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Abstract

In this paper, we introduce a subclass of analytic functions associated with the Sigmoid function and determine the
upper bounds for various coefficient functionals such as Fekete-Szegő functional, second Hankel determinant, Zalcman
functional and third Hankel determinant. Also, the concept is extended to two-fold and three-fold symmetric functions.
The results proved earlier, follow as special cases of the results of this paper.
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1 Introduction

Special functions play an important role in the field of Science and Engineering. One of the most useful example
of special functions is the activation function. Activation functions are further of three types and the most popular
of these is the Sigmoid function whose working is analogous to the human brain. The Sigmoid function is of the form

1

1 + e−z
, and has the following properties:

(i) Its output ranges between 0 and 1;
(ii) It maps sufficiently large input domains onto a small output range;
(iii) It is a one-one function, so it never loses information.

The above properties make it clear that the Sigmoid function is quite useful in Geometric function theory. A variety
of subclasses of analytic functions associated with Sigmoid function have been studied by various authors including
Khan et al. [13, 14], Joseph et al. [11], Goel and Kumar [8], Ramachandran and Dhanalakshmi. [28] and Singh et
al. [33]. Before defining our main class, firstly let’s have an overview of the preliminary classes. The class of functions
f of the form f(z) = z +

∑∞
k=2 akz

k, which are analytic in the open unit disc E = {z ∈ C : |z| < 1}, is denoted by
A. Further, the subclass of A which consists of univalent functions, is denoted by S. The notion of subordination
plays an important role in the theory of univalent functions and it owes its origin to Lindelöf [18]. This concept is
stated as, for two analytic functions f and g in E, f is said to be subordinate to g (denoted as f ≺ g) if there exists
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a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E such that f(z) = g(w(z)). Further, if g is univalent in E, then
the subordination leads to f(0) = g(0) and f(E) ⊂ g(E).

The classes of starlike and convex functions are denoted by S∗ and K, respectively and defined as

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
and

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

The class CS∗ of close-to-star functions was introduced by Reade [29] and it consists of functions f ∈ A such that

Re

(
f(z)

g(z)

)
> 0, g ∈ S∗. For g(z) = z, MacGregor [22] studied the class R′

=

{
f : f ∈ A, Re

(
f(z)

z

)
> 0, z ∈ E

}
,

which is indeed a subclass of close-to-star functions. Also the class R defined as R = {f : f ∈ A, Re(f ′(z)) >
0, z ∈ E}, is the class of bounded turning functions which was introduced and studied by MacGregor [21]. Later on,
Murugusundramurthi and Magesh [24] studied the class R(α), which is a unification of the classes R′

and R. The
class R(α) is given by

R(α) =

{
f : f ∈ A, Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> 0, z ∈ E

}
.

For α = 0 and α = 1, the class R(α) reduces to the classes R′
and R, respectively. Inspired by the above work on

different subclasses of analytic functions, we define the following subclass of A, associated with the Sigmoid function
2

1 + 4e−z
.

Definition 1.1. A function f ∈ A is said to be in the class Rα(Φ) if it satisfies the condition

(1− α)
f(z)

z
+ αf ′(z) ≺ 2

1 + 4e−z
.

We have the following observations:
(i) R0(Φ) ≡ R′

(Φ).
(ii) R1(Φ) ≡ R(Φ).

For q ≥ 1 and n ≥ 1, Noonan and Thomas [25] stated the qth Hankel determinant as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For q = 2, n = 1 and a1 = 1, the Hankel determinant reduces to H2(1) = a3 − a22, which is the well known Fekete-

Szegő functional. Fekete and Szegő [7] then further generalised the estimate |a3 − µa22| where µ is real and f ∈ S.
Also for q = 2, n = 2, the Hankel determinant takes the form of H2(2) = a2a4 − a23, which is Hankel determinant of
order 2. Further, for q = 3, n = 1, the Hankel determinant yields

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ ,
which is the third order Hankel determinant. For f ∈ S and a1 = 1, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and after applying the triangle inequality, it yields

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.1)
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Ma [19] introduced a useful functional Jn,m(f) = anam − am+n−1, n,m ∈ N− {1}, which is known as generalized
Zalcman functional. For n = 2 and m = 3, this functional reduces to J2,3(f) = a2a3 − a4. Various authors established
the upper bound for the functional J2,3(f) for different subclasses of A as it is plays an important role in establishing
the bounds for the third Hankel determinant.

