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Abstract

In this paper, we introduce a generalization of the projective modules. We show that for a module M = M; @ M,. If
Ms is s.p-Mj-projective, then for every s.p-closed submodule A of M with M = M; + A, there exists a submodule K
of A such that M = M; P K.
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1 Introduction

Throughout article all rings are associative with identity and all modules are unitary left R-modules. Let N be a
submodule of a module M. N is called an essential submodule of M (indicateby N <, M)if NV K #0, V0 # K < M.
A submodule B of M is called a closed submodule of M if B has no proper essential extension in M, see [6].

Let M be a module, recall that the socle of M (denoted by Soc(M)) is the sum of all simple submodules of M. A
module M is said to be a semisimple module if Soc(M) = M, see [0l [§].

Let M be a module. Recall that the Jacobson radical of M (denoted by J(M)) is the intersection of all maximal
submodules of M. If M has no maximal submodule, we write J(M)=M, see [13].

Let m € M. Recall that ann (m) = {r € R : rm = 0}. For a module M, the singular submodule is defined as
follows Z(M) = {m € M|ann(m) <. R} or equivalently, Im = 0 for some essential left ideal I of R. If Z(M) = M,
then M is called a singular module. If Z(M) = 0, then M is called a nonsingular module. The second singular (or
Goldie torsion) submodule of a module M (denoted by Zs(M)) is defined as follows Z(M/Z(M)) = Zy(M)/Z(M), see

Let R be a ring. An element x € R is said to be regular if there exists an element r € R such that z = xrzx. R
is called regular if every element in R is regular. A module B is called F-regular if for all 0 # = € B, R/ann(z) is
regular, equivalently an R-module M is F-regular if and only if for all + € B and y € R, there exists r € R such that
ryre = rx, see [].

Let N be a module and M(N) =5, K <N N. Then N is F-regular if and only if M(N) = N, see [7]. Let A

K is regular
be a module, a module M is called A-projective if for every submodule B of A, any homomorphism g from M to A/B
can be lifted to a homomorphism A from M to A. It is known that a module M is projective if M is A-projective, for
every module A, see [Bl [8 Q).
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Let S be a semiradical property. A submodule N of a module is said to be s.p-closed submodule of M (denoted
by N <gp—ec M) if N < K <M and K/N has S implies that N = K. Equivalent A is s.p-closed submodule of M if
and only if S(M/A) =0, see [1].

In this paper we introduce the concept of projective modules relative to a semiradical property. Let S be a
semiradical property. A property S is said to be a radical property if:

1. for each module M, there exists a submodule (denoted by S(M)) such that
(a) S(M) has S.
(b) B < S(M), for any submodule B of M such that B has S.

2. If f: M — L is an epimorphism and M has S, then L has S.

3. S(M/S(M)) =0 for each module M, see [7].

A property S is said to be a semiradical property if it satisfies the following conditions 1 and 2, see [7]. It’s known
that each of the following two properties is a radical property, see [7].

1. S = Z;. For a module M, S(M) = Z3(M), the second singular of M.
2. S = Snr. For a module M, Snr(M) is a submodule of M s.t.

(a) J(Snr(M)) = Snr(M) {i.e. Snr(M) has no maximal submodule}.
(b) A < Snr(M), for every submodule A of M such that J(A) = A, see [7].

While each the following two properties is a semiradical property (but not radical property), see [7].

1. S =Z. For a module M, S(M) = Z(M), the singular submodule of M.
2. S = Soc. For a module M, S(M) = Soc(M)=>, A<M A.

A is simple

3. 8= M. For amodule M, S(B) =M(B)=>), A<M A, the unique maximal regular submodule of B{M (B)
A is regular
is called semi Broun-McCoy radical}.

Let S be a semiradical property. It’s known that

M has S < S(M) =M.

S(S(M)) = S(M).

If M = @,.; Ni, then S(M) = @,.; S(N;), where i is any index set.

If S(M) =0, then S(A) =0, VA < M.

For any s.e.s.0 — M — N — K — 0, if S(M) =0 and S(K) = 0, then S(N) =0, see [1].

CU N

Recall that a semiradical property S is called hereditary if S is closed under submodules, see [7]. In this paper, S
is a semiradical algebraic property, unless otherwise stated.

