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Abstract

In the present paper, we give the modifications of a—Bernstein-Paltianea operators with better approximation prop-
erties. We present three modifications of these operators having linear, quadratic and cubic order of approximation
whereas the classical operators are of linear order. By increasing the order of approximation of these operators, the
speed of the convergence will be increased. We establish some approximation results concerning the rate of conver-
gence, error estimation and Voronovskaja type formulas for the new modifications. Also, we verify our analytical
results with the help of MAPLE algorithms.
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1 Introduction

S. N. Bernstein [I1] established Weierstrass’ approximation theorem by adopting a probabilistic technique, which
he defined for g € B[0, 1], where B[0,1] denotes the space of all bounded functions on [0, 1], as:

B (g;x) = g:opn,j ()9 (i) :

where p, j(z) = (?) 27(1 — 2)"7J. These operators have slow rate of convergence, in order to make it more attractive,
from the computational point of view, several modifications and improvements have been investigated by many authors
(see [, 12], 19 26] 29, B1]). In [13], Chen et al. gave generalization of Bernstein operators depending upon a real
parameter «, where 0 < o < 1 as:

Ta(giz) = ;Z_L:Opi,j(x)g (i) ; (1.1)
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pe (@) = K” ; 2>:v(1 —a)+ (? ;) (1-2)(1—a)+ (?) az(1 - x)] 21— )" > 2,
For a = 1, reduce to original Bernstein operators. These operators have certain elementary properties, which
give significant contribution in uniform convergence of functions without depending on the parameter «. Similarly,
Ansari and Usta [10] generalized the Szdsz-Mirakyan operators with parameter a.

Since positive linear summation operators are useful for the convergence of only continuous functions, therefore, in
1967, Durrmeyer [I5] modified the Bernstein operators to approximate Lebesgue integrable functions on [0, 1]. Due to
its usefulness, the Durrmeyer variant of Bernstein operators attracted attention of several authors (see [2] [3] [7], T4} T8,
211, 27]). Acar et al. [I] defined the Durrmeyer vaiant for the mobile interval of [0, 1] and presented its local and global
approximation properties. Gal and Gupta [I6] defined the Durrmeyer operators to approximate analytic functions.
Recently, Kajla and Acar [22] introduced the Durrmeyer modification of the summation operators and studied
the rate of convergence and some approximation properties. Paltdnea [30] generalized the Durrmeyer type operators
with the help of a parameter p > 0. Ansari et al. [8] studied the approximation and error estimation properties by
modified Péltanea operators for Gould-Hopper polynomials. From the applications of parametric generalizations many
other researchers have worked on this basis function (see [0 @, 28]). Most recently, Kajla and Goyal [24] modified
these Durrmeyer operators by using Paltanea basis function in an integral depending on a parameter p > 0, as:

@ (w) =3 p2, (@) / 12 (Dg(t)dt, (1.2)
=0 0

where

t7P(1 — t)(n=i)p
B(jp+1,(n—j)p+1)

uﬁ,j(t) =

and B(i,7) is beta function. They have studied the approximation properties, asymptotic behavior and the order of
convergence of these operators.

Here, our main motive is to improve approximation behavior and order of convergence for the operators .
In [25], Khosravian-Arab et al. modified the well known Bernstein operators by using a new technique to improve
their degree of approximation. Following this, Acu et al. [6] have applied this approach on the Bernstein-Durrmeyer
operators. In another paper [20], same authors have put it on the Bernstein-Kantorovich operators too. Similarly, Kajla
and Acar [23] have modified the a—Bernstein summation operators. The inspiration of getting better approximation
results for positive linear operators leads us to modify the a—Bernstein-Paltanea operators which are defined in
. In the present paper, we apply an approach to represent the modifications of these operators which give better
convergence than the classical one.

Our work is organized as follows: In section 2, we define a—Bernstein-Paltanea operators of first order. In section
3 and 4, we introduce a—Bernstein-Paltanea operators of second and third order respectively which possess better
order of approximation than the operators . In section 5, we verify the theoretical results obtained in section 2-4
numerically using Maple algorithms.

Throughout this paper, we denote Jﬁ:f)(g; x), i =1,2,3 as three modifications of ith order of approximation.

2 a—Bernstein-Paltanea operators of first order
In the present section, we define a—Bernstein-Paltanea operators of first order as:

n

Plgz) = 3 i) / W2 (Dg(tydt, € [0,1] (2.1)

§=0
where PZ;(@ = a(z,n)pyh_y;(®) +al—z,n)py_y; 1(z), 0<j<n-—1, (2.2)

where a € [0,1], p > 0 and a(z,n) = a1(n)z + ap(n), such that ag(n) and a;(n) are two unknown sequences, which
can be determined to satisfy our purposes. For ag(n) = 1 and a;(n) = —1, (2.1)) reduces to the operators ([1.2]).
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Now, we compute some preliminary results which will be useful to study the uniform convergence and asymptotic
results. For this we assume e, = 2%,k =0,1,2,--- .

