume that there exist F ∈ L∞(H)∗ such that µF ∈ L1(H) and F /∈ L1(H). Thus theorem 2.4
yields a sequence {νn} in B ∩ Ann(µ) with no weakly convergent subsequence such that {µ ∗ νn} converges to 0
in the weak-topology. Since Ann(µ) is reflexive, passing to a subsequence of {νn} if necessary, the two sequences
{νn + ν0} and {νn + ν0 +Ann(µ)} can be assumed to be linearly independent. Let S be the closed subspace spanned
by {ν1 + ν0, ν2 + ν0, ...}. Note that {µ ∗ (ν0 + νn)} converges to µ ∗ ν0 in the weak-topology. Since the weak closure
BS

w
of B is equal to its original closure BS [10], it follows that µ ∗ ν0 ∈ 2µBS . We shall show that µ ∗ ν0 /∈ µS. If

µ ∗ ν0 = µ ∗ ν for some ν =
∑∞

i=1 αi(νi − ν0) ∈ S, we would have ν − ν0 ∈ Ann(µ). Therefore

Ann(µ) =

∞∑
i=1

αi(νi − ν0) +Ann(µ)− (ν0 +Ann(µ))

=
[ ∞∑

i=1

αi − 1
]
ν0 +

∞∑
i=1

αiνi +Ann(µ).

On the other hand, the set {νn + ν0 +Ann(µ)} is linearly independent, and so
∑∞

i=1 αi = 1 and αi = 0 for all i. This
is a contradiction . □

Let C be the multiplicative group of all complex numbers. Let µ ∈ M(C). Consider the following assertions:

(i) if µF ∈ L1(C), then F ∈ L1(C);

(ii) ν ∈ M(C) and µ ∗ ν ∈ L1(C) imply ν ∈ L1(C).

Clearly (i) impies (ii). Are the converse implication true?

Proposition 2.6. Assume that H is a commutative hypergroup. Let µ ∈ M(H), and let {µF ;F ∈ L∞(H)∗}+L1(H)
be a dense subspace of L∞(H)∗. If µF ∈ L1(H), then F ∈ L1(H).

Proof . Let F ∈ L∞(H)∗ such that µF ∈ L1(H). Let G ∈ L∞(H)∗ and {να} be a net in L1(H) such that να → G
in the weak∗-topology [10]. We can write

µFG = lim
α

µFνα = lim
α

να ∗ µF = GµF,
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because H is commutative. This shows that µFG = GµF for all G ∈ L∞(H)∗. Fix G ∈ L∞(H)∗. By assumption,
{µF ;F ∈ L∞(H)∗} + L1(H) is a dense subspace of L∞(H)∗. Consequently, we can find sequences {Fn} ⊆ L∞(H)∗

and {µn} ⊆ L1(H) with {µFn + µn} norm-convergent to G. Therefore

FG = lim
n

F (µFn + µn) = lim
n

FµFn + Fµn

= lim
n

µFnF + µnF = lim
n
(µFn + µn)F = GF.

Therefore FG = GF for all G ∈ L∞(H)∗. We next show that F ∈ Zt(L
∞(H)∗) = L1(H) [9]. Indeed, if {Gα} is a net

in L∞(H)∗ and Gα → G in the weak∗-topology, then

lim
α
⟨FGα, f⟩ = lim

α
⟨GαF, f⟩ = lim

α
⟨Gα, Ff⟩

= ⟨G,Ff⟩ = ⟨GF, f⟩,

for all f ∈ L∞(H). On the other hand, ⟨GF, f⟩ = ⟨FG, f⟩. Hence FGα → FG (in the weak∗-topology) implies that
F is in the topological center of L∞(H)∗. This completes our proof. □

Recall that a basic sequence {xn} in a Banach space X is said to be boundedly complete if for each sequence of
scalars {αn},

∑∞
n=1 αnxn is convergent whenever sup{∥

∑n
i=1 αixi∥;n ∈ N} < ∞.

Proposition 2.7. Let H be a hypergroup with a left Haar measure, and let µ ∈ M(H). Consider the following
assertions:

(i) If {µn} is a basic sequence in B and
∑∞

i=1 ∥µ ∗ µn∥ < ∞, then {µn} is boundedly complete;

(ii) F ∈ L∞(H)∗ and µF ∈ L1(H) imply F ∈ L1(H).

Then the implication (i) → (ii) hold.

Proof . Let us assume that (i) holds but there exists F ∈ L∞(H)∗ such that µF ∈ L1(H) and F /∈ L1(H). Then,
by Theorem 2.4, there exist ν ∈ L1(H) and a bounded sequence {νn} with no weakly convergent subsequence such
that {µ ∗ νn} converges to ν in the weak-topology. There exists f ∈ L∞(H) such that 0 < αn = ⟨f, νn⟩ → α (after
passage to a subsequence). It is clear that {α−1

n νn} contains a basic subsequence {µn} with no weakly convergent
subsequence. Obviously the sequence {µ∗µn} tends to α−1ν. Pick ϵn > 0 so that

∑∞
i=1 ϵn ≤ 1. Assume i ≥ 1 and µni

is picked. There exists µni+1
such that ∥µ ∗ µni

− µ ∗ µni+1
∥ < ϵi+1. Put ηi = µni

− µni+1
. By induction, this process

define a basic sequence ηi in L1(H). Moreover
∑∞

i=1 ∥µ ∗ ηi∥ ≤ 1, and so {ηi} is boundedly complete by hypothesis.

On the other hand,
∑k

i=1 ηi − ηi+1 = ηn1 − ηnk
a bounded non-convergent sequence. This is a contradiction. □
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