Definition 1.1. Let M and A be R-modules. We say that M is s.p-A-projective, if for any epimorphism f : A — B,
where B is any R-modules such that S(B) = 0 and for any homomorphism g : M — B, there exists a homomorphism
h: M — Asuch that foh=g.

We say that a module M is s.p-projective if M is s.p-A-projective, for any module A. Clearly that every projective
module is s.p-projective.

Remark 1.2. Every module has S is s.p-projective.

Proof . Suppose that f : A — C be an epimorphism with S(C) = 0 and o : M — C be a homomorphism. Since
S(M)= M, a =0, by [7]. Hence « can be lifted to a homomorphism 0 =5: M — Ast. fof=a. O

Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) = 0 is closed under
homomorphic images of M for every module M, see [7].
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Remark 1.3. Let S be a cohereditary property and let M and K be modules such that S(K) = 0. Then M is
K-projective & M is s.p-K-projective.

Proof . =) clear.

<) Assume that f : K — K; be an epimorphism and g : M — K; be a homomorphism. Since S(K) =0 and S is
cohereditary property, then S(K7) = 0. But M is s.p-K-projective, so there exists a homomorphism h : M — K s.t.
foh=g. Thus M is K-projective. [

Remark 1.4. Let M and A be modules and f : M — B be any epimorphism s.t. S(B) =0. Then M is A-projective
< M is s.p-A-projective.

Proof . =) clear.

<) Assume that f : A — B be an epimorphism such that S(B) = 0 and let g : M — B be a homomorphism. But
M is s.p-A-projective, therefore there exists a homomorphism h: M — A s.t. foh =g. Thus M is A-projective. [J

Proposition 1.5. Let M and A be modules. If S(A) = 0 and A is s.p- projective, then every short exact sequence:
0V LM% A 0is split.

Proof . Look the following graph:

Since A is s.p- projective and S(A) = 0, there exists a homomorphism h : A — M such that go h = I4. Hence g
has a right inverse. Thus by [§], the sequence is split. O

Theorem 1.6. Let M and C' be modules. Then M is s.p-C-projective < for any epimorphism f : C' — D, where Kerf
is s.p-closed submodule of C' and f: M — C be any homomorphism, there exists g : M — D be a homomorphism s.t.

fog=25.

Proof . <) clear.

=) Let M be s.p-C-projective and f : C' — D be an epimorphism such that Kerf is s.p-closed submodule of C.
By the first isomorphism theorem, C/Kerf = D, then there exists an isomorphism 6 : D — C/Kerf define as follows
0(d) = ¢+ Kerf, where d € D such that f(c) = d. Now look the following graph:
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where 7 is the natural epimorphism. Since ker f is s.p-closed submodule of C, S(C/ker f) =0, so S(D) = 0. But M
is s.p-C-projective, therefore there exists a homomorphism g : M — C such that 1o = fog. Claim that fo8 =fog.
To show that, let x € M, then wo B(x) = B(z) + ker f = 6 o g(x) = ¢ + ker f, where ¢ € C such that f(c) = g(z).
Implies that 5(z) — ¢ € ker f, so f(B(z) —c¢) = 0. Hence f(5(z)) = f(¢) = g(z). Thus foh=g. O

Example 1.7. 1. Let S = Snr, consider the module @ as Z-module. Since S(Q) = @, by rem [1.2] Q is s.p-
projective. But Z is a PID and @ is not a free Z-module, then @ is not projective.
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2. Let S = Snr, consider Z/nZ as Z-module. Now consider the short exact sequence:

0—nZ525 Z/nZ —0

where ¢ is the inclusion map and 7 is the natural epimorphism. Since Z is indecomposable module, nZ %
@ Z,Vn > 2. So the sequence is not split. Hence by [§], Z/nZ is not Z-projective. But S(Z/nZ) = S(Z,)
and Z,, is finitely generated, so J(Z,) # Z,. Then S(Z/nZ) = S(Zn) = 0. Thus by rem. Z/nZ is not
s.p-Z-projective.

