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Abstract

In this paper, we introduce some differential subordinations and superordinations results for a subclass of analytic
univalent functions in the open unit disk U using the Darus-Faisal operator Gm

λ (σ, δ, τ). Also, we study some sandwich
theorems.
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1 Introduction

Let B = B(U) the class of all functions that are analytic in U , where U = {z ∈ C : |z| < 1} is the open unit disk.
Let B[a, n] be a subclass of the functions f ∈ B, which is given by

f(z) = a+ anz
n + an+1z

n+1 + ..., (a ∈ C).

We also assume A ⊂ B, where A is said to be subclass of analytic and univalent functions in U , of the form:

f(z) = z +

∞∑
n=2

anz
n, (z ∈ U). (1.1)

Now, we suppose that f and g ∈ A, so that the function f is said to be subordinate to function g, or the function g
is said to be superordinate to f , if there exists a Schwarz function w such that f(z) = g(w(z)), where w(z) is analytic
function in U with w(0) = 0 and |w(z)| < 1, z ∈ U , then one can say that f ≺ g or f(z) ≺ g(z)(z ∈ U) [13]. In
addition, if g is univalent in U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U) [13, 17, 18].

Definition 1.1. [17] Let ∅ : C3×U −→ C and let h(z) be univalent in U . If p(z) is analytic function in U and fulfills
the second-order differential subordination:

∅(p(z), zp′(z), z2p′′(z); z) ≺ h(z) (1.2)
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then p(z) is said to be a solution of the differential subordination (1.2), and the univalent function q(z) say it a
dominant of the solution of the differential subordination (1.2), or more simply dominant, if p(z) ≺ q(z) for each p(z)
satisfying (1.2). A dominant function q̃(z) that satisfies q̃(z) ≺ q(z) for each dominant q(z) of (1.2) is called the best
dominant of (1.2).

Definition 1.2. [18] Let p, h ∈ A and ∅(r, s, t; z) : C3 × U → C. If p and ∅(p(z), zp′(z), z2p′′(z); z) are univalent
functions in U and if p satisfies the second-order differential subordination:

h(z) ≺ ∅(p(z), zp′(z), z2p′′(z); z) (1.3)

then p is said to be a differential superordination solution, (1.3). An analytic function q(z), which is known a subordinat
of the solutions of the differential superordination (1.3), or more simply a subordinant if p ≺ q for each the functions
p satisfying (1.3). If q̃ is univalent subordinant and that satisfy q ≺ q̃ for each the subordinats q of (1.3), then is the
best subordinat.

Many authors [1, 2, 3, 10, 17, 20, 21] obtained the necessary and sufficient conditions on the functions h, p and ∅
whereby the following implication is true

h(z) ≺ ∅(p(z), zp′(z), z2p′′(z); z),

then
q(z) ≺ p(z) (1.4)

Using results of other authors (see [4, 5, 6, 7, 11, 12, 15, 16, 18, 19, 22]) to obtain sufficient conditions for normalized
analytic functions to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z)

where q1 and q2 are given univalent functions in U and q1(0) = q2(0) = 1. Also a number of authors look [2, 4, 6, 7, 8, 9]
they found some differential subordination and superordination results and sandwich theorems. For f ∈ A, Darus and
Faisal [14] introduced the following differential operator:

G0
λ(σ, δ, τ)f(z) = f(z) (1.5)

G1
λ(σ, δ, τ)f(z) =

[
δ − τ + δ − λ

σ + δ

]
f(z) +

[
τ + λ

σ + δ

]
f ′(z)

G2
λ(σ, δ, τ)f(z) = G(G1

λ(σ, δ, τ)f(z))

...

Gm
λ (σ, δ, τ)f(z) = G(Gn−1

λ (σ, δ, τ)f(z)).

If f is given (1.5), then from (??), it can obtained

Gm
λ (σ, δ, τ)f(z) = z +

∞∑
n=2

[
σ + (τ + λ)(k − 1) + δ

σ + δ

]n
akz

k, (1.6)

where f ∈ A;σ, δ, τ, λ ≥ 0; σ + δ ̸= 0; n ∈ N0. From (1.6), we note that

z(Gm
λ (σ, δ, τ)f(z))′ =

[
τ + λ

σ + δ

]
Gm+1

λ (σ, δ, τ)f(z)−
[
σ + δ − λ− τ

σ + δ

]
Gm

λ (σ, δ, τ)f(z). (1.7)

The main object of the present investigation is to find sufficient conditions for certain normalized analytic function
f to satisfy:

q1(z) ≺
[
Gm

λ (σ, δ, τ)f(z)

z

]Υ
≺ q2(z),

and

q1(z) ≺
[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]Υ
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. In this paper, we derive some sandwich
theorems, involving the operator Gm

λ (σ, δ, τ)f(z).
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2 Preliminaries

We need the following definitions and lemmas to prove our results.