A rizeable amount of work has been done on the estimation of second Hankel determinant by various authors
including Noor [26], Ehrenborg [6], Layman [15], Singh [31], Mehrok and Singh [23] and Janteng et al. [10]. It is little
bit complicated to establish the upper bound for the third order Hankel determinant. Babalola [3], was the first to
obtain the upper bound of third Hankel determinant for the classes of starlike functions, convex functions and the class
of functions with bounded boundary rotation. Later on, a few researchers including Shanmugam et al. [30], Bucur et
al. [4], Altinkaya and Yalcin [1], Singh and Singh [32] have worked in the direction of third Hankel determinant for
various subclasses of analytic functions.

In the present paper, we establish the upper bounds for the initial coefficients, Fekete-Szegő inequality, Zalcman
functional, second Hankel determinant and third hankel determinant for the class Rα(Φ). Also various known results
follow as particular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1 +

∞∑
k=1

pkz
k,

whose real parts are positive in E. The class P was established by Carathéodory [5] and the functions of this class
are known as Carathéodory functions.

2 Preliminaries

The following lemmas are very useful in the derivation of our main results:

Lemma 2.1. If p ∈ P, then
|pk| ≤ 2, k ∈ N.

The above well known result is due to Carathéodory [5]. Further Hayami and Owa [9, page 2577, Corollary 2.5],
established the following result:

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1.

Also Ma and Minda [20, Page 162, Lemma 1] proved that if ρ is any complex number, then

|p2 − ρp21| ≤ 2max{1, |2ρ− 1|}.

Lemma 2.2. It is mentioned in [2] (page 1617, Lemma 2.2) that, for p ∈ P,

|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|

and in particular, |p31 − 2p1p2 + p3| ≤ 2.

Lemma 2.3. [16, 17] If p ∈ P, then 2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.

3 Bounds of |H3(1)| for the class Rα(Φ)

This section is concerned with the estimation of upper bounds of various coefficient functionals, which lead to the
bound of the third Hankel determinant.
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Theorem 3.1. If Rα(Φ), then

|a2| ≤
1

2(1 + α)
, (3.1)

|a3| ≤
1

2(1 + 2α)
, (3.2)

|a4| ≤
1

2(1 + 3α)
, (3.3)

and

|a5| ≤
1

2(1 + 4α)
. (3.4)

The estimates are sharp.

Proof . Since f ∈ Rα(Φ), using the principle of subordination, we have

(1− α)
f(z)

z
+ αf ′(z) =

2

1 + 4e−w(z)
, (3.5)

where the function w satisfying the conditions w(0) = 0 and |w(z)| < 1. Let us define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z +

p2z
2 + p3z

3 + ..., which implies w(z) =
p(z)− 1

p(z) + 1
. On expanding (3.5), we get

(1− α)
f(z)

z
+ αf ′(z) = 1 + (1 + α)a2z + (1 + 2α)a3z

2 + (1 + 3α)a4z
3 + (1 + 4α)a5z

4 + ... (3.6)

Moreover,
2

1 + 4e−w(z)
= 1 + 1

4p1z +
(

1
4p2 −

p2
1

8

)
z2

+

(
1

4
p3 −

1

4
p1p2 +

11

192
p31

)
z3 +

(
1

4
p4 −

3

128
p41 −

1

8
p22 −

1

4
p1p3 +

11

64
p21p2

)
z4 + ... (3.7)

Using (3.6) and (3.7), (3.5) yields

1 + (1 + α)a2z + (1 + 2α)a3z
2 + (1 + 3α)a4z

3 + (1 + 4α)a5z
4 + · · ·

=1 +
1

4
p1z +

(
1

4
p2 −

p21
8

)
z2 +

(
1

4
p3 −

1

4
p1p2 +

11

192
p31

)
z3

+

(
1

4
p4 −

3

128
p41 −

1

8
p22 −

1

4
p1p3 +

11

64
p21p2

)
z4 + · · · . (3.8)

