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Abstract

We present an unconditionally stable finite difference scheme (FDS) for the fractional partial differential equation
(PDE) arising in the electromagnetic waves, which contains both initial and Dirichlet boundary conditions. The
Riemann-Liouville fractional derivatives in time are discretized by a finite difference scheme of order O (At?’_o‘) and
@ (At?’_ﬂ), 1 < 8 < a < 2 and the Laplacian operator is discretized by central difference approximation. The
proposed stable FDS schemes transform the fractional PDE into a tridiagonal system. Theoretically, uniqueness,
unconditionally stability, error bound, and convergence of FDS are investigated. Moreover, the accuracy of the order
of convergence O (At?”o‘ + AP 4 A:EQ) of the scheme is investigated. Finally, numerical results are reported to
illustrate our optimal error bound, order of convergence, and efficiency of proposed schemes.
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1 Introduction

In this paper, we consider the following time fractional partial differential equation arising from electromagnetic
wave in dielectric media with Riemann-Liouville time fractional derivative operator [34]:

(B Do) (t, 2) + M (FEDPu) (t, 2) — Mo V3ul(t, z) = f(t,2),z € Q,t € (0,T], (1.1)

subject to initial condition

U(O,]J) = gl(x)? (1 2)
ou(t,x .
[242] =),
and Dirichlet boundary conditions are
u(t,z) =0, x€d, te(0,71], (1.3)

where u(t, ) is unknown, f(t,z) is known function for the current density of free charges, space domain = [0, L],
the constant coefficient A\; and Ay depend on the frequency independent properties of a medium, 1 < 8 < a < 2,
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RLpo & BLDP both fractional derivatives are defined in the Riemann-Liouville derivative operator sense, and V?2 is
Laplace operator.

The theory of integrals and fractional derivative, which is a generalization of the classical order calculus, was first
introduced by Leibniz in 1965. Over the last few decades, its application to science and engineering has made it
extremely popular and important. Recently, the fractional differential operator hypothesis has evolved primarily as
an open field in science and engineering. In addition, researchers have found that fractional-order models are more
suitable than integer-order models. Fractional differential equations (FDEs) provide powerful and flexible tools for
modeling and describing the behavior of real materials [35], Finance [37], Viscoelastic Fluids [28], Signal and image
processing [29], Biological systems [20], Control theory [36], Electrochemical processes [23], electromagnetic waves
Neghetal998, etc. Moreover, it is difficult to find analytical solution of all FDE. Therefore, the numerical solution of
FDE has become a major research topic (for instant see [7]-[I0]). Fractional calculus provide a great tool for expressing
the memory and genetic characteristics of various materials and processes. Several studies have extended fractions to
discover stable numerical and scientific methods for unsolved FPDEs of physical problems. These motivate us to look
for an efficient, effective and stable numerical approach to understanding FPDE.

Several numerical approaches to FPDE in time, space and space-time have been proposed by very few researchers.
For example, Liu et al. [I5] -[I7], have found the solution of second order Fokker-Planck equation, a space fractional
Fokker-Planck equation, and a modified anomalous partial diffusion equation with a nonlinear source term, and time-
space fractional advection-diffusion equation. In [22], Meerschaert has used a finite difference scheme for the numerical
solution of fractional advection variance flow equations in Caputo space. Shen & Liu [30] and Liu et al. [31] have
proposed the spatial fractional diffusion equation and the numerical solution of RieszFPDE separately. A broad
numerical approach also solves FPDE using the finite element method (see [3]), the finite difference method (see [1J),
and the spectral method [I2] which are limited. Due to the nonlocal nature of the fractional derivation operator, the
essential problem with FPDE’s numerical solution is to reduce computational effort. Few numerical approaches to
calculation cost reduction have been proposed such as alternating direction implicit method (ADI) [22], finite difference
scheme [8]-[9], multigrid method [2], and appropriate iterative approach in [14].

Broadly speaking, fractional models can be divided into two main types: spatial fractional differential equations and
time fractional differential equations. In other cases, as expert collapse and flow studies show, little work is available
to solve time-separated PDEs, but it is still limited. Proposed problem has been comprehensively considered by
[33]- [26]. Most of schemes could not established uniqueness, stability, and convergence numerical schemes for proposed
problem . As far as we know, the proposed problem has only discussed by [26] -[24]. Therefore, this article
introduced an unconditional stable numerical scheme of — based on a finite difference scheme. Our aim
to formulate a reliable, efficient, well-versatile and unconditional stable scheme that will be suitable to address any
points and queries that may naturally arise with the simulation of proposed fractional PDE — . The main
work of this paper can be described by the following points:

e An unconditional stable FDS is presented and analyzed for solving (1.1)-(1.3). The FDS is established by
assembling the central difference approximation for Laplace operator along with difference approximations of
order O(At>~%) and O(At3~P) for Riemann- Liouville fractional derivative f** D¢ and é?'LDtB , respectively.

e The uniqueness, unconditionally stability, and error bounds of FDS for proposed problem (1.1])-(|L.3|) are derived.

e It is proven that the proposed FDS admit the optimal convergence order
O (At3_a + A3 8 4 AQ?Q) of error estimate; where Ax and At represents the equal step sizes of meshes in space
and time domain, respectively.

e Some numerical examples are performed to validate the applicability and reliability of the scheme.

