
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,969 |
تعداد دریافت فایل اصل مقاله | 7,656,406 |
A new subclass of univalent holomorphic functions based on $q$-analogue of Noor operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 15، دوره 14، شماره 11، بهمن 2023، صفحه 181-189 اصل مقاله (381.25 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29020.4045 | ||
نویسندگان | ||
Seyed Hadi Sayedain Boroujeni* ؛ Shahram Najafzadeh؛ Ismail Nikoufar | ||
Department of Mathematics, Payame Noor University, Tehran, Iran | ||
تاریخ دریافت: 26 آبان 1401، تاریخ پذیرش: 08 بهمن 1401 | ||
چکیده | ||
In this article, we introduce another new subclass by using $q$-analogue of the Noor operator and based on it we investigate a subclass with fixed finitely many coefficients for the univalent holomorphic functions. We obtain a number of useful properties such as coefficient estimates, extreme points, convexity and convolution-preserving properties. | ||
کلیدواژهها | ||
q-analogue of Noor Operator؛ Coefficient bound؛ Extreme points؛ Convex set؛ Convolution | ||
مراجع | ||
[1] B. Ahmad, M.G. Khan, B.A. Fasin, M.K. Aouf, T. Abdeljawad, W.K. Mashwani and M. Arif, On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math. 6 (2021), 3037—3052. [2] A. Akgul and B. Alcin, Based on a family of bi-univalent functions introduced through the q-analogue of Noor integral operator, Int. J. Open Prob. Compt. Math. 15 (2022), 20—33. [3] A. Akgul and F.M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials, Turk. J. Math. 43 (2019), 2275—2286. [4] H. Aldweby and M. Darus, q-analogue of Ruscheweyh operator and its applications to certain subclass of uniformly starlike functions, AIP Conf. Proc. 1602 (2014), no. 1, 767–771. [5] S.G. Ali Shah, S. Khan, S. Hussain and M. Darus, q-Noor integral operator associated with starlike functions and q-conic domains, AIMS Math. 7 (2022), 10842–10859. [6] S. Altinkaya, Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of Noor integral operator, Turk. J. Math. 43 (2019), 620—629. [7] A. Aral, E. Deniz and H. Erbay, The Picard and Gauss–Weierstrass Singular Integrals in (p, q)-Calculus, Bull. Malays. Math. Sci. Soc. 43 (2020), 1569-–1583. [8] M. Arif, M.U. Haq and J.L. Liu, A subfamily of univalent functions associated with-analogue of Noor integral operator, J. Funct. Biomater. 2018 (2018), 1—5. [9] M. Arif, H.M. Srivastava, and S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM. 113 (2019), 1211—1221. [10] P.L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1993. [11] B. Khan, H.M. Srivastava, M. Tahir, M. Darus, Q.Z. Ahmed and N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math. 6 (2020), 1024—1039. [12] P. Long, J. Liu, M. Gangadharan and W. Wang, Certain subclass of analytic functions based on q-derivative operator associated with the generalized Pascal snail and its applications, AIMS Math. 7 (2022), 13423–13441. [13] S. Mahmood and J. Sokol, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math. 71 (2017), 1–13. [14] F. Muge Sakar and A. Akgul, Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator, AIMS Math. 7 (2022), 5146–5155. [15] S. Najafzadeh, Some results on univalent holomorphic functions based on q-analogue of Noor operator, Int. J. Appl. Math. 32 (2019), 775–784. [16] S. Najafzadeh and D.O. Makinde, Certain subfamily of harmonic functions related to Salagean q-differential operator, Int. J. Anal. Appl. 18 (2020), 254–261. [17] K.I. Noor, S. Altinkaya and S. Yalcin, Coefficient inequalities of analytic functions equipped with conic domains involving q-analogue of Noor integral operator, Tbilisi Math. J. 14 (2021), 1–14. [18] K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341–352. [19] S.H. Sayedain Boroujeni, S. Najafzadeh, Error function and certain subclasses of analytic univalent functions, Sahand Commun. Math. Anal. 20 (2023), no. 1, 107–117. [20] T.M. Seoudy and M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Ineq. 10 (2016), 135–145. [21] M. Tamer and E. Amnah, Certain subclasses of spiral-like functions associated with q-analogue of Carlson-Shaffer operator, AIMS Math. 6 (2021), 2525–2538. [22] B. Wang and R. Srivastava and L.L. Jin, Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function, AIMS Math. 6 (2021), 8497–8508. | ||
آمار تعداد مشاهده مقاله: 16,558 تعداد دریافت فایل اصل مقاله: 233 |