On equating the coefficients of z, z2, z3 and z4 in (3.8) and on simplifying, we obtain

a2 =
1

4(1 + α)
p1, (3.9)

a3 =
1

1 + 2α

[
1

4
p2 −

p21
8

]
, (3.10)

a4 =
1

1 + 3α

[
1

4
p3 −

1

4
p1p2 +

11

192
p31

]
, (3.11)

and

a5 =
1

(1 + 4α)

[
3

128
p41 +

1

8
p22 +

1

4
p1p3 −

11

64
p21p2 −

1

4
p4

]
. (3.12)

Using first inequality of Lemma 2.1 in (3.9), the result (3.1) is obvious. From (3.10), we have

|a3| =
1

4(1 + 2α)

∣∣∣∣p2 − 1

2
p21

∣∣∣∣ . (3.13)
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The result (3.2) can be easily obtained on using third inequality of Lemma 2.1 in (3.13). (3.11) can be expressed
as

|a4| =
1

192(1 + 3α)

∣∣48p3 − 48p1p2 + 11p31
∣∣ . (3.14)

Applying inequality 2 of Lemma 2.1 in (3.14), the result (3.3) is obvious. Furthermore, (3.12) can be reframed as

|a5| =
1

4(1 + 4α)

∣∣∣∣ 332p41 + 1

2
p22 + p1p3 −

11

16
p21p2 − p4

∣∣∣∣ . (3.15)

Using second inequality of Lemma 2.1, the result (3.4) follows from (3.15). The results (3.1), (3.2), (3.3) and (3.4)
are sharp for the function f given by

(1− α)
f(z)

z
+ αf ′(z) =

2

1 + 4e−z
.

□

On putting α = 0, Theorem 3.1 yields the following result:
Corollary 3.1 If f ∈ R′

(Φ), then

|a2| ≤
1

2
, |a3| ≤

1

2
, |a4| ≤

1

2
, |a5| ≤

1

2
.

For α = 1, Theorem 3.1 gives the following result due to Khan et al. [13]:
Corollary 3.2 If f ∈ R(Φ), then

|a2| ≤
1

4
, |a3| ≤

1

6
, |a4| ≤

1

8
, |a5| ≤

1

10
.

Theorem 3.2. If f ∈ Rα(Φ), then

|a3 − a22| ≤
1

2(1 + 2α)
. (3.16)

Proof . From (3.9) and (3.10), we have

|a3 − a22| =
1

4(1 + 2α)

∣∣∣∣p2 − 2α2 + 6α+ 3

4(1 + α)2
p21

∣∣∣∣ . (3.17)

Using third inequality of Lemma 2.1, (3.17) takes the following form:

|a3 − a22| ≤
1

2(1 + 2α)
max

{
1,

1 + 2α

2(1 + α)2

}
. (3.18)

But
1 + 2α

2(1 + α)2
≤ 1 for 0 ≤ α ≤ 1. Hence, the result (3.16) is obvious from (3.18). □

Substituting α = 0, Theorem 3.2 yields the following result:
Corollary 3.3 If f ∈ R′

(Φ), then

|a3 − a22| ≤
1

2
.

Putting α = 1, Theorem 3.2 yields the following result due to Khan et al. [13]:
Corollary 3.4 If f ∈ R(Φ), then

|a3 − a22| ≤
1

6
.

Theorem 3.3. If f ∈ Rα(Φ), then

|a2a3 − a4| ≤
1

2(1 + 3α)
. (3.19)
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Proof . Using (3.9), (3.10), (3.11) and simplifying, we have

|a2a3 − a4| =
1

192(1 + α)(1 + 2α)(1 + 3α)

∣∣(17 + 51α+ 22α2)p31 − (60 + 180α+ 96α2)p1p2 + 48(1 + α)(1 + 2α)p3
∣∣ .

(3.20)

On applying Lemma 2.2 in (3.20), it yields (3.19). □

For α = 0, the following result is a consequence of Theorem 3.3:
Corollary 3.5 If f ∈ R′

(Φ), then

|a2a3 − a4| ≤
1

2
.