The outlines of the rest of the paper are as follows: Section [2]introduced the preliminaries of fractional derivatives
in terms of Riemann-Liouvelly derivative operators. In section [3] finite difference scheme for proposed problem ([.1)-
is established. In sections |4} uniqueness, stability analysis, error bound and order of convergence of scheme are
estimated. And finally, two numerical examples have illustrated the efficiency of the proposed FDS approach in section

Bl

2 Fractional derivative

In this section, some preliminary results about Caputo’s fractional partial differential operator, wavelets, Kronecker
multiplications, and function approximations are discussed. The Riemann-Liouville fractional partial differential
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operator (#£D%u) and (BLD?u) denotes the Riemann-Liouville fractional derivative of order a and 8 respectively
with respect to time ¢ and defined by ([27]):

m—1 (k) _ k-« t o, (m)
RL na _ u (a,x)(t (l) 1 / u (8733) _1<
(o Difu)(t,x) = ,;:0 Tlh—atl) +F(m—oz) j (t_s)a+1—mds7 m—1<a<m. (2.1)

Constant-order fractional partial derivatives are an extension of constant-order fractional derivatives. Constant-order
fractional partial derivatives have been introduced in several sciences and engineering fields. We adopt the following
definition of constant-order for fractional analysis of partial derivative at m = 2 and a = 0:

(k) 0 )k—a 1 t (2)( )
u .T u S, T
ds, 1<a<?2. 2.2
T(k —a+U +F@—a)A (—ga 1@ =@ (2:2)

1

(RLDa

M

k=0

and similarly

M-

(D u)(t, ) =

u® (0, z)(t)k7# N 1 )/t u® (s, x) ds, 1<fB<2. (2.3)

Th—a+1) ' T(2-8)J, (t—s)PFT

~
Il

0

Also, Caputo fractional derivative of order o with respect to time ¢ and defined by

1 Eoum(s, x)
C nHo _ ) —-1<
(o Dfu)(t ) Tlm — ) /a (= s)orim ds, m—1<a<m. (2.4)

3 Finite difference scheme

In this section, we establish a new finite difference scheme for problem [I.1]to Let N and M be positive integers,
At = T/N and Az = L/M denote the uniform sizes of time step and spatial grid, respectively. Let Qay = {tx : tx =
kAt k=0,1,..,N}and Qa, = {z; : 2; = jAz,j =0,1, ..., M}, then the domain [0, 77X [0, L] is covered by Qa; X Qaz.
At the points (¢, z;), the functional values and approximated values of u(t, z) are denoted by UjlC = u(ty, ;) and U;ﬂ
respectively. Let U = U; : j =0,1,..., M,Uy=Upy =0and V =V; : j =0,1,..., M,V = Vy = 0 represent two grid
functions on Qa; X Qag.

We introduce the following relations and notations [13]:

t At ’ TYj—5 Az ’ Y] A s
k k—1 M—-1

1 UT+ U

U = 18U = (A YD G2,
i=1

M—-1

V)= 30 AatyV;,  UIE={U.0), 04 = s, 10F)
p

(B2U,V) = —(6,U,6,V), (862U,U) = —(6,U,6,U).

Let us recall the Riemann-Liouville fractional time derivative of order a € (1,2), given by

1 —x
(L Do) Z u®) (0, z)(t)* . 1 /t u® (s, z) ds.
Tk —a+1) r2-—a)jy (t—s)ot
k=0
L (3.1)
u - C na—1
—_— Dy (Deu(t .
ZO NG _QH) +§ DN (Dyu(t, @)
Let v = Dyu ie. v(t,z) = Dyu(t, x), so by using the standard central difference scheme we get
1 UFtt-uk
v T T L oAg), (3.2)

J At
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Then a discrete approximation to the fractional derivative § D¢ 'v(t, ) at (ty, ;) can be obtained by the following

quadrature formula:
1 B (s, )
C na—1 t\o g
D ty,xj) = d
0 t 'U( k7x]) F(2 _ a) A (tk _ S)a—l S5