Lemma 2.1. For the operators (2.1)), we have:

Tobeoi) = (2ao(n) +ar(m);

Tiplera) = Qaoln) +ar(m)e+ = [(1=20){ao(n)(p +2) + ar(n) o+ 1)
1

Tiplesa) = (2a0(n) + aa(m)e + o [ {pa(3 = 52)(2a0(n) + a1 (n)

+p2(ap(n)(4 — 62) + a1 (n)(3 — 5z))} + (=622 + 2ap®2® — 2ap®x + 2)(2ag(n) + a1 (n))
+ p(p+ 3 — 62)ag(n) + p(2pz* — 62 — 2pz + p + 3)ai (n)] .

Throughout the paper, we denote ¢ (t) = (t — )", k =1,2,3,--- .
Lemma 2.2. For the operators (2.1)), we have the central moments as:

1 1

Top(@a(t)iz) = np 2 [(1 = 22)(ao(n)(p +2) + ar(n)(p+ 1))};
Top(2(t);z) = : [z(1 = 2)p(1 + p)(2a0(n) + ax(n))n

(np +2)(np +3)
—z(1 — ) (4ap(n)(3 + 3p + ap®) + 2a1(n) (3 + 6p + p*(1 + )))
+ag(n)(4 +3p + p*) + a1 (n)(2+ 3p + p?)] ;

1

L4448y ) — 2 222(1 — 2)?(2a0(n) + a1 (n))n? 1
Tup(Sz(t)i) = (np+2)(np+3)(np +4)(np+5) [37°(L+ p)"a (L = @) 2a0(n) + a1(w)) ]+O<"3>.

To obtain uniform convergence of the operators (2.1]), throughout this paper, the sequences a;(n), ¢ = 0,1 will
satisfy the condition:

2a9(n) + a1(n) = 1. (2.3)

Depending on the choices of the sequences, we get two cases which are given by:
Case 1. Let

ap(n) >0 and ap(n)+ ai(n) > 0. (2.4)

From this, we get 0 < ap(n) <1 and —1 < a;(n) < 1. So, both sequences are bounded. Also, the operators (2.1))
are positive for this case.
Case 2. Let

ap(n) <0 or ap(n)+ai(n)<O0. (2.5)

If ag(n) < 0, then ag(n) + a1(n) > 1 and if ag(n) + a1(n) < 0, then ag(n) > 1. In this case the operators (2.1)) are
not positive.
Firstly, we prove the basic convergence and asymptotic results for case 1.

Theorem 1. Let g € C[0,1]. If ag(n), a1 (n) satisfy both the equations (2.3) and (2.4)), then

lim J ) (g:2) = g(x),

n—oo

uniformly on [0,1].

Proof . From the conditions on a;(n),i = 0,1 the operators (2.1)) are positive. So, by Korovkin theorem and Lemma
23] we can find the uniform convergence of the operators. [J
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Theorem 2. Let a;(n),i = 0,1 are convergent sequences satisfying the conditions 1)1] and [; = lim a;(n). If
n—oo

g" € C[0,1], then:

(1 —2z)((p+2)lo+ (p+ 1) ,

. AN _
lim (3 (g52) - g(a)) p g'(x) + %

x(l B I)(l + p)(QZO + ll)g”(l‘),

uniformly on [0,1].
Proof . By the Taylor’s formula, we have:
1
9(t) = g(z) + 6,(1)9' (2) + 56 (£)g" (2) + O(t, 2)¢5; (1).

where O(t, z) € C[0, 1] with }gn O(t,z) = 0. Apply the operators Jg:},(., x) on Taylor’s formula, we get:

n(Jy o (g;0) — g(x)) = ndyp (04(8); )9 (x) + 5 Ty (@2(1); 2)g" () + nJy (O (t, ) (t); ).

n
2

Using Cauchy-Schwarz inequality on the last term of the above equation, we obtain

IOt )62 (1); 2) < ny [ TeH©2(t, 2); )\ Th (940 ). (2.6)

Since ©2%(z,r) = 0, ©%(¢,x) € C[0, 1] and Ja)’;(g;x) — g(z), we have nh_)ngo Jﬁ:;(@z(t,x);x) = 0 uniformly on [0,1].

n

Hence, from Lemma the above inequality (2.6]) reduces to

lim nﬁ:i(@(t,x)qﬁi(t);x) =0,

n—oo

which gives the required result. [

Now, we study the convergence and asymptotic results for the case 2.