For α = 1, we can obtain the following result due to Khan et al. [13], from Theorem 3.3, :
Corollary 3.6 If f ∈ R(Φ), then

|a2a3 − a4| ≤
1

8
.

Theorem 3.4. If f ∈ Rα(Φ), then

|a2a4 − a23| ≤
1

4(1 + 2α)2
. (3.21)

Proof . Using (3.9), (3.10) and (3.11), we have

|a2a4 − a23| =
1

768(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣48(1 + 2α)2p1p3

+48[(1 + α)(1 + 3α)− (1 + 2α)2]p21p2 + [11(1 + 2α)2 + 12(1 + α)(1 + 3α)]p41 − 48(1 + α)(1 + 3α)p22

∣∣∣∣.
On substituting for p2 and p3 from Lemma 2.3 and letting p1 = p, we get

|a2a4 − a23| =
1

768(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣(68α2 + 92α+ 23)p4

−12(1 + 2α)2p2(4− p2)x2 − 12(1 + α)(1 + 3α)(4− p2)2x2 + 24(1 + 2α)2p(4− p2)(1− |x|2)z
∣∣∣∣.

Since |p| = |p1| ≤ 2, it can be assumed that p ∈ [0, 2]. Then by using triangle inequality and |z| ≤ 1 with
|x| = t ∈ [0, 1], we obtain

|a2a4 − a23| ≤ 1
768(1+α)(1+2α)2(1+3α)

[
(68α2 + 92α+ 23)p4 + 12(1 + 2α)2p2(4− p2)t2

+12(1 + α)(1 + 3α)(4− p2)2t2 + 24(1 + 2α)2p(4− p2)− 24(1 + 2α)2p(4− p2)t2
]
= F (p, t).

∂F

∂t
=

t(4− p2)

32(1 + α)(1 + 2α)2(1 + 3α)

[
(1 + 2α)2p2 + (1 + α)(1 + 3α)(4− p2)− 2(1 + 2α)2p

]
,

which can be expressed as

∂F

∂t
=

t(4− p2)

32(1 + α)(1 + 2α)2(1 + 3α)

{
(p2 − 8p+ 12)

[
α2 +

8(2− p)

p2 − 8p+ 12
α

]
+ 2(2− p)

}
.

But, as p ≤ 2 and p2−8p+12 = (p−2)(p−6) ≥ 0, so it is obvious that
∂F

∂t
≥ 0. Therefore, F (p, t) is an increasing

function of t and so

max{F (p, t)} =F (p, 1)

=
1

768(1 + α)(1 + 2α)2(1 + 3α)

[
(68α2 + 92α+ 23)p4 + 12(1 + 2α)2p2(4− p2) + 12(1 + α)(1 + 3α)(4− p2)2

]
=H(p),
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H ′(p) =
1

768(1 + α)(1 + 2α)2(1 + 3α)

[
4(68α2 + 92α+ 23)p3 + 48(1 + 2α)2p(2− p2)− 48(1 + α)(1 + 3α)(4− p2)p

]
.

H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0. This implies max{H(p)} = H(0) =
1

4(1 + 2α)2
, which proves

(3.21). □

Putting α = 0, Theorem 3.4 gives the following result:
Corollary 3.7 If f ∈ R′

(Φ), then

|a2a4 − a23| ≤
1

4
.

Substituting for α = 1, the following result due to Khan et al. [13], is obvious from Theorem 3.4:
Corollary 3.8 If f ∈ R(Φ), then

|a2a4 − a23| ≤
1

36
.

Theorem 3.5. If f ∈ Rα(Φ), then

|H3(1)| ≤
5 + 50α+ 179α2 + 268α3 + 136α4

8(1 + 2α)3(1 + 3α)2(1 + 4α)
. (3.22)

Proof . Using (3.2), (3.3), (3.4), (3.16), (3.19) and (3.21) in (1.1), the result (3.22) can be easily obtained. □

For α = 0, Theorem 3.5 yields the following result:
Corollary 3.9 If f ∈ R′

(Φ), then

|H3(1)| ≤
5

8
.