_ 1 /t% v (s, ;) 1d8+/tk% Ut(87l’j)lds+/tk ’Ut(S;l‘j)ldS 7
o (tk—s)" 0, (e —8)%" 1,1 (tk—8)"

r'2-a) K — S \ L
1
1 ’ 4 VjﬁE ds
- - O(At
[2-a) /t . At +0(A1) (ty, — s)o 1 (3.3)
-3
1 k—1 bt} ij+% _ meé V.er% . me% .
+ / J + 'Ut(S x]) J j
F(Q — Oé) m—0 1 At At (tk — S) 1
m+ m—4i
! tk VJ F - VJ ’ ds
T(2 — a) 4 L OAt) | ————
+F(2 ) /tk At +0(A1) (ti, —s)o—1]"

1
2

Since we have, U~! = U — AtV? = g; — Atgy, then

vt U Ay v s o 3.4
j—T+( ) =V + O(At%). (3.4)
Combining the eq. (3.2)) with (3.3))-(3.4), we have

(§E D) (b, 75) Z F ) )

o 1—t.® £ YAt 1 0 A
gt g1( k)t gety n l_/ __at ds}

T T1l-a) T'(2—-a) F2-a) | J o (kAt—s)oT
Zl urtt —oum 4 Ut /(m+é)m ds
r(2—a) — At? (m—1)At (kAt — s)a—1
1 Uk —2UF 1 4 U2\ [kt d
+ J J B) J / 78_1 + Rla
F(2 — a) At (mfé)At (kJAt — 8)a
gty (L) + gaty “ At CUR ’“i ( Ut —our + U )
- —1
rl-a) r2-a) F(3—a)m O\ ((k —m+ 1)z — (k —m — 1)2-9)
k—1
(At)~ +1 1 3—
m 2 m m— A «
+71“(3 mzo (U; U +U; )227a+(9( 37 + Ry,
(3.5)
where,
k=1 ¢ m+g m—3
_ 1 ™t Vi -V ds
Rl* 9 _ Zl ) Ut(sﬂxj)_ At (tk—s)a_l

m=0""m—3

Finally, we have obtained the following approximation:
gty | (L= 7)oty “AL (AT <5th - 5th_1>

RL o ) —
(O D u)(tkﬂxj) F(l*O&) I‘(Qfa) F(3fa) 22—«
(At)l e (3.6)
POy | 2, ke — k) WS AU~ Augey |+ R+ O(BE),
=1

where A;, = (k+ %)2_0‘ — (k- %)2—01.
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Similarly, a discrete approximation to the fractional derivative #£ D~ u(t, z) at (tg, ;) can be obtained by the
following quadrature formula:

(¢ D u) (tr, 25) =

aty” g -t et PAr (AP (6UF - 6,U7!
) I'2-p) r'(3-23) 2275

(A9 [ .
+m > (Bi-mi1 — Biom) 8:UJ + Bi6,Uf — Brgaj | + Ra + O(AE*™%),
m=1

1\2-8 1\2-6 bt} /A S N
where B, = (k+3)” " —(k—3) and Ry = ﬁ Zm oJe, s ve(s, xj) — yx; == Also, we have
finite difference scheme for second space derivative of u as follows []:

Uk

k k
j+1 2Uj +Uj

A —L L o(Az?) (3.8)

Now for solving proposed problem (|1.1))-(|1.3]), we combined Egs.(|L.1]) and (3.6])-(3.8) as follows:

gty (=5 + gty “At | (An)' e <5tU}“—5th1>

me(tkvxj) =

Il —a) I'2-a) I'(3—a) 22—«
k—1
(At)lfa .
e Ayt A VU™ + ALY — Apgss
+F(3—a) mz;l( k—m+1 k—m) 0:UJ" + A10:U; k92
+A gty +91(1*t2ﬂ)+92t;;ﬁﬁt L M(anto sUF — 6, Ur! 59
\ra-9 r(2-p) T(3 - B) 925 .
A(ADI8 [
+% > (Biemt1 = Bim) 0.US" + B1&,Uf — Biga
( - ) m=1
Uk, —2UF + Uk
:A2< A 1)+Fﬂk+Rl+R2+0(A3‘Q+A3—ﬁ+m2).

Neglecting the small term Ry + Ry + O (A3~ + A37# + Az?) from Eq.(3.9), we get the following finite difference

scheme for Egs.(1.1)-(1.3):

gt (=) et “At (A (0 — 60U
F(l - Oz) F(Z — a) 1‘*(3 _ a) 22—a

k-
Z (Ap—mt1 — Ap—m) 00" + A16U7 — Arga;

at? (=) + gt PAL A (AP [(60F — 6,0

Atla

a9 @5 G- 725
A (Ab)1-7 Sf _ -
— (Bk—m+1 — Br—m) 6:U;" + B10,U; — Bj.ga;
TG |2 : :
Ol 2008
2 Az i

(3.10)

The algorithm for solving time-fractional partial differential equation (|1.1f)-(1.3]).
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Algorithm 1: FDS for time-fractional partial differential equation (1.1)-(L.3).
Input: The numbers o, 8 € (1,2),8 < o, L,T € R, M, N € N; the given functions g1 (z), g2(), f(z,t).