Theorem 3. Let g € C[0,1] and a;(n),i = 0,1 be convergent sequences which satisfy the conditions (2.3) and (2.5]).
Then:
lim Jy) (g5 %) = g(),

n—oo

uniformly on [0,1].

Proof . We can rewrite the operators (2.1)) as:

Top(giw) = Koy (g:0) = Ly (g: @) (2.7)
where
Kbgin) = Ylarn) o o) +ar(n) 52, @) [t Gt
=0 0
Libos) = Ylmao(n) o1, (e)+ (@ (n)e = aom)) b2 [ ol 0gt0)ar

<.
Il
=)

As both the operators i.e. Ka"l)(g; x) and L%:},(g; x) are positive, so we can apply extended Korovkin theorem ([25],

n)
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see page 122) on it. The moments of these operators are given below:

Ky (eosx) = ay(n)(1+ );
Kplens) = mm+a) [ 2, sl
st = o [ (4 S ) -
al(n) 2 2
9+ 2)(np +3) [20%(n — 1)z + p* + 3p],
Lg:;(eo;x) = aj(n)x — 2ap(n);
Lyplersz) = (ar(n)z —2ao(n)) [(”n;fgw] _ aO(:;(i . 2) al(:?;(f - D,
3 (epa) = AT 20000 a0 g2 20014201 - a))e(l - @) + 3p(n— 1)z + 2]

(np+2)(np+3)
ay(n)x — ap(n)

np 1 2)np + 3) 27 (M7 Dt 430l

Since aq(n) is convergent, lim aq(n) = Il1(say), we obtain
n— oo

lim Kﬁ:;(g; x) =11 (1 + )g(x) uniformly on [0, 1],

n—oo

lim L% (g;x) = [l1(1 4 2) — 1]g(z) uniformly on [0, 1].

n—oo 0P
By using both the above limits and equation ([2.7)), we get the required result. [

Theorem 4. Let a;(n),i = 0,1 are convergent sequences satisfying the conditions 1 , || and [; = lim a;(n). If
n—r oo

g" € C[0,1], then:

(1= 20)((p+ Dl + (p+ VI

Jim (3 (g52) — g(2)) = P g'(x) + %

uniformly on [0,1].

Proof .Similar to the proof of Theorem [2| it is enough to prove that:

lim nJﬁ:é(@(t,x)gbi(t);x) =0.

n—oo
We can rewrite operators (2.1]) in the following way:

1

n—1 1
Lgiz) = > o (2) [alz,n - a(l—z,n r . .
o) = S >( o) [ st Ootoir +at o) | un,J+1(t)g(t)dt> (2.8)

For € > 0, there exists delta > 0 such that |t — x| < §, then |O(¢,z)| < €. Divide the interval [0, 1] into two parts
as below:

I =(x—94,z+6)N[0,1], I, =10,1]\ (x =,z + 9).
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Since a;(n),i = 0,1 are convergent, so are bounded. Thus, there exists C' > 0 such that |a(x,n)| < C. Now,

1

nl 5 (Ot 2) ¢ (1) )]

n, T

IN

n—1 i
ncjgopz,l,ju) ( / W2 (816t 2|62 ()t + / un,j+l<t>@<t,x>|¢m<t>dt)

< ncgpzl,j<x> ([ sz [ i awson)
ﬂ% (/1 5 (003 (t)dt + /I ui’l}jﬂ(twi(t)dt)] . where M = sup [8(t,)|
"fcgpg—l,j(x) {/01 Hﬁ,j(t)¢i(t)dt+/o
+%§pi_1d($) [/Oluﬁ,j(t)¢i(t)dt+/o

< eCi(z,p,a) + 0O (i) .

1

IN

uz,ﬁl(twi(t)dt}

1
b 000t

Thus, from the last inequality, we get the proof. [

Theorem 5. Let g be bounded for x € [0,1], ap(n) is a bounded sequence and a;(n),i = 0,1 satisfy the condition

(2.3) then

1
280~ gl < (4 Slaa()Caw (65 ).

where [|.|| is the uniform norm over [0, 1], w(g; o) is the first order modulus of continuity and C5 > 0 is a constant.

