
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,725 |
تعداد دریافت فایل اصل مقاله | 7,656,155 |
Complexity analysis of interior-point methods yielding the best known iteration bound for semidefinite optimization | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 27، دوره 14، شماره 5، مرداد 2023، صفحه 287-301 اصل مقاله (444.04 K) | ||
نوع مقاله: Review articles | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29339.4132 | ||
نویسندگان | ||
Derbal Louiza1؛ Kebbiche Zakia1؛ Bouafia Mousaab* 2 | ||
1LMFN, Fundamental and Numerical Mathematics Laboratory, Department of Mathematics, Faculty of Science, Ferhat Abbas University, Setif, Algeria | ||
2LMAH, FR-CNRS-3335, ISCN, 7600 Le Havre, France, University of 8 May 1945 Guelma. BP 401, 24000 Guelma, Algeria | ||
تاریخ دریافت: 26 آذر 1401، تاریخ بازنگری: 01 اسفند 1401، تاریخ پذیرش: 03 اسفند 1401 | ||
چکیده | ||
The purpose of this paper is to obtain new complexity results for solving the semidefinite optimization (SDO) problem. We define a new proximity function for the SDO by a new kernel function with an efficient logarithmic barrier term. Furthermore, we formulate an algorithm for the large and small-update primal-dual interior-point method (IPM) for the SDO. It is shown that the best result of iteration bounds for large-update methods and small-update methods can be achieved, namely $\mathcal{O}\left(qn^{\frac{q+1}{2q}}\log \frac{n}{\epsilon }\right) $\ for large-update and $\mathcal{O}(q^{2}\sqrt{n}\log \frac{n}{\epsilon })$ for small-update methods, where $q>1.$ The analysis in this paper is new and different from the one using for LO. Several new tools and techniques are derived in this paper. Furthermore, numerical tests to investigate the behavior of the algorithm so as to be compared with other approaches. | ||
کلیدواژهها | ||
Kernel function؛ Proximity function؛ Semidefinite optimization؛ Complexity analysis؛ Primal-dual interior-point methods | ||
مراجع | ||
[1] M. Achache and N.Tabchouche, Complexity analysis and numerical implementation of large-update interior-point methods for SDLCP based on a new parametric barrier kernel function, Optimization 67 (2018), no. 8, 1–20. [2] Y.Q. Bai, M. El Ghami and C. Roos, A primal-dual interior-point method for linear optimization based on a new proximity function, Optim. Meth. Software 17 (2002), no. 6, 985–1008. | ||
آمار تعداد مشاهده مقاله: 16,420 تعداد دریافت فایل اصل مقاله: 276 |