3. Let S = M, consider Zp~ as Z- module. Let f: Zpe — Zpo be a map defined by f(p5 +2) = 525 + 2 =
p(pim—l—Z). Claim that f is an epimorphism. Since for every y = p(}%—i—Z) € Zpoo, there exists z = plm—l—Z € Zpoo

such that f(z) =y.
Now let Zpe = J,,, Zpm and let x € Zpm, since when m # 1, then pm is not devoid of square, so x is not regular,

by [12]. Now if m = 1, then « is regular, by [12]. Hence S(Zp~) = Z,, s0 S(Zps/ker f) = S(Zp~) = Z,. Then ker f
is not s.p-closed submodule of Zpe. Thus by Theorem [I.6] Zpe is not s.p-Z-projective.

Proposition 1.8. Let M be a module. If A be a semisimple module, then M is s.p- A-projective.

Proof . Suppose that f: A — B be an epimorphism such that S(B) =0 and g : M — B be a homomorphism. But
A is semisimple, so ker f < @ A. Hence f is split and so by [8], there exists f; : B — A such that fo f; = Ig. Let
h=fiog: M — A. Cleary that f o h = g. Thus M is s.p-A-projective module. [J

Corollary 1.9. Let S be a hereditary property and M = A; @ A2 be a module such that A; has S and A, is
semisimple. Then M is s.p-M-projective module.

Proof . Since M = A; @ As be a module such that A; has S and A, is semisimple, then by [2], M is semisimple.
Thus by prop. M is s.p-M-projective module. [J

Corollary 1.10. Let S be a hereditary property and M be a module. If M = S(M) @ My, where M; is semisimple,
then M is s.p-M- projective module.

Proposition 1.11. Let M and B be modules and C be a submodule of a module B. If M is s.p-B-projective module,
then M is s.p-B/C-projective.

Proof . Let f : B/C — L be epimorphism such that S(L) = 0 and g : M — L be a homomorphism. Look the

following graph:
M
ey
% J{

B~ B/C —— L ——o0

where 7 is the natural epimorphism. Since M be s.p-B-projective, f o 7 is an epiomorphism, then there exists a
homomorphism o« : M — B st. fomroa=g. Lete h=nwoa: M — B/C. foh= fomoa =g. Thus M is
s.p-B/C-projective. O

Proposition 1.12. Let A be s.p-B-projective module and let f : B — M be an epimorphism such that ker f is
s.p-closed submodule in B, then there exists a homomorphism h € End(B) s. t. h(ker(f)) < ker(f).

Proof . Suppose that f: B — M be an epimorphism such that ker f is s.p-closed submodule of B then by the first
isomorphism theorem, B/ker f = M. Consider the following diagram:
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B<"5 B/kerf — 0
\lﬂ
M

\O

where 7 is the natural epimorphism and g is the isomorphism defined by g(z + ker(f)) = f(x) for all z € B. Since A
is s.p-B-projective module, S(B/ ker f) = 0. Hence there exists a homomorphism h : B — B such that foh =gom.
To show that h(ker(f)) < ker(f). Since f o h(ker f) = gom(ker f) = g(w(ker f)) = g(0) = 0, we have f o h(ker f) = 0.
Thus h(ker(f)) < ker(f). O

Proposition 1.13. Let S be a cohereditary property and let M and B be modules such that S(B) = 0. If M is
s.p-B-projective then for every submodule A of B, M is A-projective.

Proof . Let f: A — C be an epimorphism and g : M — C be a homomorphism. Look the following graph:

aq

0

B———>B/Kerf — 50

where ¢ is the inclusion map and 7 is the natural epimorphism. Define 6 : C — B/ ker f as follows 6(c) = b + ker f
for each ¢ € C, f(a) = ¢. Now we want to show 6 is well define, let ¢; and ¢ € C such that ¢; = ¢o, then
flar) = f(a2) = f(a1) — faz) =0= f(a1 —az) = 0= a1—ag € ker f, s0 a1 +ker f = as +ker f. Then 0(c;) = 0(c2).
Thus 6 is well define. [J

Now we want to show € is homomorphism. Let ¢1,co € C, then 8(c1+c¢2) = a1 +as+ker f = a; +ker f+as+ker f =
O(c1) + 0(c2) and O(rc) = ra + ker f = rf(c). Since S(B) = 0 and S is cohereditary property, then S(B/ker f) = 0.
But M is s.p-B-projective, therefore there exists a homomorphism h: M — B s.t. toh=0o0g.