Proof . From the definition of our operators (2.8)) and using relation w(g; A\o) < (1 4+ A) w(g; o) for A > 0, (by taking
A=ynl|t—z|,c= ﬁ), we get

n—1

[ Joon(giz) — g(a)] < Ia(fcvn)\Zpi_l,j(m)/ i, i (B)]g(t) — g(x)|dt
§=0 0

n—1 1
Ha( = 2| 3 pay(e) [l @lo(t) - gla)i
=0 0
n—1 1
< ol Y- w0, (0) [ u 0wl ko)
3=0 0
n—1 1
Ha(l = 20)| 395 15(0) [ a0 las L0
=0 0
<

1 n—1 . 1 , )
|a<x,n>w(g,ﬁ) SR WIRNE | st sonssioia

1 n—1 1
+|a<1—x,n>|w(g; ) LS g (@) / W (DL ()]t
§=0

7

Now, by using Holder’s inequality, we get

n—1 n—1 1
ITEVC] I D TN RTRCELH

j=0 =0

2

IN

n—1 1
S piy, (@) / W2 (D]6L (1))t
=0 0

B n(—p?x? — px? + p? + 3pz) + (622 + 6pa? + p’x — 3px + 2)
(np+2)(np+3) '
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Therefore,

n—1

Vi S B, @) / Wl (1)L (1)t < % <o (2.9)

j=0
Similarly,

Cov/m

< Cs. 2.10
np+2 - 2 ( )

n—1 1
NN / W (DO (0)]dE <
=0

Using the inequalities (2.9) and (2.10]), we get the following relation:

Ygiz)— gz w L a(xz,n 1 a(l —x,n 5)] . .
| Jaip(g32) — g(@)] < (g, \/ﬁ> lla(z,n)|(1+ C1) + |a(l — z,n)[(1 + C2)] (2.11)

From equation ([2.3), we find
la(z,n)| = |a1(n)x + ag(n)| <1+ 3|ag(n)| and |a(l —x,n)| <1+ 3|ag(n)|.
Now, using these inequalities and equation (2.11]), our proof is completed. O

1
Corollary 2.3. (i) If we assume g € C]0,1] in Theorem then lim w (g; ) = 0, which gives another proof of

n— oo \/’ﬁ
the Theorems [I] and
(ii) If g € Lipas(7) on [0, 1], then result obtained in Theorem [5| reduces to:

[ Tap(g52) = g()| < M.Cy (1 +3lag(n)])n7/2,
where C3 is same constant as in Theorem

Now, we find the errors in respect of modulus of continuity in asymptotic formula for our operators (2.1)) for which

Jﬁ:;(ei; x) = e;,t =0, 1. Thus, we have the conditions:

2ap(n) +a1(n) =1,a0(n)(p+2) + a1(n)(p+1) = 0.

_pF2
p

1
By solving these equations, we get ag(n) = P and aj(n) =

Theorem 6. Let g € C?[0,1],x € [0,1] is fixed. Then

Feb(g:) — 9(a) — S FM(@ 0 2)" (0) <

where C' > 0 is a constant restrained from n, x.
Proof . For g € C?[0,1]. By using the Taylor’s formula and apply Jﬁfl,(, x), we get:

Fbe50) — 9(x) — M@0 20" ()] = ST, 263 (1); )]

where O(t,z) = ¢" (&) — ¢”(x) and &, lies between ¢ and z. From modulus of continuity, we have:

O, 2)| = lg" (&) — ¢"(@)] < wlg": e (®)]) < (1 +Vnldp(t))w (g”; \}ﬁ) .
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1 1
Also, |a(z,n)| = |a1(n)z + ap(n)| < Pt ,and |a(l —z,n)| < i7 for x € [0,1] and using the operators l)
p
we obtain:
+1 1
Jz’l O(t,x ¢92c t)x) < Lw <g";> Ji + vnds), 2.12
p@ )t 05| < P (57 ) ) (212)
where

PR [ / (062 ()t + / 1 uz,j+1<t>¢§<t>dt]
7=0

1
— _22 2_2 2 22 4
P ET ) [n(—2p%x pr” + 2p°x + 4px)
+2)%(n +2)
b (1222 + 1200 — 1292 + 9% + 3p + 4 — dapiz(l — 2))] < .
( p pz + p* +3p p2a( ))}7(np+2)(np+3)

1

n—1 1
o= X [ | setoeoa [ uz,j+1<t>|¢;<t>|¢i<t>dt]

1
2

IN

jz_épzl,j @[ [ w06 0a] : [ wssc0a

SIS
NI

+:§pi_1,j(z) Uol uﬁ,m(t)czﬁi(t)dt} [/01 uﬁ,jﬂ(t)qsi(t)dt}

[N

IN

n—1 1 , 2 ) 4
jzopn—l,j(x)/o i, (D)@ ()dE | < an_l’j(x)/o il (8)dh () dt

N

n—1 1 1
S / W] x| S pey (@) / W (DA (1)t
py 0 — 0

Using the results of Lemma we have:

