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Abstract— Image forgery, the manipulation of an image to hide 

some meaningful or helpful information, is widely used to manage 

the large amount of information being exchanged in the form of 

images. There are different forms of image forgery, and copy--

move forgery is the most common form of it. The copy-move 

forgery is easy to perform yet challenging to detect due to the 

similarity between the original part of the image and the copied 

part. In this paper, we employ a keypoint descriptor inspired by 

the human visual system, namely the FREAK (Fast Retina 

Keypoint) descriptor, for robust copy-move forgery detection. 

This method uses the advantages of FREAK descriptor such as fast 

computing and low memory load compared to SIFT, SURF, and 

BRISK. Finally, geometric transformation parameters are 

extracted and discussed. Results confirm promising results in the 

case of image post-processing operations such as adding noise, 

illumination change, and geometric transformations such as 

rotation and scaling. 

 

Index Terms— Copy-move forgery detection, Fast Retina 

Keypoint (FREAK), Keypoint descriptor. 

I.  INTRODUCTION 

       owadays, a large amount of information is being exchanged  

       in the form of images/videos. Different methods in 

Computer Vision are used to process this information [1-9]. 

However, the manipulation of digital images has been 

straightforward because of the existence of powerful 

computers, advanced editing software packages, and high-

resolution imaging devices [10]. Developing software, tools, 

and digital image processing techniques facilitated the use of 

image forgery techniques that are not simply detectable. To deal 

with this problem, digital forensics has been introduced, which 
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are techniques to detect any type of forgery in digital images. 

Applications of forensics are in the fields of a court of law, 

criminal investigations, insurance, scientific claims, medical 

imaging, and so on [1,11-12]. Fig. 1 shows a typical image and 

its forged version. 

Tampering methods are divided into three main classes: 

copy-move, splicing, and retouching. In copy-move tampering, 

one or more patches of an image are copied and moved to 

another location in the same image to duplicate some object or 

hide some other scenes of that image. In splicing forgeries, a 

part of one image is copied and moved to another image. In the 

case of retouching, some techniques are used to make some 

changes to images. Copy- move is one type of forgeries for 

which many detection methods have been proposed to solve. 

All forgery detection methods may be divided into two main 

categories: block-based and keypoint-based methods. In the 

block-based methods, the query image is divided into some 

overlapping blocks that differ from each other only by one row 

or one column. For each block, some features are extracted and 

then sorted. Neighbor feature vectors in the sorted matrix rely 

on features extracted from similar blocks. In keypoint-based 

methods, some important points of the image are detected, and 

features of these keypoints are extracted. After matching 

extracted features, duplicated patches can be found. Some 

forgery detection methods rely on keypoints, such as SIFT 

(Scale Invariant Feature Transform), SURF (Speeded Up 

Robust Features), BRISK (Binary Robust Invariant Scalable 

Keypoints), and the proposed keypoint descriptor, Fast Retina 

Keypoint (FREAK), introduced in [13]. 

The rest of this paper is organized as follows: In section II, 

the related works on the copy-move forgery detection field are 

introduced. In section III, the proposed method is introduced 
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Fig. 1. (Left) A typical image, (Right) The tampered version of it. 
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step by step. Section IV demonstrates the experimental results 

of the proposed method. Finally, the conclusions are drawn in 

section V. 

Ⅱ. RELATED WORKS 

Many methods have been presented in the literature to 

overcome copy-move attacks. Some good studies can be found 

in [14-18]. The main idea of all methods proposed to solve the 

copy-move problem is that both copied and pasted patches have 

similarities in some properties that can be used as features. 

Using these features and searching for similar features may lead 

to discovering similar patches. A good forgery detection 

method should be able to detect duplicated patches. In addition, 

a good method must be stable against geometric 

transformations such as translation, rotation, and scaling as well 

as post-processing manipulations such as noise addition, JPEG 

compression, blurring, and so on. Almost the first attempt to 

solve the copy-move forgeries was proposed in [19]. It is a 

block-based approach that uses DCT as a feature extraction 

method and lexicographic as a sorting algorithm. Using a 

lexicographic sorting algorithm instead of the nearest neighbor 

algorithm was done to improve match finding and decrease 

running time. Several statistical methods for detecting copy-

move attacks were proposed in [20, 21]. In [22], a method for 

reducing dimensions by applying Principle Component 

Analysis (PCA) to small, fixed-size blocks was proposed. This 

model is robust against additive noise and JPEG compression. 