Claim that h(M) < A. Let x € h(M), then there exists y € M such x = h(y). Since moh(y) = 0o g(y) = 0o f(a),
for some a € A. So mo h(y) = a+ ker f = w(h(y)) = a + ker f. Hence, n(z) = a + ker f. This means that
a+kerf = ax+kerf and so, a —x = a — h(y) € ker f. This implies that h(M) < A. Define a : M — A by
a(m) = h(m), for each m € M. Then i o a(m) = i(a(m)) = a(m) = h(m). Now we want to show foa = g. Since
o foa(m)=moioa(m)=moa(m)=moh(m)=~0o0g(m). But § is monomorphism, therefore f o« = g. Thus M
is A-projective.

Proposition 1.14. Let M, A and B be modules such that A is projective. Let f : A — M be an epimorphism.
If for any homomorphism ¢g : A — B, there exists a homomorphism h : M — B such that ho f = g, then M is
s.p-B-projective.

Proof . Let 6 : B € N be an epimorphism such that S(N) =0 and a : M — N be a homomorphism. Now look the
following graph:

N
fh
=

«
Q
R
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\
\
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\
\
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Q

Z
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Since A is projective, there exists a homomorphism g : A — B, such that § o ¢ = a o f. By assumption, there
exists a homomorphism h : M — B, such that ho f = g, implies that foho f =f0og=ao f. O

Now, let € M, then (6 o h)(z) = O(h(z)) = 0(h(f(y))), where z = f(y), for some y € A. Hence (§ o h)(x) =
(Bohof)y)=(00oh)(f(y)=(00g9)(y) =a(fly) =alx) = 0och =« Thus M is s.p-B-projective module.

Proposition 1.15. Let M and B be modules. if M is s.p-B-projective, then any epimorphism f : B — M with ker f
is s.p-closed of B is split.

Proof . Suppose that M is a s.p-B-projective module and f : B — M be an epimorphism such that ker f is s.p-closed
submodule of B. Look the following graph:

where [ is the identity map. Then by th. there exists a homomorphism g : M — B s.t. fog= 1. Hence f has a
right inverse. Thus f is split by [§]. Then <g of B. O

Proposition 1.16. Let M be a module. Then the following statements are equivalent:

1. M is s.p- projective module.

2. For any epimorphism 6 : A — B such that S(B) = 0, the homomorphism Hom(I,0) : Hom(M,A) —
Hom(M, B) is an epimorphism.

3. For every epimorphism « : L — K such that S(K) =0, « o Hom(M,L) = Hom(M, K).

Proof. 1= 2) Let 6 : A — B be an epimorphism such that S(B) = 0 and g € Hom(M, B). Since M is s.p- projective,
then there exists a homomorphism 3 : M — A such that fo 8 =g. So Hom(I,0) o h = g, hence 3 € Hom(M, A).
Thus Hom(I, ) is an epimorphism.

2 = 3) Let o : L — K be an epimorphism such that S(K) = 0. By (2) Hom([,0) : Hom(M,L) - Hom(M, K)
is an epimorphism. Now we want to show that a0 Hom(M,L) = Hom(M,K). Let ( € Hom(M, K), then there
exists 8 € Hom(M, L) s.t. Hom(I,«) o 8 = (. Implies that « o 8 = {. Thus ¢ € a o Hom(M, L), so Hom(M, L) <
ao Hom(M, K). Clearly a o Hom(M,K) < Hom(M, L). Thus a« o Hom(M, L) = Hom(M, K).

3= 1) Let f: C — D be an epimorphism such that S(D) =0 and g : M — D be a homomorphism. Look the
following graph:

By (3), fo Hom(M,C) = Hom(M, D) and g € Hom(M, D) there exists h € Hom(M,N) s. t. foh = g and
hence f o h =g. Thus M is s.p- projective module. [J

2 Characterization and the direct summand of s.p-projective modules

Theorem 2.1. Let M = M; @ M, be a module. If My is s.p- M;- projective. Then for every s.p- closed submodule
A of M with M = M; + A, there exists a submodule K of A such that M = M; P K.

Proof . Let f: My — M;/(M; N A) be a map defined as follows. Let mgy € My, f(me2) = x + (M1 N A), where
me =z +y,x € M; and y € A.