P
Jy < ——, where P(> 0) is unrestrained from n.

nyn’

Now replacing the values of J; and Js in the relation (2.12), we can find a constant C' > 0 which is unrestrained
from n and x such that

1 1
[Tt 2)¢5 (1) 2)] < C-w (g”; \/ﬁ> : (2.13)
Hence, we get the required result. O

Now, we find error estimation of the operators Jﬁ:é (g; ) with regard to second order modulus of continuity which

gives better results that we have found in Theorem

1 2
Theorem 7. Let g € C[0,1], ap(n) = Pt yai(n) = —i, then
P p

1
L. .
1723005 — gl < Con (35 7).
Proof . From the definition of our operators (2.1), we can write:

1755911 < (lao(n)] + lax ()])]]g]].
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Let f € C?[0,1], then from Theorem [6} we obtain:

mEl @]+ S (11572

where C7 > 0 is a constant unrestrained from x and n. Using Lemma and the property of modulus of continuity
ie. w(h,d) < 2|k, we get:

N |~

[Tl (frz) — f(a)] <

Cy
T (f3) = fII < — I
where Cy > 0 is a constant unrestrained from z and n. Thus, for g € C[0, 1], we have:

1 T0(as) =gl < (g = f) = (g = DI+ 1T = Fll

Cs 1
< Gillg= £+ 2N < C {llg = AL+ =171 (214)
where C' and (3 are some positive constants unrestrained from n and x. Now keeping in mind the equivalence of
second order modulus of continuity ws(g,t) and K —functional K»(g,t?) := e 02[0 . {llg = FII+E1 ]|} ie. Ko(g,t?) <

7
iwg(g,t),() <t<1,g € C[0,1], (see [17, Corollary 2.7]) and then by taking the infimum over all f € C?[0,1] to (2.14)),
we get the required result. [

3 a—Bernstein Paltanea operators of second order

Similarly, we can define the second order modification of the operators @Qf, p(g; x) which is given by:

n

R2(gr) =3 g () / W2 (Dg(t)dt, (3.1)

§=0
where
«,2 o « [
pni(@) = alz,n)py_s ;(x) +b(z,n)ph_s ;1 (z) +a(l —z,n)py_s ;_o(z),

t7P(1 — t)(n=ip
B(jp+1,(n=5p+1)’

Nﬁ,j(t) =

and a(x,n) = az(n)x? + ai(n)x + ag(n), b(x,n) = by(n)z(1 — ). If az(n) = 1,a1(n) = —2,a¢(n) = 1 and by(n) = 2,
then we will get our original operators (|1.2)).

Lemma 3.1. For the operators , we have:
T2 (egsw) = 2(202( ) = bo(n)) + x(bo(n) — 2a2(n)) + (2a0(n) + ai(n) + az(n));
Toplersa) = ———— [n{2®(2a2(n) — bo(n))p + a*(=2az(n) + bo(n))p

+x(2ao(n) + a1(n) + az(n))p} + {2*(—4az(n) + 2bo(n))p + z*(2a2(n)(3p + 1) — bo(n)(3p + 1))
n)(3p +1) — 4pay(n) — 4pag(n) + bo(n)(p + 1))
1+2p) + a1(n)(1 + 2p) + 2a0(n)(1 + p))}];

~—~



56

(np + 2)1(np +3) [n?p?{2"(2a2(n) = bo(n)) + 2*(~2a2(n) + bo(n))

z%(2a0(n) + a1 (n) + az(n))} +n{ — %(2a(n) — bo(n))
+2°p((16p + 6)az(n) — (7p + 4)bo(n ))
+ 2 p(=3(5p + 2)az(n) — 9par (n) — 100@0( ) +3(p+ 1)bo( )

oo (ea; x)

+ap(6(p + 1)ao(n) + (3 + 5p)(a1(n) + az(n))) } + {227p*(2 + a)(2az(n) — bo(n))

—223p(2ap 4 4p + 3)(2a2(n) — bo(n))

+22 (p?(6(4 + a)as(n) + 2(6 + a)ay (n) + 4(2 + a)ag(n) — (54 2a)by(n))
0

T (9p + 2)(2as(n) — bo(n))

+a (=2(2a2(n) — bo(n)) — 3p(6az(n) + 4(a1(n) + ao(n)) — bo(n))
— P*(2(8 + @)az(n) + 2(6 + a)ar(n) + 4(2 + a)ao(n) — bo(n)))
+4p%(az(n) + a1 (n) + ag(n)) + 6p(az(n) + a1(n) + ao(n))
+2(az(n) + a1(n) + 2a0(n))}] .