In [23], four components—R, G, B, and Y—were used in 

blocks to obtain the energy distribution of luminance along with 

four different directions. Another method was proposed in [24] 

by using the singular value decomposition (SVD) for feature 

vector dimensionality reduction along with a discrete wavelet 

transform (DWT) for duplication detection and lexicographic 

sorting. This model is suitable for image compression and edge 

processing. A method for detecting duplicated patches was 

proposed in [25] that uses blur moment invariants, PCA, and a 

k-d tree. While this model uses 24 blur invariants up to the 

seventh order, this method suffers from high computational 

time. The method described in [26] uses Zernike moments that 

are rotation-invariant. Another method introduced in [27] uses 

a log-polar map for extracting descriptors into a 1-D vector and 

is invariant to reflection, rotation, and scaling. 

Other methods extract descriptors using a relatively recent 

feature known as the Local Binary Pattern (LBP). LBP has 

some texture-related applications in image processing, such as 

texture categorization and copy-move forgery detection.  

Local visual features such as SIFT [28], SURF [29], BRISK 

[30], BRIEF [31], and so on, are widely used in different image 

processing areas such as object recognition, object matching, 

and image retrieval because of their robustness to some 

geometric transformations such as translation, rotation, and 

scaling. In [32], a novel method using SIFT was introduced that 

is stable against changes in illumination, rotation, and scaling 

to detect duplicated patches. A method based on SIFT was 

proposed in [33] that estimates the geometric transformation 

parameters. This model shows a good true positive rate (TPR) 

in detecting duplicated regions. In this paper, we use a fast and 

robust descriptor, namely the FREAK descriptor. FREAK uses 

a comparison between pixel intensities and makes a binary 

string. Using this binary descriptor, copy-move forgery 

detection is done, and duplicated patches are discovered.  

Ш. PROPOSED METHOD 

In this paper, we propose a solution in the field of copy-move 

forgery detection based on extracting key point features using 

the FREAK descriptor. FREAK is a strong keypoint descriptor 

inspired by the human visual system, namely the retina. Fig. 2 

depicts the proposed method's procedure. This approach works 

with grayscale images, so if the query image is not in grayscale 

format, it should be converted to grayscale. The proposed 

approach is separated into four major steps: (1) recognizing 

keypoints, (2) extracting keypoint descriptors, (3) matching 

extracted features to obtain forged areas, and (4) determining 

transform parameters using the RANSAC method. 

A.  Detecting keypoints 

FREAK extracts keypoint descriptors from some pre-

specified keypoints but it does not detect keypoints. Thus, we 

need some methods to detect robust keypoints to pass to the 

FREAK algorithm. Someone may select some random points 

but the result might not be satisfying. In the case of FREAK, 

we can use some keypoints detection methods such as corner 

points as keypoints. Other options may be using SURF or 

BRISK keypoints. There are some kinds of corner point 

detector algorithms in the literature [34, 35]. One of the most 

useful methods is the Harris algorithm that was introduced in 

[34].   

The combination of the Harris corner detector as a keypoint 

detector and FREAK as a keypoint descriptor leads to good 

results. The other useful corner detector is FAST, which was 

introduced in [36]. In this paper, we use a combination of Harris 

corners and SURF points as keypoints in the proposed model. 

Some other keypoints, such as FAST, SURF, and BRISK 

keypoints, are used to make some comparisons. 

 

B.  Exracting keypoint descriptors 

FREAK is a method to extract keypoint descriptors in the same 

way as the retina does in the human visual system. FREAK uses 

a pattern similar to that of retinal ganglion cells in the retina. 

