
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,370 |
A note on b-generalized derivations with a quadratic equation in prime rings | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 19، دوره 14، شماره 5، مرداد 2023، صفحه 199-209 اصل مقاله (374.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28801.3994 | ||
نویسندگان | ||
Damla Yılmaz* 1؛ Hasret Yazarlı2 | ||
1Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey | ||
2Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey | ||
تاریخ دریافت: 02 آبان 1401، تاریخ بازنگری: 26 بهمن 1401، تاریخ پذیرش: 12 اسفند 1401 | ||
چکیده | ||
Let $R$ be a prime ring of characteristic different from $2$, $C$ be its extended centroid and $Q_{r}$ be its right Martindale quotient ring and $f(t_{1},...,t_{n})$ be a multilinear polynomial over $C$, which is not central valued on $R$. Assume that $F$ is a $b$-generalized derivation on $R$ and $d$ is a derivation of $R$ such that $$ F(f(s))d(f(s))+d(f(s))F(f(s))=0$$ for all $s=(s_{1},...,s_{n})\in R^{n}$. Then either $F=0$ or $d=0$, except when $d$ is an inner derivation of $R$, there exists $\lambda \in C$ such that $F(r)=\lambda r$ for all $r\in R$ and $f(t_{1},...,t_{n})^{2}$ is central valued on $R$. | ||
کلیدواژهها | ||
b-generalized derivation؛ multilinear polynomial؛ prime ring؛ generalized polynomial identity | ||
مراجع | ||
[1] K.I. Beidar, W.S. III Martindale and A.V. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Dekker, New York, 1996. [7] B. Dhara, b-generalized derivations on multilinear polynomials in prime rings, Bull. Korean Math. Soc. 55 (2018), no. 2, 573–586. | ||
آمار تعداد مشاهده مقاله: 16,451 تعداد دریافت فایل اصل مقاله: 275 |