Output: Numerical solution of (1.1))-(1.3): U

for Numerical solution of - by FDS do

STEP 1. Discretize the physical domain with the uniform mesh Qa; = {tx : tx = kAt,k =0,1,..., N} and
Qnz ={zj 2, =jAz,j=0,1,..., M}

STEP 2. Convert time-fractional PDE into integro-PDE using Riemann-Liouville derivative
operator.

STEP 3. Convert integro-PDE into difference scheme by section

STEP 4. For time level k£ apply the scheme to evaluate U]k.

end

4 Analysis of uniqueness, stability, error bound and convergence of scheme

Lemma 4.1. [13] If U} = 0 and U}, = 0, then we have

L
041 < Lo,

Now for the error R; and Rs, we need the following lemmas

Lemma 4.2. [16] Suppose that u(t) € C?[0,t;] and 1 < a < 2, we have

1
1 k—1 t”m,+% V—jm‘i‘2 _ V'jm 2 ds
Rl =l 3 [ s - -
2—a ~—J; At (ty, — 8)

(4.1)
<C max luge (2, a:])|At3*a.
Similarly,
Lemma 4.3. Suppose that u(t) € C?[0,t;] and 1 < 3 < 2, we have
k— m+g m—g
m+1 V. -V ds
Rl = Z [ et - B -
= At (b — )77 (4.2)
<C max, |utt(t IJ)\AtS A,
—t,<t<
T s 1\2—« 1\2—« 1\2-5 1\2-8
Lemma 4.4. [I3] For the definition A, = (k+ 3) - (k=1 and B, = (k+3) - (k=-H"", k=

1,2, M — 1, we have Ay > 0, By > 0 and AK—H < Ak, BK+1 < Bg.
Theorem 4.5 (Uniqueness). The finite difference scheme (3.10) has unique solution.

Proof . The tridiagonal matrix associated to finite difference scheme (3.10)) is always diagonally dominant, so it is
nonsingular. Hence, finite difference scheme (3.10) has unique solution. O

Theorem 4 6 (Stability of scheme). Let {Uk 0<j<MO<Ek< N} be the solution of the finite difference
scheme , then and hence proposed finite dlfference scheme for problem (|1.1] is a stable scheme.

. 1-a 1-8 ty
Proof . Denoting 1 = St— ry = &t Tq = g(l ) + £

g1 (1=t *)+gaty “At gty ” g1 (1=t ?) gty P At and
INGE T(3-p) e = T({-

T(2—a) T8 = TA-5A) T(2—5)
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multiplying both side of (3.10) by Az6,U} and making summation on space discretization j from 1 to M — 1, we have

k—1

(ras 80%) + 352 (80" = 8051, 6:0%) 4710 Y (At = Arm) (807, 6:0%)
m=1

+T1A1H(St0k”2fT’1Ak <92,5t[7k>+/\1 <’I"5,5tUk> ;\17'2 <§tUk 5tUk71,5thk>

k—1
_ _ Uk>

+A172 Z Biom+1 — ABi_y) (U™, 8,U%) + MiroB1[|6:U%||* + Air2 By, (ga, ¢

m=1
= X\ (02U*,6,U%) + (F*,5,U").
(4.3)
Since
(6,0 — 6,U% 1, 5,U0%) = ||6,U"||> = (6,U% 1, 6,U%)
_ 1 _ _
> 802 = 5 (15051 + 16,04]2) (4.4)
1 _ _
> = (I8TH2 = 1805 P)
So,
Tk Frk— Tk E Frk— Tk
U — 6,051, 6,0%) + 22 = (6,0% — 6,01, 6,0%)
! k|2 rh—12 (4.5)
> (g0 + a2 ) (10.0%1 - 6:0% 1))
Now using Cauchy Schwarz inequality and Lemma [£.4] we obtained
k—1 k—1
1 Z (Ap—mt1 — Ak—m) (3:0™,6,U%) + 17 Z (Bi—m+1 — Bi—m) (6:0™,6,U%)
m=1 m=1
k—1
r _ _
< 51 (Ap—mi1 — Ap—m) (16:0™]1 + 16:0% 1)
m=1
A172 - Frm |2 k|2
+—5 (B—m+1 = Bi—m) ([16:0™[1* + 16:U*]|?)
m=1
k-1
r _ r _
=5 D Akmin = Aim) 5072 + 5 (A1 = Ag)[6,0*?
L (4.6)
AT — _ AT _
+ 122 (Be—ms1 = Bim) 10,0 + = 2(31 By)[|6:U* |
m=1
k-1 k
_ E A H(S Ulcfm||2 - E Z A ”5 kam+1||2
- 2 m ||Vt 2 m ||Vt
m=1 m=1
r _ T _ Ay A2 _
FRISTHZ + (A1 = AT + 252 S B804
m=1
k
A7 _ )\ r _
SN Bl U+ SR80 + S (B - Bu)l6:0 ",
m=1
and the first term on the right side of equation (4.3) can be transform as follows:
(82U*, 5,U") = N <52Uk &U* — 5, UM 1)
(4.7)