This pattern is circular, and the density of the central points is 

higher than the peripheral ones. This grid pattern is illustrated 

in Fig. 3. Only 512 pairs of this grid are used and the rest are 

ignored. FREAK is a binary descriptor of size 512 bits, which 

means it makes a comparison between the intensities of each 

point of every pair in the pattern. Each bit is calculated by 

thresholding the difference between one pair’s intensities that 

have been smoothed using a Gaussian kernel. 
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Fig. 2.  A schematization of the proposed method. 
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Equation (1) demonstrates this concept: 

𝐹 = ∑ 2𝑎𝑇(𝑃𝑎)

0≤𝑎<𝑁

 (1) 

Where 𝑃𝑎 is a pair of points, N is the size of descriptor and 

T is thresholding function defined as: 

𝑇(𝑃𝑎) = {
1      𝑖𝑓 (𝐼(𝑃𝑎

𝑟1) − 𝐼(𝑃𝑎
𝑟2)) > 0

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝐼(𝑃𝑎
𝑟1) and 𝐼(𝑃𝑎

𝑟2) are smoothed intensities of two 

points in the pair 𝑃𝑎. 

For each keypoint detected in the previous step, we extract a 

FREAK descriptor as described above. Now we have some 

binary descriptors, each of which is related to one keypoint in 

the image. 

C.  Matching features 

In the copy-move forgery attacks, the copied patch has 

essentially similar characteristics to the original patch. 

Therefore, two similar patches in the same image have similar 

features extracted by the same method. So, matching features 

in all FREAK descriptors extracted from an image can reveal 

similar patches in the image. 

 With a query image, a set of n keypoints P={p_1,⋯,p_n } 

are extracted. For each keypoint, the corresponding descriptor 

is also extracted. All of these descriptors form a set of n 

descriptors D={d_1,⋯,d_n }. Given an individual feature d_i, 

the goal is to find the nearest neighbor feature in the feature 

space of n-1 remaining features. As we use the FREAK binary 

descriptor, the used distance function should be Hamming 

distance. The distance must be lower than a global threshold; 

T1 (matching threshold), to accept two features as similar. This 

method does not perform well because of some ambiguous 

matches that may be made. So, we use the procedure introduced 

in [27]. Assume that d_1 is the nearest neighbor and d_2 is the 

second nearest neighbor. Then, two features are tagged as 

similar, if the ratio between d_1 and d_2 is lower than threshold 

T2 (matching ratio). It means that the candidate features are 

matched only if the following constraint is fulfilled: 

𝑑1/𝑑2 <  𝑇2 𝑤ℎ𝑒𝑟𝑒  𝑇2 ∈ (0,1) (3) 
Using this procedure, ambiguous matches will be rejected. 

The two thresholds mentioned above play key roles in the 

number of discovered matches. In both cases, increasing the 

threshold leads to finding more matches. Both thresholds are in 

the interval of (0,1). In the case of both T1 and T2, increasing 

the threshold leads to an increment in discovered matched pairs 

but may also increase the false matches. Therefore, a tradeoff is 

needed. 

Matching features using this method is called the "nearest 

neighbor ratio" method. This method is an instance of a lazy 

algorithm. Thus, it is a time-consuming method because of its 

many distance computing operations. If there are n feature 

vectors, the algorithm has an order of 𝑂(𝑛2). Increasing the 

number of features leads to increase in the needed time for 

computing all distances in the order of two. So using fewer 

features makes the computing timeless. After matching all 

features, there may be some unwanted matched pairs. These 

pairs are outlier pairs and should be rejected. For this reason, an 

instance of the RANSAC algorithm is needed to discover the 

transformation parameters and reject the outliers. This step is 

described in the next section. 

D.  Determining geometric transform parameters 

RANSAC (random sample consensus) is an iterative 

algorithm for estimating model parameters when the data is 

contaminated by unwanted data. RANSAC was first introduced 

by Fischler and Bolles in [30] in 1981 as a method to estimate 

the parameters of a model having a set of data contaminated by 

some unwanted data named as outliers. The RANSAC 

algorithm has some modifications. Despite these modifications, 

it is essentially made of two main steps that are repeated 

iteratively. These steps are known as “hypothesize and test 

framework.” 

In the hypothesize step, a minimum sample set is randomly 

selected from the input data, and the model parameters are 

computed using these samples. 

In the test framework step, the algorithm verifies which 

elements of the entire dataset fit in the model obtained in the 

previous step and inserts these elements into the model. The 

next iteration will be done with a new model. 