Kaur, Goyal

To study the uniform convergence of these operators, we take J“jlf,(eo, x) = 1, which give the following conditions:

2a3(n) —bo(n) =0, 2ag(n)+ ai(n) + az(n) =1.

With both of these conditions, other moments reduce to:

Tiplensa) = @t =1+ 2p = 2pao(n)) = 2a(1 + 2p = 2pas (n)

s 1
(np+2)(np+3

+(1+2p)].

Jz (627 )

In order to have hm o
n—

142 n(p+1
2. () = (p+1)
2p 2p p

Qg (’I’L) =

Thus, our operators become:

Tlgia Zp /Oun,ju)g(t)dt,

where

n(p+1)
p

a2 ~ (nlp+1l) 5 (nt2)(p+1)  1+2p\
Do) = < 2 x 2 T+ 2 Pn—2,(T) +

+<n(p+1)xz (n=2(p+1) 1)17%273*2(”5)'

2p 2p 2p

Lemma 3.2. For the operators (3.2)), we get:

jﬂZ(el;m) =
T2 (eg: = z? L -1 - 2 _2ap)z(l —x
T(easz) = @ +<np+2)(np+3)[ 1—2p+ (6+8p + 4p* — 2ap?)2(1 — 2)] .

z(1—=x

] [(2a2(n)p® + 2ap® — np® — 4p* —np — 8p — 6)z(1 — z)

2(es;x) =2, =0,1,2, we choose undetermined coefficients as:

—(n+2)(p+ 1).
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Lemma 3.3. For the operators (3.2]), we get the central moments as:

1

Topl G 052) = s 21 294 (64 80+ 40— 20p%)e(1 — )]
B - S ().

T = s e O ()

T = o e o+ 157 +© ()
Toldaty) = - (np +2)(np iogj&p+ngzf}++5§zif+ 6)np+7) X <nl4> '

Theorem 8. If g € CY[0,1] and x € [0, 1], then for sufficiently large n, we have:

T22(gia) - gla) = O (1> .

n2

Proof . Applying the operators J,’ i( x) to Taylor’s formula, we get:

T (gi) = g(@) + 3 gD (@) T (Sh(t); ) + T (Ot )68 (t); 2)

where lim O(t, z) = 0. We can easily see from Lemma that it is enough to prove that 7::,2) (O(t,z)¢S(t); ) = 0..
Sz ’
Now,

2(p+1 1+2p
2p

—,2 , n(p+1)
72 O, )l ()a) < \—pra—x)

! 6
2;) (x / W2 (1) | O(t, ) | 45 (1)dt

1
0’“ (1 ) an pial / 120 | Ot a) | 65 (t)dt
1
+'”<f;:1>x<1x>+2( o) [ a0 €a) | dar

Let M = sup |O(¢, )|, then we have:
t€(0,1]

n—2 1
722 (O(t,2)d0 (1); ) | < M [”(” D 2'0} INCY RO

8p 2p =
(p+1)] ! n(p+1) 1+2p !
+ar| MY }2_) s [ 080+ or |0 ]Zp aale) [ w00
M 1 n—2 n—1 1 n 1
”(””{ oaste) [ 60 423 a1 [ 0008+ D 8, [ uz,ju)asi(t)dt]
j= 0 j=1 0 =2 0

1+2p b6 o Lo e
M an 20 | un,jum(t)dwan_Q,j_2<x> / W2 ()88 (1)t

Jj=2
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_Mn(p+1) ) 150%p°(4(1+ p)*(1 = Bx + 30%) — 2®(4+ 4p(3 + 3p(3+ p))n° ( 1 )
— :
’ H(np+k)

k=2

142 152303 ((1 4 p)3(1 — 3z + 322) — 23 (1 + p(3 + p(3 + nd  1523(1 — 2)3p3(1 4 p)3n? 1
N 2ppM P’ (14 p)’*( : ) (1+p(B8+p(3+p)))) N (7)p( p) Lo

H(np—i—k) H(np—i—k:)
oft)

k=2 k=2
Hence, the proof is completed. [J

For our comparison result, let us recall the asymptotic formula for Q5 ,(g; ) proved in [24].

Theorem 9. Let f € C[0,1]. If f” exists at a point = € [0, 1], then we have

lim n(@Q;; ,(f;2) — f(x)) = L2224y P20 =)

"

Theorem 10. Let g € C%[0,1]. If there exists an ng € N such that
—,2 -
g(z) < T, (g32) < Q% (g:7), Yn>mno, x€0,1]

then (1 —2z)¢'(z) + (1 + p)z(1 —2)g"(z) > 0, x € [0,1].

