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Abstract

For an ordered subset W = {wy, wa, ..., wi} of V(G) and a vertex v € V, the metric representation of v with respect
to W is a k-vector, which is defined as r(v/W) = {d(v,w1), d(v,ws), ..., d(v,wg)}. The set W is called a resolving set
for G if r(u/W) = r(v/W) implies that u = v for all u,v € V(G). The minimum cardinality of a resolving set of G is
called the metric dimension of G. For two graphs G and H, the lexicographic product G H of H by G is obtained
from G by replacing each vertex of G with a copy of H. A graph G is considered fractal if a graph I' exists, with at
least two vertices, such as G ~ I"'{G. This paper intends to discuss the fractal graph of some graphs and corresponding
independence fractals. Also, compare the independent fractals of the fractal graph G, fractal factor I" and ' G.

Keywords: Fractal graph, Egamorphism, Metric dimension, Metric basis, Resolving set, Independence Fractals
2020 MSC: 28A80, 47H10, 54H25, 05C12, 05C63, 05C75, 05C76, 05E30

1 Introduction

The concepts of metric dimension of a graph and its related properties such as basis were introduced by P.J.Slater
[12] and independently by Harary and Melter [6]. Slater introduced metric dimension by motivated from the robot
navigation problem. The motivation of this paper came from the notion of fractal graphs which was introduced by
Pierre Ille and Robert Woodrow[IT]. The definition of fractal graphs was made with respect to the idempotency under
the lexicographic product of graphs [I0]. Since the definition requires a graph with at least two vertices, we start with
the lexicographic products which contain six vertices which is obtained from the graphs with two and three vertices.
An attempt to study the fractal properties of these graphs using this definition has been made in this paper which
will help us to extend it to the advanced graphs, which is currently a less explored area of study.

2 Preliminaries

All the graphs considered in this paper are undirected, simple, finite and connected. We use standard terminology,
the terms not defined here may found in [§], [7].

Definition 2.1. [9] A function f : V(G) — V(H) is an egamorphism from G to H if for v,w € V(G) such that
f(’U) 7& f(IU), we have [’U7w}G = [f(v)v f(IU)]H
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Definition 2.2. [9] For a graph G, G is a fractal if and only if there exists a graph I' satisfying the properties,
V() = 2 and G ~ T'!G. The graph I satisfying these properties is called the fractal factor of G. Here we use the
weak notion of isomorphism of graphs which is given in Definition 2.1.

Definition 2.3. A partition P of V(G) is a modular partition of G if each block of P is a module of G. A subset M
of V(G) is a module of G if for any z,y € M and v € V(G)\M, we have [z,v]c = [y,v]c-

Definition 2.4. Let G = (V, E) be a connected, undirected graph and vy, vy, v3 € V. A vertex v is said to resolve
the vertices v and w3 if the distance of v1 from wvs is different from distance of vz from ws.

Definition 2.5. For an ordered subset W = {wy, wa, ..., wi } of V(G) and for any vertex v € V, the (metric)representation
of v with respect to W is the k-vector which is denoted and defined as r(v/W) = (d(v, w1), d(v, w2), ...,d(v, wy)). The
set W is called a resolving set for G if r(v1|W) = r(v2|W) implies that v; = ve for all vy, vy € V(G).

Definition 2.6. A resolving set of minimum cardinality for a graph G is called a minimum resolving set. A minimum
resolving set is usually called a basis for G. The minimum cardinality of a resolving set of G is called the metric

dimension of G and is denoted by dim/(G).

Definition 2.7. For two graphs G and H, the lexicographic product Gt H of H by G is obtained from G by replacing
each vertex of G by a copy of H.

Theorem 2.8. [5] A connected graph G of order n > 2 has dimension n — 1 if and only if G = K,,.
Theorem 2.9. [5] A connected graph G of order n has dimension 1 if and only if G = P,.

Theorem 2.10. [5] The metric dimension of C, is dim C,, = 2

3 Main Results

There are 112 graphs of order 6 exist. Among those graphs following are the only 3 graphs obtained as a lexico-
graphic product of two graphs. That are P! P3, P31 Py, C3! Py and P> C3. But U310 Py &2 Py C3 = K¢ as shown in
Figure 1.
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Figure 1
Lexicographic products of order 6

In Figure 1(a), the set W1 = {(u1,w1), (u2, w2), (uz,wy)} form a basis. Since with respect Wy all vertices of V'\ W3
have unique metric representation {(1,1,1),(2,1,1),(1,1,2)}. Therefore dim(P2? P3) = 3. In P53 P2, with respect to
Wa = {(ug, w1), (us, w1), (u1,ws)} every vertices in V'\ Wa have unique metric representation {(1,2,1),(1,1,1),(1,1,2)}.
Hence dim(G3) = 3. The lexicographic product C51 P is same as P> ! C3 and is isomorphic to the complete graph
Kg, therefore by Theorem 2.8, dim(C5 1 Py) = dim (P21 C3) = 5. In the above discussed three lexicographic products,
it is clear that only connected bases exist. Considering the lexicographic product with six vertices, which is generated
from a combination of graphs with two and three vertices as explained above, we consider the graphs P> ! P3, P3! P,
P C3, C3 Py.