These two steps run iteratively. RANSAC terminates when 

it cannot find a better model than the one found. In the copy-

move forgery field, a patch of an image is copied and moved to 

another place in the same image. This transformation can be 

modeled as a geometric transformation. A geometric 

transformation is made of three mains simple transformations: 

translation, rotation, and scaling. Each of these main 

transformations has its own transform matrix and parameters. 

For a given point (x,y) in a 2D plane, the translation, rotation, 

and scaling matrices are as below, respectively: 

𝑇 = [
𝑡𝑥

𝑡𝑦
] (4) 

𝑅 = [
𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃     𝑐𝑜𝑠𝜃

] (5) 

𝑆 = [
𝑠𝑥    0
0    𝑠𝑦

] (6) 

The combination of these base transformation matrices can 

be written as a single matrix as follows: 

𝐻 = [
𝐴      𝑇
0𝑇    1

] (7) 

The vector T is a translation vector as (4). Matrix A is the 

combination of rotation and scaling matrices in (5) and (6). For 

Fig. 3. Illustration of FREAK sampling pattern introduced in [1] 
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any point (x,y), the transformation point is computed as: 

[
𝑥′

𝑦′

1

] = 𝐻. [
𝑥
𝑦
1

] (8) 

In the case of copy-move attacks, the copied patch is usually 

transformed using a transformation according to (8). Using the 

RANSAC algorithm, only inliers are selected to form a model, 

and outlier points will be rejected. Also, transformation 

parameters can be obtained. Thus, only keypoints that have 

similar features and the same transformation parameters will 

remain. 

In this paper, we use the RANSAC algorithm two times. For 

the first time, after matching features, RANSAC is applied to 

matched features to find some inlier points and their 

corresponding transformation parameters. There may be some 

matched pairs that can fit in that transformation, but their 

transformation directions are opposite and therefore are rejected 

in the RANSAC algorithm. We use the KNN(K-Nearest 

Neighbors) algorithm with k = 1 overall matched pairs to add 

these pairs to the discovered transformation. So, all matched 

points are classified into two classes based on their Euclidean 

distance from two center points of previously found inliers. 

Consequently, another instance of the RANSAC algorithm is 

applied to these two classes, and final inlier points and 

transformation parameters are achieved. This process makes the 

results better. An image will be tagged as “forged” if the 

number of final inlier points is at least four. 

Fig. 4 demonstrates the step-by-step output of the proposed 

method over the query image mentioned in fig. 1 with T1=0.6 

and T2=0.8. First, all keypoints and their corresponding 

descriptors are extracted (Fig 4-a). After matching extracted 

descriptors, only those keypoints that have a match in the rest 

of keypoints are remain (Fig 4-b). Matched keypoints can be 

shown as some connected pairs (Fig 4-c). In this step, there may 

be some matched outlier keypoints. After applying the 

RANSAC algorithm, the keypoint pairs that fit in a geometric 

transformation are extracted (Fig 4-d). Geometric 

transformation parameters are obtained in this step.  

IV. EXPERIMENTAL RESULTS 

In this section, we evaluate the proposed method over some 

test images. The used test dataset is MICC-F220, which was 

introduced in [27]. To make a comparison between different 

keypoint detector algorithms, we use some factors, such as the 

average number of detected keypoints and the average number 

of matched keypoints. This comparison can be found in Table 

I. To evaluate the proposed method against other methods, we 

define the True Positive Rate (TPR) and False Positive Rate 

(FPR) metrics. These metrics are defined as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑁𝑓
 (9) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁𝑜
 (10) 

Where TP (True Positive) is the number of images tagged as 

forged being forged, 𝑁𝑓 is the number of all forged images in 

the dataset, FP (False Positive) is the number of images tagged 

as forged being original and 𝑁𝑜  is the number of all original 

images in the dataset. 

Table Ⅱ shows the results of various amounts for the 

Matching Threshold and Matching Ratio parameters when the 

detection method is a combination of Harris corners and SURF 

points. In this table, we compare TPR, FPR, and the average 

time needed for any single image as metrics. It is obvious that 

the best result is obtained when the matching threshold and 

Fig. 4. Step-by-step output of the proposed method for a query image 

including four steps: First row – left: Detected keypoints, First row – right: 
Matched keypoints, Second row – left: Matched keypoint pairs, Second row 

– right: Matched keypoint pairs after applying RANSAC algorithm. 