Proof . Let us consider

IN

g9(z) Tiji(g; z) < @ ,(g:2).

Then 0 < n(jai(g, z) —g(z)) <n(Qy ,(9;7) — g(x)) . From Theorems and@ we get the result. O

n

4 a—Bernstein Paltanea operators of third order

Continuing in the same way as above, we can modify operators to obtain third order approximation operators,
given as:

n 1
Tiblgio) = o) [t gt (4.1)
=0 0
where
pi(m) = a(z,n)py_y ;(7) +b(x,n)py_y ;1 () +d(z,n)py_4 ;_o(T)
+b(1 — 2, n)py_4;-3(x) +a(l —z,n)py_y ;_4(), (4.2)
and
alx,n) = a4(n)z4 + as (n):v3 + ag(n)x2 +ai(n)x + ap(n),
b(x,n) = b4(n)x4 + ba(n)z® + bg(n)at:2 + b1 (n)x + bo(n),

d(z,n) = do(n)z*(1 —x)?,
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here a;(n),b;(n),j = 0,1,---,4 and do(n) are the sequences to be determined in such that the operators (4.1)) reduce
to new operators JO‘ 3( x) (say) with third order approximation. In order to get JO‘ (e, ) = e;,i=0,1,2,3, we find
unknown sequences Whlch are given by:

- 12p% +19p% +8p + 1

0%+ 11p + 4 (29 + 5a)p? + (48 + 3a)p® + 30p + 7

woln) = 12p° ai(n) = - 12p2 63
1 17p% +2 12 41— 11 1— 1
ia(n) = L +2’)) n? g L7290 L @)p® + (71— 9)p? + 60p + 18
8p 12p 6p
5 1+ p)? 5024+ 9p+4  (3—a)pt+(T— +6p+2
(Zg(n) — 7( 5) 77,2* P 2p ni( )p ( . ) 0 ’
4p 6p D
i 1+p)? 5 1202+ Tp+ 1
a’4(n) = ( S 2p) n27b0(n):—%,
p 6p
- 2 9 16 — da)p? B -
bi(n) — (Bp% +5p+2) (16— 4a)p® + (37 — 3a)p® + To+T.
3p? 3p°
~ (1+p)?% 5, 82+14p+6 (34— 100)p° + (71 — 9a)p? + 57p + 18
bo(n) = - 2 T 2 n- 3 )
2P 3p 3,0
~ 1 2 2 4 2 . 3 _ 9 2
ba(n) — ( +2p) g2y 5P+ +4 2B a)p +(73 a)p? + 6p + )7
P 3p p
b (L+p)? 5 - 3(1+p)% ,
by(n) = — 257 " ,do(n):Tn,

Lemma 4.1. For the operators J .3 ( x), we get the following central moments:

Ted(ept)x) = JEN@L(0); ) = T (65(1); @) = 0;
Jed(gh(t)y o) = z(1—2z)p(1+ p)[11 + 27p + 12p25f z(1 — 2){2p%(6cr — 29) + 58(1 + 2p)}n o <nl4> |
[T +k)
k=2
Ja 3(¢5( ) ) _ 5(p2(]_ —x)2(2mg 1)p2(1 +p)2(5+4p)n2 o (734> |
[Tp+5)
k=2
Jedtya) = DrAoll et <nl4) ;

7
H np+ k)

Tdetie) = J3;2<¢§<t>;x>=0(,j),J,?,?wz(t);x)=Js;s<¢;°<t>;x>=0(1).

no
To prove the asymptotic order of approximation of the operators J Ny 3( g;x), we require g € C1°[0,1] in a similar

way, as in Theorem [8] which is given as follows:

Theorem 11. If g € C'°[0,1] and z € [0, 1], then for sufficiently large n, we have

. 1
Tedtaia) ~ a(0) =0 (5.
5 Numerical Results

In the present section, we give the numerical examples to validate our theoretical results and error estimation by
using maple algorithms:
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-1 1
Example 5.1. Consider g(x) = 2sin (%) + sin(2rx), n = 10,p = 5, = 0.2,a9(n) = n and a1(n) = —. The
n
comparison of convergence of the a«—Bernstein-Paltanea operators and its above modifications of orders one, two and
three to g(z) is given in Fig.