Claim that f is well defined, to show that. Let mg = m), where mg = x +y and mf, = x1 + y1,x, 21 € M; and
y,y1 € A, then x + y =21 + y1. So x—x1 = y1—y € (M1 N A).
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Therefore (x — 1) € (M1 N A), then (z —x1) + (M1 N A) = My N A. Hence x + (M1 NA) =21+ (M; N A). Then
f(ma) = f(m}). Thus f is well defined. By the second isomorphism theorem, M/A = (My + A)/A = M, /(M1 N A).

Let g : My /(M1 N A) — M/A be the isomorphism defined by g(mq + (M1 N A)) = mq + A. Now look the following
graph:

where 7 and 71 are the natural epimorphisms and ¢ and j are the inclusion maps. Since A is s.p-closed submodule
of M, S(M/A) = 0. But M/A = M,;/(M; N A), so S(M;/(M; N A)) = 0. Since My is s.p-M;-projective, there
exists h : My — M such that moh = f. Since (i o h + j)(M3) = i o h(Ms) + j(Ms) = h(Ms) + M;. Now, we have
M = Ml + M2 = M1 + h(MQ) + M2 = M1 + (Z oh +])<M2) Let z € M1 N (Z oh +])(M2), T =10 h(y)*](y),
for some y € Ms. So, x = h(y)-y. Thus h(y)-x =y € My N My = 0 and h(y)-x = y = 0. Hence, x = 0. Thus
M = My @(io h-j)(Mo).

We claim that (i o h—j)(M3) < A, to show that let z € My, then z = z +y, where z € M; and y € A. So
(h(z)=2) + A =mi((ioh—j)(2))
= 040 h(z)-m oj(z)
=gomoh(z)-m oj(z)
=go f(z)-moj(z)
= 9o+ (M 1 A)) — 7 0 §(2)
=(x+A)—(z2+A4)
=r—2+A
=—y+A
=A

Hence, h(z)—z € A, for every z € My. Thus (ioh — j)(M3) < A. O
Proposition 2.2. Every direct summand of s.p- projective module is s.p-projective.

Proof . Let M = M; & M, is s.p- projective. Let a : A — L be an epimorphism and let { : M; — B be a
homomorphism such that S(L) = 0. Look the following graph:

]
M=MPM, S M,

h / €

where j is the inclusion map and P is the projection map. Since M is s.p-projective, then there exists a homomorphism
h:M— Ast. aoh=CoP. Let (=hoj: M, — A.
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Now fog=fohoj=00oPoj=60o0l=4¢. Thus M; is s.p-projective. [J

Proposition 2.3. Let M =
module.

ser Mi be a module. If M; is s.p-projective for each ¢ € I, then M is s.p- projective

Proof . Let § : C — D be an epimorphism such that S(D) = 0 and f : M — D be a homomorphism. Look the
following graph:

P;
ME———=M
Ji
h; /,"‘ f
g
"
A B 0
0

where J; are the inclusions maps and P; an the projections maps .Since M; is s.p- projective, then Vi € I, there exists
a homomorphism h; : M; — A such that 0o h; = f o J,.

Define g : M — A by g((m;)ieI)=>"
show that, let (m;);e;r € M =P

ser hi(m;). Clearly that g is a homomorphism. Claim that # o g = f. To

ser Mi, then

00 g((mi)ier) = 9(; hi(ms))
- ga o hi(m;)
= Zz;f o Ji(m;)
- fe(; Ji(my))

= f((mi)ier)-
Thus fog= f. O

Proposition 2.4. Let M be s.p- projective module and L be s.p- closed submodule of M. If M/L is isomorphic to
a direct summand B of M, then L is a direct summand of M.

Proof . Let m : M — M/L be the natural epimorphism and 5 : M/L — B be an isomorphism. Let 8 = wof : M — B.
Clearly that f is an epimorphism and ker h = L. Then by Proposition B is s.p-projective and hence by prop.
L.15) h is split. Thus ker h =L <g M. [J

Let L be a submodule of a module M. L is called a fully invariant submodule of M if f(L) < L, for every
homomorphism f: M — M, see [§].

Corollary 2.5. If M = A B is s.p- projective module, then A is s.p-B-projective and B is s.p-A-projective.

