
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,786 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
Common fixed point theorems of integral type in G-metric space via control function | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 229، دوره 14، شماره 8، آبان 2023، صفحه 343-350 اصل مقاله (330.47 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28597.3935 | ||
نویسنده | ||
Sahil Arora* | ||
Department of Mathematics, K.R.M.D.A.V. College, Nakodar-144040, Punjab, India | ||
تاریخ دریافت: 11 مهر 1401، تاریخ بازنگری: 12 بهمن 1401، تاریخ پذیرش: 21 بهمن 1401 | ||
چکیده | ||
In this paper, we establish fixed point results for two pairs of functions with the assistance of CLR property in the context of $\mathcal{G}$-metric space. Our sequel generalizes various existing fixed-point results that are given in the literature. An illustrative example is likewise given to demonstrate that our speculation from metric space to $\mathcal{G}$-metric spaces is genuine. | ||
کلیدواژهها | ||
CLR property؛ G-metric space؛ common fixed point؛ weakly compatible map | ||
مراجع | ||
[1] S. Arora, M. Kumar and S. Mishra, A new type of coincidence and common fixed-point theorems for modified α-admissible Z-contraction via simulation function, J. Math. Fund. Sci. 52 (2020), no. 1, 27–42. [2] S. Arora, Common fixed point theorems satisfying common limit range property in the frame of Gs metric spaces, Math. Sci. Lett. 10 (2021), no. 2, 1–5. [3] H. Aydi, S. Chauhan and S. Radenovi, Fixed point of weakly compatible mappings in G-metric spaces satisfying common limit range property, Ser. Math. Inf. 28 (2013), no. 2, 197–210. [4] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531–536. [5] P. Debnath, Z.D. Mitrovic and S.Y. Cho, Common fixed points of Kannan, Chatterjea and Reich type pairs of self-maps in a complete metric space, Sao Paulo J. Math. Sci. 15 (2021), 383–391. [6] A. Djoudi and F. Merghadi, Common fixed point theorems for maps under a contractive condition of integral type, J. Math. Anal. Appl. 341 (2012), 953–960. [7] F. Khojasteh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 189684, 1–10. [8] M. Kumar, S. Arora, M. Imdad and W.M. Alfaqih, Coincidence and common fixed point results via simulation-functions in G-metric spaces, J. Math. Comput. Sci. 19 (2019), 288–300. [9] M. Kumar, S. Arora and S. Mishra, On the power of simulation map for almost Z-contraction in G-metric space with applications to the solution of the integral equation, Ital. J. Pure Appl. Math. 44 (2020), 639–648. [10] Z. Liu, X. Li, S. Kang and S. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory Appl. 2011 (2011), Article ID 64, 1-9. [11] S. Manro, S.S. Bhatia, S. Kumar and C. Vetro, A common fixed point theorem for two weakly compatible pairs in G-metric spaces using the property E.A, Fixed Point Theory Appl. 41 (2013), no. 2, 1–9. [12] P. Murthy, S. Kumar and K. Tas, Common fixed points of self maps satisfying an integral type contractive condition in fuzzy metric spaces, Math. Commun. 15 (2010), 521–537. [13] P.P. Murthy, Z. Mitrovic, C.P. Dhuri and S. Radenovic, The common fixed points in a bipolar metric space, Gulf J. Math. 12 (2022), no. 2 31–38. [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289–297. [15] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870, 1–12. [16] S.K. Panda, B. Alamri, N. Hussain and S. Chandok, Unification of the fixed point in integral type metric spaces, Symmetry 732 (2018), no. 10, 1–21. [17] M. Rahman, M. Sarwar and M. Rahman, Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10 (2016), no. 1, 58–63. [18] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α-contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165. [19] M. Sarwar, M.B. Zada and I.M. Erhan, Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations, Fixed Point Theory Appl. 217 (2015), 1–15. [20] W. Sintunavarat and P. Kumam, Gregus-type common fixed point theorems for tangential multi-valued mappings | ||
آمار تعداد مشاهده مقاله: 16,455 تعداد دریافت فایل اصل مقاله: 345 |