Definition 2.1. [17] Denote by Q the set of all functions q that are analytic and injective on Ū\E(q), where Ū =
U ∪ {z ∈ ∂U}, therefore

E(q) = {ε ∈ ∂U : lim
z→ε

q(z) = ∞}

and are such that q′(ε) ̸= 0 for ε ∈ ∂U\E(q). Further, let the subclass of Q for which q(0) = a be denoted by Q(a),
and Q(0) = Q0, Q(1) = Q1 = {q ∈ Q : q(0) = 1}.

Lemma 2.2. [18] Let q be a convex univalent function in U and let α ∈ C, β ∈ C\{0} with

Re

{
1 +

zq′′(z)

q′(z)

}
> max

{
0,−Re

(
α

β

)}
.

If p is analytic in U and
αp(z) + βzp′(z) ≺ αq(z) + βzq′(z), (2.1)

then p ≺ q and q is the best dominant of (2.1).

Lemma 2.3. [5] Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U)
with ϕ(w) ̸= 0, when w ∈ q(U). Set Q(z) = zq′(z)ϕ(q(z)) and h(z) = θ(q(z)) +Q(z). Suppose that

� Q(z) is starlike univalent in U ,

� Re
{

zh′(z)
Q(z)

}
> 0 for z ∈ U .

If p is analytic in U , with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.2)

then p ≺ q and q is the best dominant of (2.2).

Lemma 2.4. [18] Let q be a convex univalent in U and let β ∈ C, that Re(β) > 0. If p ∈ B[q(0), 1] ∩ Q and
p(z) + βzp′(z) is univalent in U , then

q(z) + βzq′(z) ≺ p(z) + βzp′(z), (2.3)

which implies that q ≺ p and q is the best subordinant of (2.3).

Lemma 2.5. [13] Let q be a convex univalent function in the unit disk U and let θ and ϕ be analytic in a domain D
containing q(U). Suppose that

� Re
{

θ′(q(z))
ϕ(q(z))

}
> 0 for z ∈ U .

� (z) = zq′(z)ϕ(q(z)) is starlike univalent in U .

If p ∈ B[q(0), 1] ∩Q, with p(U) ⊂ D, θ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U and

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(p(z)) + zp′(z)ϕ(p(z)), (2.4)

then q ≺ p and q is the best subordinant of (2.4).
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3 Differential Subordination Results

Here, we introduce some differential subordination results by using the Darus-Faisal operator.

Theorem 3.1. Let q be convex univalent function in U with q(0) = 1, 0 ̸= ε ∈ C\{0}, γ > 0 and suppose that q
satisfies:

Re

{
1 +

zq′′(z)

q′(z)

}
> max

{
0,−Re

(γ
ε

)}
(3.1)

If f ∈ A satisfies the subordination condition:[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺ q(z) +

ε

γ
zq′(z), (3.2)

then [
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺ q(z), (3.3)

and q is the best dominant of (3.2).

Proof . Define the function p by

p(z) =

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
, (3.4)

then the function p(z) is analytic in U and p(0) = 1, therefore, differentiating (3.4) with respect to z and using the
identity (1.7) in the resulting equation, we obtain

zp′(z)

p(z)
= γ

[
z(Gm

λ (σ, δ, τ)f(z))′

Gm
λ (σ, δ, τ)f(z)

− 1

]
. (3.5)

Hence,
zp′(z)

p(z)
= γ

[[
τ + λ

σ + δ

](
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)]
.

Therefore,
zp′(z)

γ
=

[
Gm

λ (σ, δ, τ)f(z)

z

]γ [[
τ + λ

σ + δ

](
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)]
.

The subordination (3.2) from the hypothesis becomes

p(z) +
ε

γ
zp′(z) ≺ q(z) +

ε

γ
zq′(z).

An application of lemma 2.2 with β = ε
γ and α = 1, we obtain (3.3). □

Putting q(z) =
(

1+z
1−z

)
in Theorem 3.1, we obtain the following corollary:

Corollary 3.2. Let 0 ̸= ε ∈ C\{0}, γ > 0 and

Re

{
1 +

2z

1− z

}
> max

{
0,−Re

(γ
ε

)}
.