Fig.5. Some images with various post processing operations and 

their corresponding outputs. 
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Matching Ratio are 0.6 and 0.8, respectively. Table Ш shows 

the values used for parameters in the proposed model. 

In Table IV, we compare four kinds of keypoint detection 

methods when the Matching Threshold and Matching Ratio are 

0.6 and 0.8, respectively. We can see that the combination of 

Harris corners and SURF points has the best results. 

Fig. 5 shows four typical images that have been tampered 

with by various post-processing operations such as rotation, 

scaling, illumination change, and a combination of them and 

their corresponding outputs. We can see that the duplicated area 

is easily found in all types of tampering. 

Multiple tampering attacks can also be easily handled by the 

proposed method. Using an iterative operation, after finding 

one duplicated region, one set of found points should be 

removed from all found matches, and the same process must be 

done on the remaining points until no more patches can be 

found. 

 V. CONCLUSIONS 

In this paper, we discussed copy-move forgery detection 

methods. A new method to discover image forgery detection 

based on the FREAK descriptor was proposed. This method 

combines Harris corners and SURF points and uses them as 

keypoints. Then FREAK descriptor is extracted for that 

keypoints and the matching phase is done. Using the proposed 

algorithm, duplicated patches are appeared, and transformation 

parameters are obtained. According to experimental results, the 

highest performance is obtained in the case of using Harris and 

SURF points as keypoints and matching threshold and 

matching ratio with values of 0.6 and 0.8, respectively. The 

main advantage of the proposed method is low running time and 

computational load. Therefore, this method can be used in cases 

where hardware specifications are low and the low run time is 

considered such as in smartphones. In addition, this method is 

invariant to some post-processing operations such as scaling, 

rotation, adding noise, illumination change, etc. In future 

works, we would like to employ deep learning-based models in 

the field. 

 

TABLE I  

Comparison Between Different Detection Methods on Detected Keypoints and Matched Points 

 

 

 

 

TABLE II 

 Comparison Between Different Matching Thresholds and Matching Ratio Amounts 

(Matching Threshold, Matching Ratio) True Positive Rate (%) False Positive Rate (%) Average Time(s) 

(0.3, 0.6) 60 2.72 0.58 

(0.3, 0.7) 78.18 7.27 0.79 

(0.4, 0.7) 77.27 7.27 0.78 

(0.5, 0.7) 77.27 9.09 0.79 

(0.3, 0.8) 89.09 13.64 1.45 

(0.4, 0.8) 89.09 14.54 1.49 

(0.5, 0.8) 84.54 10.90 1.47 

(0.6, 0.8) 91.82 8.18 1.45 

(0.7, 0.8) 88.18 13.63 1.45 

(0.8, 0.8) 89.09 11.81 1.36 

(0.3, 0.9) 79.09 24.55 2.03 

(0.4, 0.9) 82.72 27.27 1.99 

(0.5, 0.9) 82.72 30.90 2.03 

(0.6, 0.9) 76.36 31.81 2.03 

(0.7, 0.9) 80.90 31.81 2.05 

 

TABLE III 

The Values Used for Model Parameters 
Parameter Value Parameter Value 

Matching Threshold 0.3, 0.4, 0.5, 0.6 Matching Ratio 0.6, 0.7, 0.8, 0.9 

T1 0.6 T2 0.8 

TABLE IV 

Comparison Between Different Detection Methods on TPR, FPR, and Average Time 
Matching Threshold = 0.6, Matching Ratio = 0.8 

Detection Method True Positive Rate False Positive Rate Average Time 

Harris 75.45 4.5 0.93 

FAST 64.54 8.18 0.93 

BRISK 71.81 1.81 0.80 

Harris + SURF 91.82 8.18 1.45 

Detection Method Average Number of detected keypoints Average Number of matched points 

Harris 1218.47 6.95 

FAST 1317.26 6.91 

BRISK 598.40 2.76 

Harris + SURF 2098.15 10.07 
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