= K (<6mU’“ §:URY — (5,U*, 5, U 1))
k|2 1 rrk—12
= 2At|§ PP+ 50U
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Next, we estimate the last term on the R.H.S. and first, fifth, sixth and seventh terms of L.H.S. of eq.(4.3). Using
a—2
Cauchy-Schwarz inequality, there exist a constant € = % to give us:

(TlAk -+ )\1T2Bk) <gl,5tﬁk> -+ <Fk, 5tUk> — <7’a, (5tUk> — )\1 <T‘ﬁ, (St0k>
_ 1
< (rAk + Mir2By) (Lol + 16:0%11%) + 2||Fk”2 (4.8)

3€ _ 1
F BT + o (rall® + s ).

Now, combining Eq.(4.3) with Eqgs.(4.4)-(4.8) and multiplying both side of the Eq.(4.3)) by At, we get

k
TlAt k112 T’lAt k—m41 2 )\1T2At kN2
s5—a 0.0 |7 + =~ ;Amuw I+ 5= 100
T2 o Aol
172 FTk—m+12 2 k(2
t—5 mlethU [ 5 6: U7
/\1T2At (4.9)

At A
< 2 UE e 4 2 tZAmnatU’“ ™2 4+ 16,0712

—23a

Aoy h—mn2 . A2 . =k 19 10 Aoy 9
+55 Z 160 2 + 18U P+ { = Ak + == ) llaa

m=1

3€At

A A
+27'EIIF’“||2 — - l16:0* ) + Et (Irall® + Adllrsl®) -

Let
/\1’1"2At

~ r At - At & e
S (Uk) = 22—& ||5tUk||2 + 1T Z Am||5tUk +1||2 H(gtUk||2
m=1
(4.10)

k
Ao At h—m12 A2l ¢ k2
+ 5 E_ B ||6:.U I —&-72 |6:U"[".

So, the inequality (4.9)) can be written as

_ _ A Ar1r2A
S(U%) < s (0% + (“2 LA+ 22 t) g 2
A 3 At A —
€
+50 1M+ == 10017 + 52 (lIrall® + Allrs ) -
Now summing (4.11)) with respect to k from 1 to K (K < N), we get
K K
Tk Tk—1 Ty 2, M2l 2
S(U )SS(U )+TZ:1AmH91H +TZ:1BmH91H

"= "= (4.12)

K K K

A " 3eAt —m A

+om 2 IE™ P+ == 30801+ 55 Y (el + Allrs]?) -
m=1

m=1 m=1

So, above implies as follows:

—n — — A oAt <
I |2§2||U0||2+C<S<U°>+ 5 2 Amlgal® + == Bula?

m=1 m=1

n A n
2 NETIE 4SS (el + Alurmz))
m=1

m=1



An efficient finite difference scheme for fractional partial differential equation ... 171

(4.13)
Hence using Eq.(4.13)), we get the following required stability inequality for proposed scheme
1T + 16,017 < CLIT°| + Cal6,U° ) + CsAF Y~ Allgi || + CaAT™7 > Buallga|?
m=1 m=1
n n (4.14)
+C3 A Y I+ G Y (Il + MillralP), 1<n < N
m=1 m=1

where C1, Csy, C3,Cy, Cs and Cg are positive real constants independent of At¢. (I

Theorem 4 Optimal error bound and convergence of scheme). Let U(t, ) be sufficiently smooth solution
of Eqs. 1.3) and U} : 0 < j < M,0 <k < N be the solution of finite difference scheme (3.10), then

|UF = Ul + |UF = UF|loe < C (A + AP + Az), 1<Ek<N,

where C' is a positive real constant independent of At and Azx.