In the following discussions we consider the graph P, ! P3 as a case to discuss the fractal properties defined.

Definition 3.1. For the graphs P, and Py ! Ps, define a function f; : V(P 1 P3) — V(P) as fi(v,w) = v and
f1: V(P21 P3) = V(Ps) as g1 (v, w) = w are egamorphisms.

According to the definition, fi(u1,ws) =1, fi(ur,ws) =1, fi(ur,ws) = 1 and fi(uz,w3) = 2, fi(uz,ws) = 2,
fi(ug,ws) = 2. For all the pairs for which fi(v) # fi(w), we have [v,w]p,p, = [f1(v), fi(w)]p,- Thus f; is an
egamorphism from P, P3 to Py. Similarly, g;(uj,ws) = 3 and g1 (ug,ws) = 3, g1(u1,ws) = 4 and g (uz,ws) = 4,
g1(u1,ws) =5 and g1 (ug, ws) = 5. By the same argument the function g; from Py P3 to Ps is an egamorphism.
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Figure 1: f1233

Figure 2: zeros of flif-’,S

Using the Similar steps as explained above, we can define a function fo : V(P31 Py) — V(P3) as fo(v,w) = v and
f2 : V(P31 Py) = V(P) as g2(v,w) = w are egamorphisms.

Similarly we can define for the graphs C3 and C3? P», a function f3 as f3 : V(C31 Py) = V(P) as fs(v,w) = v
and g3 : V(P 1 C3) = V(C5) as g3(v,w) = w are egamorphisms. Also fy : V(C31 Py) = V(Cs) as fy(v,w) = v and
94 : V(C31P2) = V(P2) as g4(v,w) = w are egamorphisms.

Proposition 3.2. The graph G = Pj is a fractal graph with the fractal factor Ps.

Proof . We try to give a characterisation of a fractal graph in terms of the lexicographic product for the graph Py Ps.
As per the definition we need a graph I' such that G ~ T'? G. Let us consider the set P = f(V(P2 ! P3)). We define
the set w(f) = {f~'(p) : p € P}. Then n(f) = {f~"(w1), f~(uz2)} is a modular partition of P;? P; and the function
f/7(f): Pyt Ps/n(f) — P2 P3is an isomorphism from Ps ! P3/7w(f) onto Py Ps.

To prove that a graph G = Pj is a fractal graph, we have to find a I' = P, such that P3 >~ P»! P3;. The egamorphism
f: V(P P3) = V(P,) defined above induces an isomorphism f/x(f) from Py P3/7(f) onto P> Ps. Thus the graph
P5 is a fractal graph and its fractal factor is Pp. [J

In the similar way the results can be discussed for the other two graphs under consideration. That is The graph
G = P, is a fractal graph with the fractal factor P;3. The graph G = (5 is a fractal graph with the fractal factor P
and The graph G = P; is a fractal graph with the fractal factor Cs...

4 Independence Fractals of Fractal Graphs

From the proposition 3.2, Ps is a fractal graph with the fractal factor P,. Now our aim is to find independence
fractal of P», P3 and P! P3 and compare. The independence polynomial of P, is 1+ 2x and its independence fractal is
{0}. Consider the graph Ps, path of 3 vertices. The reduced independence polynomial of Ps is 22 + 32 and the roots
are {0, —3} Reduced independence polynomial of G? is

fB, = a* + 6% +122% + 9z
zeros are {0,-3,-1.54+0.8660254037,-1.5-0.8660254037} (1} f3, = 2® 41227 +602°+1622° 4+ 255" +2342° +1172% +27x

fb, = @0 + 242'% + 2642 + 17642 + 7998212 + 260282 + 6269420 + 1135622° + 1555322° + 1605247 +
12335425 4 690122° + 27090z + 70202 4 108022 + 81z

fB, = % + 4823 + 1104270 4 1620022° + 1703642?% + 136735227 + 870937227 + 4519616422° + 194659260x>* +
705275640273 4-21710295002%2 457196692002 +-129648373202%° 425376373360 944298569916 42'54-63077397138 7
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Figure 3: zeros of ff_f,g