If f ∈ A satisfies the subordination condition:[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺

(
1− z2 + 2 ε

γ z

(1− z)2

)
,

then [
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺
(
1 + z

1− z

)
and q(z) =

(
1+z
1−z

)
is the best dominant.
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Theorem 3.3. Let q be a convex univalent function in U with q(0) = 1, q′(z) ̸= 0(z ∈ U) and assume that q satisfies:

Re

{
1 +

m

ε
(q(z))m +

m− 1

ε
(q(z))m−1 − z

q′(z)

q(z)
+ z

q′′(z)

q′(z)

}
> 0, (3.6)

where m ∈ C, ε ∈ C\{0} and z ∈ U . Suppose that z q′(z)
q(z) is starlike univalent in U . If f ∈ A satisfies:

Ψ(γ, τ, δ, λ, θ, k,m; z) ≺ (1 + q(z))q(z)m−1 + εz
q′(z)

q(z)
, (3.7)

where,

Ψ(γ, τ, δ, λ, θ, k,m, ε; z) =

[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γm
+

[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ(m−1)

+ εγ

[
τ + λ

σ + δ

](
Gm+2

λ (σ, δ, τ)f(z)

Gm+1
λ (σ, δ, τ)f(z)

−
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

)
, (3.8)

then [
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
≺ q(z), (3.9)

and q is the best dominant of (3.9).

Proof . Define the function p by

p(z) =

[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
, (3.10)

then the function p(z) is analytic in U and p(0) = 1, differentiating (3.10) with respect to z and using the identity
(1.7), we get,

zp′(z)

p(z)
= γ

[[
τ + λ

σ + δ

](
Gm+2

λ (σ, δ, τ)f(z)

Gm+1
λ (σ, δ, τ)f(z)

−
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

)]
By setting

θ(w) = (1 + w)wm−1 and ϕ(w) =
ε

w
, w ̸= 0.

We see that θ(w) is analytic in C and ϕ(w) is analytic in C\{0} and that ϕ(w) ̸= 0, w ∈ C\{0}. Also, we get

Q(z) = zq′(z)ϕ(q(z)) = εz
q′(z)

q(z)
,

and

h(z) = θ(q(z)) +Q(z) = (1 + q(z))q(z)m−1 + εz
q′(z)

q(z)
.

It is clear that Q(z) is starlike univalent in U , we have

Re

{
zh′(z)

Q(z)

}
= Re

{
1 +

m

ε
(q(z))m +

m− 1

ε
(q(z))m−1 − z

q′(z)

q(z)
+ z

q′′(z)

q′(z)

}
> 0.

By a straightforward computation, we obtain

Ψ(γ, τ, δ, λ, θ, k,m, ε; z) = (1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
, (3.11)

where Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is given by (3.8). From (3.7) and (3.11), we have

(1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
≺ (1 + q(z))(q(z))m−1 + εz

q′(z)

q(z)
. (3.12)

Therefore, by Lemma 2.3, we get p(z) ≺ q(z). By using (3.10), we obtain the result. □

Putting q(z) =
(

1+ℓz
1+jz

)
, (−1 ≤ j < ℓ ≤ 1) in Theorem 3.3, we obtain the following corollary:
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Corollary 3.4. Let −1 ≤ j < ℓ ≤ 1 and

Re

{
m

ε

(
1 + ℓz

1 + jz

)m

+
m− 1

ε

(
1 + ℓz

1 + jz

)m−1

+
1 + jz(4 + 3ℓz)

(1 + jz)(1 + ℓz)

}
> 0,

where ε ∈ C\{0} and z ∈ U , if f ∈ A satisfies:

Ψ(γ, τ, δ, λ, θ, k,m, ε; z) ≺

[[
1 +

(
1 + ℓz

1 + jz

)](
1 + ℓz

1 + jz

)m−1

+ εz
ℓ− j

(1 + ℓz)(1 + jz)

]
,

where Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is given by (3.8), then[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
≺
(
1 + ℓz

1 + jz

)
and q(z) =

(
1+ℓz
1+jz

)
is the best dominant.

4 Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with q(0) = 1, γ > 0 and Re{ε} > 0. Let f ∈ A satisfies[
Gm

λ (σ, δ, τ)f(z)

z

]γ
∈ B[q(0), 1] ∩Q

and [
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
be univalent in U . If

q(z) +
ε

γ
zq′(z) ≺

[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
(4.1)

then

q(z) ≺
[
Gm

λ (σ, δ, τ)f(z)

z

]γ
, (4.2)

and q is the best subordinant of (4.1).