Proof . Subtracting Eq.(3.10]) from Eq.(3.9), we get

k—1
> (Ak-mir — Ak—m) GE + A5 Ef — Agg;
m=1
k—1
+ 179 [Z (kaerl — kam) (StEJm + Bl(StEjk
m=1 - - (4.15)
S B — 6By 5 UF — 6,01 "
22— 2276
Uk, —2UF + EF
2 Az )
where r; = F(3_1;(;,r2 (A(?lﬁf,Rk @) (At“?”o‘ + A3 4 Aa:z) and Ek Uk U]’-“.
Now, multiplying Eq. 1) by A:z:(StE]’-“ and taking summation on j for 1 < j < M — 1, we have
A
S (5 BF = GENTN BN 4 A |6, B PSR (5, B — 6, EF 1,6, EF) + 1o By |6, EF||?
k—1 k—1
=11 Y (Akem — Ammr) (E™, 6, BF) + My > (Biemn — Bremt1) (8:E™, 6, %) (4.16)
m=1 m=1
+A2 (62E" 5, E*) + (RF,6,E") .
So, by using similar calculation to the stability analysis in theorem we get
k k
TlAt TlAt —-m )\1T2At )\1’/‘2At —m
gia 0B P+ == D7 A8 BRIP4 SR ¢ S S T Bl B
= m=1
k—1
|)‘2| riAt — r1At —m Ao At _
102 B ]* < o5 Sa 0B + 5 > Bullo: B + 537 165412 (4.17)
m=1
k-1
Ao At kemyz A2 k—12 , At g9 Ate k2
—_— B |6, EF ™ — |6, F —I|R — [0 E7||7.
#EEEEE S Bl 0B o RN+ S0

Now, using the definition of S as in theorem Eq.(4.17) can be rewritten as

At At
S (B) <8 (B + 5o IR + 5o P (4.18)
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So, from the similar calculation as in [16], we get

S (EY) < C (AP + AP 4+ Ax?), (4.19)

and .
IE"|* < |E®|® + 2TAt Y [I6.E*||°, 1<n<N. (4.20)

k=1

Using Lemma [4.1] Eqs.(4.19)-(4.20), we obtain
[UF = U ||+ |UF = UF|loe < C (A + AP + A2?) V1< k< N, (4.21)

where C' is positive real constant independent of Ax and At. [J

5 Numerical examples

Now, we have discussed some examples to show the accuracy and efficiency of the proposed schemes to validate
our scheme which verifies the stability and convergence of the finite difference scheme. Let U be the exact solution
and U be the numerical solution then

Absolute error = |U - U| ,

2

)

M-1
|v=0ll, = | X2 V(@i 1) = Ule;, 1)

and

U - UHOO = 1ISnjanN|U(acj,T) = U(z;,T)|.

We have used the following formula for calculating the computational orders (COs) of the proposed finite difference
scheme:

E
CO(N) = k()igE:}l)) ;
hN+1

where Ey and En41 are errors corresponding to the grids with mesh size hy and hyy1 respectively.

Example 5.1.
(Df'B)(w,t) — (D} B)(,t) — V*B(x,t) = f(a,t), (5.1)
subject to initial condition

{ B(x,0) = g(x),

[%} =0 hz), 2

and Dirichlet boundary conditions are

B(z,t) =0,z € 99,1 € (0, T, (5.3)

and the exact solution of the above test problem is B(z,t) = ¢

different choices of o and £.

sin(mz). The value of source term f(x,t) is varies for

We have solve Example using proposed finite difference scheme is given in Eq.. Figure |1| shows the behavior
of absolute errors of Example at L =1,T = 1,At = 1/1000 and Az = 1/160, Figure [2] shows the behavior of
absolute errors of Example L=1,T =1,Az = 1/1000, At = 1/160, and different values of o and 3, where
a=15 =11, a=17 f=15and a = 1.9, § = 1.3, respectively. Also, Ly errors, L., errors and temporal order
of convergence of Example at fixed temporal step size At = 1/1000 and different spatial step size Ax are given
in Tables [I| and [2] respectively and Lo errors, Lo, errors and order of convergence of Example at fixed space size
Az =1/1000 and different temporal step size Az are given in Tables [3|and ?? respectively.
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Figure 1: Absolute errors of Example with the spatial step size Az = 1/160, temporal step size At = 1/1000 and different values of o
& B.

(62}

»
2
T
.

IS
T
L

w
o
T

.

w
T
1

a=15, g=1.1
a=17,3=15 b
a=1.9, 4=1.3

N
wn
T

Absolute errors
=
= (6] N

o
o
T

.

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 2: Absolute errors of Examplewith the spatial step size Az = 1/1000, temporal step size At = 1/1000 and different values of
a & B.