Let ES (g;7) = |g(x) — @ ,(g; )] and B3l (g;2) = |g(x) — J";L”:)(g;xﬂ, i = 1,2,3 be error function of classical
operators and its modifications respectively. The error of approximation of these operators are given in Fig.
From both the figures, we can conclude that our modified operators are converging faster than original a—Bernstein
Paltanea operators. Also, we have given error of approximation at some certain points in Table

-1 1
Example 5.2. Let us choose g(z) = zcos(2nz), p = 4,0 = 0.3,a0(n) = n2 and aj(n) = —. The behavior of
n n

a—Bernstein-Paltanea operators (5, ,(g; ) and its three modifications Jf{”f,(g; x) where i = 1,2, 3 to g(z) for n = 10,20
is given in Figs. We can observe from figures that our modifications are converging to a function as we increase

the value of n and also give better convergence than original operators.

The error of approximation of a—Bernstein Paltanea operators and its modifications of order 1,2,3 are given in
Figs. [ [6] for n = 10,20 respectively. It can be easily seen that error estimation by our modifications are less than
original a—Bernstein Paltanea operators. Also, the error of operators and its modifications at some points are given
in Tables at the values n = 10, 20 respectively.
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Table 1: Error of Approximation E‘ﬁyp

and EX¢

>t =1,2,3,n=10,p =5, =0.2

v | EV(gr) | BV (gw) | ENs(gz) | Elgs(g;n)
0.1 | 0.0465927917 | 0.2020191714 | 0.0090258508 | 0.0410711480
0.2 | 0.292607380 | 0.189033401 | 0.105857578 | 0.020163736
0.3 | 0.394424647 | 0.373376025 | 0.175570300 | 0.018015963
0.4 | 0.294804927 | 0.301231010 | 0.137423387 | 0.025812675
0.5 | 0.053236320 | 0.053236321 | 0.014926178 | 0.000239280
0.6 | 0.196044423 | 0.208534327 | 0.109839626 | 0.025493047
0.7 | 0.3182317026 | 0.3213021846 | 0.1544639662 | 0.0180914623
0.8 | 0.2521506342 | 0.2023484272 | 0.0944769302 | 0.0196894250
0.9 | 0.052294816 | 0.102854286 | 0.008980412 | 0.040540562

Table 2: Error of Approximation ER and ESZ,@ =1,2,3,n=10,p=4,aa=0.3

x| E%(g;x) By (g;x) Evyi(g; ) Elgy (g:)
0.1 | 0.05755638690 | 0.07198182417 | 0.00593343135 | 0.02211119337
0.2 | 0.1058403144 0.1347020007 | 0.05618431396 | 0.00086323684
0.3 | 0.05131069544 | 0.07328503894 | 0.05274231364 | 0.01900023794
0.4 | 0.0916546188 0.0844657778 0.0166755487 0.0079394543
0.5 | 0.2366464156 0.2366464156 0.1013426174 0.0193312761
0.6 0.2827508318 0.2698804172 0.1314792584 0.0277669661
0.7 | 0.1851049397 0.1344774017 0.0765221240 0.0019799015
0.8 0.0010362418 0.1078472481 0.0202148003 0.0324610925
0.9 | 0.1316309131 0.2930201701 0.0579303733 0.0309826354

6 Conclusion

Kaur, Goyal

As the rate of convergence of a—Bernstein-Durrmeyer operators by using Paltanea basis function is slow, so we
have improved the rate of convergence of these operators by introducing three modifications which have better order
of approximation. Moreover the convergence of these operators is independent of parameters involved in it. In order
to validate our theoretical results, we have presented some numerical examples and their graphics by using MAPLE
algorithms. With the similar procedure, we can also get higher order of approximation of these positive linear operators.
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Table 3: Error of Approximation ES and Es:;,i =1,2,3,n=20,p=4,aa=0.3

x| E%(g;x) Eyi (g:) Eyi (g:7) By (g:7)
0.1 | 0.02861514285 | 0.02978527157 | 0.00135692531 | 0.00493671473
0.2 | 0.06515132595 | 0.08083293178 | 0.01810232856 | 0.00184414784
0.3 | 0.04171602804 | 0.05754420964 | 0.02246595754 | 0.00339046874
0.4 | 0.0423780236 0.0356126371 0.0005113770 0.0023993240
0.5 | 0.1336280335 0.1336280335 0.0330134666 0.003147654
0.6 | 0.1637928626 0.1572063097 0.0448962830 0.0048952830
0.7 | 0.1024392756 0.0721778840 0.0230362411 0.0006129461
0.8 0.0113308695 0.0741312889 0.0121952799 0.0062328086
0.9 | 0.0822517165 0.1657103520 0.0201291953 0.0033482141
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