Proof . Define the function p by

p(z) =

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
. (4.3)

Differentiating (4.3) with respect to z, we get

zp′(z)

p(z)
= γ

[
z(Gm

λ (σ, δ, τ)f(z))′

Gm
λ (σ, δ, τ)f(z)

− 1

]
. (4.4)

After some computations and using (1.7), from (4.4), we obtain[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
= p(z) +

ε

γ
zp′(z)

and now, by using Lemma 2.4, we get the desired result. □

Putting q(z) =
(

1+z
1−z

)
in Theorem 4.1, we obtain the following corollary:
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Corollary 4.2. Let γ > 0 and Re{ε} > 0. If f ∈ A satisfies[
Gm

λ (σ, δ, τ)f(z)

z

]γ
∈ B[q(0), 1] ∩Q

and [
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
be univalent in U . If(

1− z2 + 2 ε
γ z

(1− z)2

)
≺
[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
then (

1 + z

1− z

)
≺
[
Gm

λ (σ, δ, τ)f(z)

z

]γ
,

and q(z) =
(

1+z
1−z

)
is the best subordinant.

Theorem 4.3. Let q be convex univalent function in U with q(0) = 1, q′(z) ̸= 0 and assume that q satisfies:

Re

{
m

ε
(q(z))mq′(z) +

m− 1

ε
(q(z))m−1q′(z)

}
> 0, (4.5)

where m ∈ C, ε ∈ C\{0} and z ∈ U . Suppose that z(q′(z))/(q(z)) is starlike univalent in U . Let f ∈ A satisfies:[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
∈ B[q(0), 1] ∩Q,

and Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is univalent function in U , where Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is given by (3.8). If

(1 + q(z))(q(z))m−1 + εz
q′(z)

q(z)
≺ Ψ(γ, τ, δ, λ, θ, k,m, ε; z), (4.6)

then

q(z) ≺
[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
, (4.7)

and q is the best subordinant of (4.6).

Proof . Define the function p by

p(z) =

[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
. (4.8)

Differentiating (4.8) with respect to z, we get

zp′(z)

p(z)
= γ

[[
τ + λ

σ + δ

](
Gm+2

λ (σ, δ, τ)f(z)

Gm+1
λ (σ, δ, τ)f(z)

−
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

)]
.

By setting

θ(w) = (1 + w)wm−1 and ϕ(w) =
ε

w
, w ̸= 0,

we see that θ(w) is analytic function in C and ϕ(w) is analytic in C\{0} and that ϕ(w) ̸= 0, w ∈ C\{0}. Also, we get

Q(z) = zq′(z)ϕ(q(z)) = εz
q′(z)

q(z)
.

It is clear that Q(z) is starlike univalent function in U ,

Re

{
θ′(q(z))

ϕ(q(z))

}
= Re

{
m

ε
(q(z))mq′(z) +

m− 1

ε
(q(z))m−1q′(z)

}
> 0.
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By a straightforward computation, we obtain

Ψ(γ, τ, δ, λ, θ, k,m, ε; z) = (1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
, (4.9)

where Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is given by (3.8). From (4.6) and (4.9), we have

(1 + q(z))(q(z))m−1 + εz
q′(z)

q(z)
≺ (1 + p(z))(p(z))m−1 + εz

p′(z)

p(z)
. (4.10)

Therefore, by Lemma 2.5, we get q(z) ≺ p(z). □

5 Sandwich Results

Theorem 5.1. Let q1 be a convex univalent function in U with q1(0) = 1, γ > 0 and Re{ε} > 0 and q2 be univalent
function U , with q2(0) = 1 satisfies (3.1). Let f ∈ A satisfies:[

Gm
λ (σ, δ, τ)f(z)

z

]γ
∈ B[1, 1] ∩Q,

and [
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
be univalent in U . If

q1(z) +
ε

γ
zq′1(z) ≺

[
τ + λ

σ + δ

] [
Gm

λ (σ, δ, τ)f(z)

z

]γ (
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

− 1

)
+

[
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺ q2(z) +

ε

γ
zq′2(z),

then

q1(z) ≺
[
Gm

λ (σ, δ, τ)f(z)

z

]γ
≺ q2(z),

and q1 and q2 are respectively the best subordinant and the best dominant.

Theorem 5.2. Let q1 be a convex univalent in U with q1(0) = 1, and satisfies (4.5). Let q2 be univalent function in
U with q2(0) = 1 satisfies (3.6). Let f ∈ A satisfies:[

Gm+1
λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
∈ B[1, 1] ∩Q,

and Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is univalent in U , where Ψ(γ, τ, δ, λ, θ, k,m, ε; z) is given by (3.8). If

(1 + q1(z))(q1(z))
m−1 + εz

q′1(z)

q1(z)
≺ Ψ(γ, τ, δ, λ, θ, k,m, ε; z) ≺ (1 + q2(z))(q2(z))

m−1 + εz
q′2(z)

q2(z)

then

q1(z) ≺
[
Gm+1

λ (σ, δ, τ)f(z)

Gm
λ (σ, δ, τ)f(z)

]γ
≺ q2(z)

and q1 and q2 are respectively the best subordinant and the best dominant.
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