Ar a=15/3=11 a=17,8=15 a=19,3=13
[B-B], cos _BB|, cos BB, _ cOs
1/10 5.5000E-03 - 5.5000E-03 4.0000E-03

1/20 1.2000E-03 2.19640 1.4000E-03 1.97400 1.3000E-03 1.62149
1/40 3.1655E-04 1.92253 3.3648E-04 2.05683 6.7702E-04 0.94124
1/80 8.3953E-05 1.91478 7.8056E-05 2.10794 5.0953E-05 0.81003
1/160 2.5813E-05 1.70148 1.3446E-05 2.53733 4.6765E-05 0.72374

Table 1: Lo errors and order of convergence of Example for different values of o and 8 with fixed temporal step size At = 1/1000
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Ar  a=15pF=11 a=17,4=15 a=19,3=13

|B - B, COs |B - B, COs |B - B, COs
1/10 5.5000E-03 - 5.5000E-03 - 4.0000E-03 -
1/20 1.2000E-03 2.19640 1.4000E-03 1.97400 1.3000E-03 1.62149
1/40 3.1655E-04 1.92253 3.3648E-04 2.05683 6.7702E-04 0.94124
1/80 8.3953E-05 1.91478 7.8056E-05 2.10794 5.0953E-05 0.81003
1/160 2.5813E-05 1.70148 1.3446E-05 2.53733 4.6765E-05 0.72374

Table 2: Lo errors and order of convergence of Example for different values of o and 8 with fixed temporal step size At = 1/1000

Ar a=1508=11 a=17,8=15 a=193=13
5Bl v BBl T BB T
1/10 7.0000E-03 11.02 7.8000E-03 12.33 5.7000E-03 10.98
1/20 1.8000E-03 16.13 1.9000E-03 15.71 1.9000E-03 14.75
1/40 4.4768E-04 30.21 4.7586E-04 31.81 9.5746E-04 30.97
1/80 1.1873E-04 41.12 1.1039E-04 44.82 7.2058E-04 43.75
1/160 3.6505E-05 70.45 1.9040E-05 72.33 6.6136E-04 70.89

Table 3: Lo errors and CPU time in second (T) of Example for different values of o and 8 with fixed temporal step size At = 1/1000

At a=15p/3=11 a=17,8=15 a=193=13
|B - B, COs |B - B, COs |B - B, COs
1/10 7.3000E-03 - 6.4000E-03 - 4.2900E-02 -
1/20 2.4000E-03 1.60486 1.8000E-03 1.83007 2.4800E-02 0.79064
1/40 7.9704E-04 1.59031 2.7623E-04 2.70405 1.3300E-02 0.89891
1/80 2.7663E-04 1.52669 3.2435E-05 3.09025 6.7000E-03 0.98919
1/160 9.8344E-05 1.49205 4.9671E-05 0.61485 3.3000E-03 1.02170
Table 4: Lo errors and order of convergence of Example for different values of o and B with fixed spatial step size Az = 1/1000
tabled
At a=15p/3=11 a=17,0=15 a=19,4=13
BB cos BBl cos [B-B|__cos
1/10 1.0300E-02 - 9.0000E-03 6.0600E-02
1/20 3.4000E-03 1.59904 2.5000E-03 1.84800 3.5000E-02 0.79196
1/40 1.1000E-03 1.62803 3.9066E-04 2.67794 1.8800E-02 0.89662
1/80 3.9121E-04 1.49149 4.5870E-05 3.09029 9.5000E-03 0.98473
1/160 1.3908E-04 1.49203 7.0246E-05 0.71487 4.6000E-03 1.04629

Table 5: Lo errors and order of convergence of Example for different values of o and g8 with fixed spatial step size Az = 1/1000
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Example 5.2.
(D7 B)(x,t) = (D} B)(x,t) = V*B(x,t) = f(x,1), (5.4)

subject to initial condition

{ B(z,0) = g(=), 55)
OB(z,t) _ .
[ ot L:o hz),
and Dirichlet boundary conditions are
B(x,t) = 0,2 € 9Q,t € (0,77, (5.6)

and the exact solution of the above test problem is B(x,t) = t®+8z1+2+8(1 — z). The value of source term f(z,t) is
varies for different choices of o and .

We have solve Example using proposed finite difference scheme is given in Eq.. Figure [3| shows the behavior
of absolute errors of Example at L =1,T = 1,At = 1/1000 and Az = 1/160, Figure [4 shows the behavior of
absolute errors of Example L=1,T =1,Az = 1/1000, At = 1/160, and different values of o and 3, where
a=15 =11, a=17, f=15and a = 1.9, § = 1.3, respectively. Also, Ly errors, L., errors and temporal order
of convergence of Example at fixed temporal step size At = 1/1000 and different spatial step size Ax are given
in Tables [6] and [7] respectively and Ly errors, Lo, errors and order of convergence of Example at fixed space size
Az =1/1001 les [§] and [9] respectively.
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Figure 3: Absolute errors of Example with the spatial step size Az = 1/160, temporal step size At = 1/1000 and different values of a
& B.
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Ar a=15p/3=11 a=178=15 a=198=13
|B - B, COs |B - B, COs |B - B, COs
1/10 2.1000E-03 - 2.8000E-03 - 1.9000E-03 -
1/20 5.1522E-04  2.02713  7.1060E-04  1.97832  4.5900E-04  2.04943
1/40 1.2848E-04  2.00364  1.7794E-04  1.99765 1.0147E-04  2.17744
1/80 3.1841E-05  2.01259  4.4694E-05 1.99324 1.3043E-05  2.95971
1/160  7.6875E-06  2.05030  1.1380E-05 1.97358  3.2023E-06  2.02610