A module M is called have the (SIP) if the intersection of every two direct summands of M is a direct summand
of M, see [I1]. A module M is called duo module if every submodule of M is fully invariant, see [10].

Proposition 2.6. If a module M is duo, s.p- projective and has the SIP. Then for any two direct summands C' and
D of M, C' + D is s.p-projective module.
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Proof . Let C and D be any direct summands of M, then C' N D is a direct summand of M. Let M = (C'N
D)@ Z, for some Z < M. Then C = (CND)P(CNZ),D = (CnD)P(DnN Z), by modular law. Therefore
C+D=[(CnD)PICND]+[(CND)YP(DNZ) =[(CNnDYP(CNZ)]+ (DN Z). Since M is duo module,
then [([CND)PICNDN(DNZ)=({(CND)N(DNZ)PU(CNZ)N(DNZ)) =0, by [3. Hence C + D =
CND)YPICNZ)P(DNZ). Since M has SIP, CND,CNZ and DN Z are direct summands of M. By prop.
CND,CNZ and DN Z are s.p- projective. Thus C + D is s.p-projective module, by prop. O

Proposition 2.7. Let X and X; be a submodules of a module M such that X is a direct summand of M. If X 4+ X,
is s.p-projective, then (X + X7)/X; is s.p-projective.

Proof . Let M = X; € Z, for some submodule Z of M. Hence X + X; = X1 (X + X1) N Z, by modular law. Since
X + X is s.p-projective, ((X + X1) N Z) is s.p-projective, by Proposition But (X +X1)/X1 2 (X +X1)NZ,
therefore (X 4+ X;)/X; is s.p- projective. [J

Proposition 2.8. Let X and Y be submodules of a module M s.t. Y is a direct summand of M. If X + Y is
s.p-projective module and X NY is s.p-closed of M, then X NY is a direct summand of X.

Proof . Let 7 : X — X/(X NY) is the natural epimorphisms. Since (X +7Y)/Y = X/(X NY), by the second
isomorphism theorem and Y is a summand of M, then M =Y @ Z for a submodule Z of N. So X +Y =Y @P((X +
Y) N Z), by modular law. Since X + Y is s.p-projective, (X +Y) N Z is s.p-projective, by Proposition Hence
(X +Y)/Y is s.p-projective and so X/(X NY) is s.p-projective. Since X NY is s.p-closed of M, S(M/(X NY))=0.
Hence S(X/(X NY)) =0, by [7]. Thus X NY is s.p- closed of X. But 7 : X — X/(X NY) is epimorphism and
kerm = X NY, therefore X NY <g X, by prop. |

Proposition 2.9. Let M be s.p-M- projective module and let A be a fully invariant submodule of M. Then M/A is
a s.p-M/A-projective module.

Proof . Let o : M/A — C be an epimorphism such that S(C) =0 and let f : M/A — C is a homomorphism. Look
the following graph:

M M/A

1;’/
M M/A s cC 0

where 7 is the natural epimorphisms. Since M is s.p-projective, therefore there exists a homomorphism h: M — M,
such that comoh = fom. Let g : M/A — M/A define by g(xz + A) = h(z) + A, for all z € M. Claim that g is
well defined. Let x1 + A = x5 + A, which implies that 1 — x5 € A. Since A is a fully invariant submodule, thus
h(z1 — 22) € h(A) < A. Hence h(z1) + A = h(x2) + A. Clearly that g is a homomorphism. Now a o g(m; + A) =
aomoh(my)=fomr(my)= f(my+ A). Thus M/A is s.p-M/A-projective module. [J

Proposition 2.10. Let M and A be modules. If M is s.p- A- projective and every quotient of A is M-injective, then
any submodule K of M is s.p-A-projective.

Proof . Suppose that 5 : A — C be an epimorphism s.t. S(C) = 0. Let f : K — B be a homomorphism. Look
the following graph. Since B is M-injective, there exists a homomorphism g : M — B s.t. goi = f. But M is
s.p-A-projective, so there exists a homomorphism v : M — A st. Soy = g. Define 0 = yoi: K — A, now let
z€K,(Bo0)(x)=(Bovyoi)(z)=(goi)(z) =g(x). Thus K is s.p-A-projective. []
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