For α = 1, Theorem 3.5 yields the following result due to Khan et al. [13]:
Corollary 3.10 If f ∈ R(Φ), then

|H3(1)| ≤
319

8640
.

4 Bounds of |H3(1)| for two-fold and three-fold symmetric functions

In this section, we establish the bounds of third Hankel determinant for the subclasses R(2)
α (Φ) and R(3)

α (Φ) of
two-fold and three-fold symmetric functions, respectively. A function f is said to be n-fold symmetric if is satisfies
the following condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n , n ∈ N and z ∈ E. By S(n), we denote the set of all n-fold symmetric functions which belong to the

class S. The n-fold univalent function have the following Taylor-Maclaurin series:

f(z) = z +

∞∑
k=1

ank+1z
nk+1. (4.1)

An analytic function f of the form (4.1) belongs to the family R(n)
α (Φ) if and only if

(1− α)
f(z)

z
+ αf ′(z) =

2

1 + 4e−(
p(z)−1
p(z)+1 )

, p ∈ P(n),

where

P(n) =

{
p ∈ P : p(z) = 1 +

∞∑
k=1

pnkz
nk, z ∈ E

}
. (4.2)

Theorem 4.1. If f ∈ R(2)
α (Φ), then

|H3(1)| ≤
1

4(1 + 2α)(1 + 4α)
. (4.3)
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Proof . If f ∈ R(2)
α (Φ), so by definition there exists a function p ∈ P(2) such that

(1− α)
f(z)

z
+ αf ′(z) =

2

1 + 4e−(
p(z)−1
p(z)+1 )

. (4.4)

Using (4.1) and (4.2) for n = 2, (4.4) yields

a3 =
1

4(1 + 2α)
p2, (4.5)

a5 =
1

4(1 + 4α)

(
p4 −

1

2
p22

)
. (4.6)

Also
H3(1) = a3a5 − a33. (4.7)

Using (4.5) and (4.6) in (4.7), it can be expressed as

|H3(1)| =
1

16(1 + 2α)(1 + 4α)
p2

∣∣∣∣p4 − 2(1 + 2α)2 − (1 + 4α)

4(1 + 2α)2
p22

∣∣∣∣ . (4.8)

On using second inequality of Lemma 2.1 in the above expression, we can easily get the result (4.3). □

Putting α = 0, the following result can be easily obtained from Theorem 4.1:
Corollary 4.1 If f ∈ R′(2)(Φ), then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 4.1 agrees with the following result:
Corollary 4.2 If f ∈ R(2)(Φ), then

|a3 − a22| ≤
1

60
.

Theorem 4.2. If f ∈ R(3)
α (Φ), then

|H3(1)| ≤
1

4(1 + 3α)2
. (4.9)

Proof . If f ∈ R(3)
α (Φ), so there exists a function p ∈ P(3) such that

(1− α)
f(z)

z
+ αf ′(z) =

2

1 + 4e−(
p(z)−1
p(z)+1 )

. (4.10)

Using (4.1) and (4.2) for n = 3, (4.10) gives

a4 =
1

4(1 + 3α)
p3. (4.11)

Also
H3(1) = −a24. (4.12)

Using (4.11) in (4.12), it yields

H3(1) = − 1

16(1 + 3α)2
p23. (4.13)

Applying triangle inequality and using first inequality of Lemma 2.1, (4.9) can be easily obtained. □

For α = 0, Theorem 4.2 yields the following result:
Corollary 4.3 If f ∈ R′(3)(Φ), then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 4.2 yields the following result:
Corollary 4.4 If f ∈ R(3)(Φ), then

|H3(1)| ≤
1

64
.
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5 Conclusion

In this paper, we have introduced a generalized subclass of bounded turning functions associated with the sigmoid
function. Various prperties of this class such as coefficient estimates, the bounds for Fekete-Szegő inequality, Zalcman
functional, second Hankel determinant and third Hankel determinant, have been established. Some earlier known
results follow as special cases of the results obtained in this paper. It will pave the way for other researchers to study
some more subclasses of analytic functions.
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