Table 6: Lo errors and order of convergence of Example for different values of a and 8 with fixed temporal step size At = 1/1000

Az  a=15p/3=11 a=17,0=15 a=19,4=13
b5l cos BB cos B B|___ COs
1/10 2.9000E-03 - 4.1000E-03 - 2.8000E-03 -
1/20 7.2700E-04 1.99603 1.0000E-03 2.03562 6.9735E-04 2.00547
1/40 1.8130E-04 2.00358 2.5682E-04 1.96117 1.5710E-04 2.15020
1/80 4.4940E-05 2.01231 6.4431E-05 1.99493 2.2935E-05 2.77606
1/160 1.0835E-05 2.05230 1.6320E-05 1.98111 4.7549E-06 2.27006

Table 7: Loo errors and order of convergence of Example for different values of a and 8 with fixed temporal step size At =1/1000

At a=15/8=11 a=17,6=15 a=19,=13
BB, cos _[B-B|, COs BB,  cOs
1/10 1.0632E-04 - 2.7738E-04 - 1.8000B-03 -
1/20 1.3378E-04  1.60275  8.2209E-05  1.75450  1.0000E-03  0.84799
1/40 4.4TTTE-05  1.59031  1.8872E-05  2.12305  5.5628E-04  0.84612
1/80 1.5448E-05  1.53534  6.1390E-06  1.62017  2.8046E-04  0.98802
1/160  5.3532E-06  1.52895  3.3143E-06  0.88943  1.3638E-04  1.04016

Table 8: Lo errors and order of convergence of Example for different values of o and 8 with fixed spatial step size Az = 1/1000

At a=158=1.1 a=17,=15 a=19,6=13
[5-8.  cos  p-B]_ cos [m-p]__ cos
1/10 5.8923E-04 - 4.1694E-04 2.5000E-03
1/20 1.9661E-04 1.58349 1.3378E-04 1.63998 1.5000E-03 0.73697
1/40 6.6467E-05 1.56463 3.5105E-05 1.93011 7.7956E-04 0.94423
1/80 2.3079E-05 1.52606 8.7782E-06 1.99968 3.9346E-04 0.98644
1/160 8.0367E-06 1.52191 5.5136E-06 0.67093 1.9148E-04 1.03902

Table 9: Lo, errors and order of convergence of Example for different values of o and B with fixed spatial step size Az = 1/1000

Az a=150/8=11 a=17,8=15 a=19,=13
|B- B, T |B-B| T 1B~ B, T
1/10 2.0000E-03  15.22  4.1000B-03  14.89  2.8000E-03  15.11
1/20 7.2700E-04  28.63  1.0000E-03  29.75  6.9735E-04  30.01
1/40 1.8130E-04  51.92  2.5682E-04  52.33  1.5710E-04  51.43
1/80 4.4940E-05  66.21  6.4431E-05  65.11  2.2935E-05  65.03
1/160  1.0835E-05  80.33  1.6320B-05  81.23  4.7549E-06  80.90

Table 10: Lo errors and CPU time in second (T) of Example for different values of o and 8 with fixed temporal step size At = 1/1000
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6 Conclusion

In this paper, we have presented and analyzed an unconditionally stable and efficient finite difference scheme (FDS)
for proposed problem —. Our approach is based on an approximation of Riemann-Liouville fractional derivative
operator of order O (At?’*‘l) and O (At3*ﬁ ) in time domain and central difference discretization for Laplacian operator.
The uniqueness, unconditionally stability, error bound, and convergence of the scheme are investigated. Also, we have
shown that the order of convergence of the proposed FDS is O (At3_a + A3 4 Aa:Q). At last, from the considered
examples and L? errors (see Tables and E[), L errors (see Tables and E[), absolute errors (see
Figures [1H4)), and comparison with the existing method in [26]-[24] , it can be effectively observed that the FDS for
fractional PDE has acquired the outcome as precise as could be expected under the circumstances. Numerical outcomes
of examples (see Tables confirm the theoretical results and high accuracy of the proposed finite difference scheme.
In this paper,we could not provided the results for nonlinear source term and unbounded domain, which is one of our
goals and a topic for future study.
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