
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,413 |
Some best proximity point results for generalized cyclic contraction mappings | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 13، دوره 14، شماره 8، آبان 2023، صفحه 129-135 اصل مقاله (366.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.24597.3033 | ||
نویسندگان | ||
Thounaojam Stephen1؛ Rohen Yumnam1؛ Huseyin Işık* 2؛ Laishram Shanjit1 | ||
1Department of Mathematics, National Institute of Technology Manipur, Langol 795004, India | ||
2Department of Engineering Science, Bandırma Onyedi Eylul University, Bandırma 10200, Balıkesir, Turkey | ||
تاریخ دریافت: 14 آذر 1400، تاریخ بازنگری: 24 بهمن 1401، تاریخ پذیرش: 04 اسفند 1401 | ||
چکیده | ||
In this study, we establish some best proximity point results for generalized cyclic contraction mappings in partially ordered metric spaces. We also prove some best proximity point theorems by introducing the $T$-restriction property and generalized pointwise cyclic contraction mapping. Some illustrations are provided to support our results. | ||
کلیدواژهها | ||
Best proximity point؛ ordered metric space؛ semi-sharp proximal pair؛ generalized pointwise cyclic contraction | ||
مراجع | ||
[1] A. Abkar and M. Gabeleh, Best proximity point for cyclic mappings in ordered metric spaces, J. Optim. Theo. Appl. 151 (2011), 418–424. [2] M.A. Al-Thafai and N. Shahzad, Convergence and existence for best proximity points, Nonlinear Anal. 70 (2009), 3665–3671. [3] M.J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), 2942–2948. [4] A.A. Eldred, W.A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mapping, Studia Math. 171 (2005), 283—293. [5] A.A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001–1006. [6] R. Espinola, A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc. 136 (2008), 1987–1995. [7] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. [8] M. Gabeleh and G.S.R. Kosuru, Some remarks on convergence of best proximity points and semi-cyclic contractions, Rend. Circ. Mat. Palermo, II. Ser, doi:org/10.1007/s12215-022-00809-9. [9] E. Karapinar, Best proximity points of cyclic mappings, Appl. Math. Lett. 25 (2012), 1761–1766. [10] E. Karapinar, P. Agarwal, S. S. Yesilkaya and C. Wang, Fixed point results for Meir-Keeler type contractions in partial metric spaces: A survey, Mathematics 10 (2022), 1–76. [11] G.S.R. Kosuru and P. Veeramani, A note on existence and convergence of best proximity points for pointwise cyclic contractions, Num. Funct. Anal. Optim. 32 (2013), 821–830. [12] J.J. Nieto and R. Rodrıguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239. [13] M. Rossafi and Abdelkarim Kari, Fixed point for weakly contractive mappings in rectangular b-metric space, Int. J. Nonlinear Anal. Appl. 14 (2022), 763—783. [14] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009), 2918–2926. | ||
آمار تعداد مشاهده مقاله: 16,466 تعداد دریافت فایل اصل مقاله: 240 |