Figure 4: zeros of f}r’,z

+ 8016732835526 + 881295101285 + 835929810004 + 681602381283 + 47533167702x'2 4+ 28162200528z +
1405426707029 4+ 58432290302° + 19957127042° + 54987444027 4+ 119344806° + 1975881625 + 23849102:* 4+ 19602023 +
980122 + 243z

f3, = 254496253 44512262 4138384251 43114744250+ 5485924825+ 78728824828 +94653988561°7 +-972845409362° 4
8679697354082°°468033902748402°544-473012198208002:°3 4+293996733240960x°2+16441687882460162°1 +83183294568
04344259+ ...4+42992327330790246002 1% +1088670520304593 740214 4-2440714835556 79020213 +480722095360840502 2 +
82428792703400162 1 +12172387602679742°0+1528000183114742°+160466649359042:8+138194362666827 +951336652
1425 4 5060726748z° + 198480051z* + 53513462 + 8845222 + 729z

fh, = 2128419221274+1824021 26411430722 2° 453157360224 +19565265602 125 +593651334242:1 22 415272014626 722!
+340013293481762:120 +6654715515345605 19 +-1159181196231441621 18 + ... +-812308950192966318182' 43295418716
5603227102 +1124502700384753292:5 4 31623843733875002 7 +71412759548046 25 +12512406073862.° +162214589252* +
14501705423 + 7967972 + 2187z [6]

Next consider the graph P! Ps, path of 3 vertices. The reduced independence polynomial of P Ps is 222 + 62 and
the roots are {0, —3} Reduced independence polynomial of (P P3)? is

Shop, = 8% + 4823 4 8422 + 36z

zeros are {0,-3,-1.540.8660254037,-1.5-0.8660254037 }
Fb,p, = 12825 + 153627 + 729625 + 172802° + 210722* + 123842° + 30962 + 2162 [§

fhap, = 32768216 + 7864322'° + 8454144z + 53673984 + 2234204162'% + 64010649621 + 12898344962 +
18370437122 + 183572198448 + 126413107227 + 5826562562° + 17167334425 4+ 299966402 + 274924823 + 11188822 +
1296z

Figure 5: zeros of fgg
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Figure 6: zeros of f17’3

Figure 7: f}%QZP3

Shap, = 21474836482%% + 1030792151042 + 2345052143616 + 336295939276802% 4 3410730166517762% +
2601790256185344227 +15499768708988928 226 +739119187875594242:2° + 286898865724981248224 +9170365654216212
48223 42432710724749885440222 4- 5382984053727166464 21 +-9963162798051557376220 + 15438884485315166208x° +
200158732320296140802'8 + 21663088583601291264217 + 195018854841296486402'6 + 14528838842766065664x1° +
88978223965726310402 14 +4441686131291848704x "3 +17880915674920550402 12 +5728012131008839682 11 +143587145
20493260821°4-275812519708016642° +39548204556549122:8 +40973363337830427 +2943523590912025 4 1386964062720
x° 4 394699305602+ + 59652288023 + 403056022 + 77762

I3,.p, = 92233720368547758082%*4-8854437155380584775681%3+-4139449370140423382630425%+125578054956185143
581081625 +27794382602016871818461184x° 4+ 4784319688373758005702819842° + 6667139200089219482039353344
228 4-773116379879977375256983633922°57 +760980840717088074268435021824x°6 +645408525416859521993194183065
62°° + ... 4 237876794452197651780403200x ! + 95368467533441846898032642'0 + 29593766796740780462899229 +
691250404706216748748828+11745784607426928230427 +13913395276209408002° +10853279541365760x°+512818950
70080z* 4 12894567552023 + 14511571222 + 466562

fhop, = 1701411834604692317316873037158841057282 1% + 326671072244100924924839623134497482997762'27 +
30952084095128562636628554291993636514037762:126 +192940102044172108783733402413812575895552000 125 +-8900
13192550141368045405733969911572287664947212* + 3240220699772488906914239484872804632302106705921'23 +
96965795010640619465753262071365955577808284549122122 +245298178738242656713799374698776237375206176325
6322121 +-53541047115758566421987633901257645741489539346595842 1204 430134075621268019060292752834561%+
116871822050604784073682186242° +-3301060205482937229260390427 +-65055039812127620167680°+84483726112429
88544025 + 66489188857198848x% + 27855748689408z + 522425894422 + 279936

To check the connectedness of independence fractal of Ps ! Ps, the critical point of fp,,p, is -3/2 and its forward
orbit is {-1.5, -4.5, 13.5, 445.5, 399613.5,...} which is unbounded. Hence the independence fractal of P5? Ps is totally
disconnected.

Proposition 4.1. Fractal graph Ps, its fractal factor P, and P5 ! P3 have totally disconnected independence fractals.

Figure 8: zeros of f}3,22P3
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Conclusion

Here we have tried to analyse the fractal properties of the lexicographic products of graphs with six vertices. Also
determined the metric dimension of the fractal factor of the lexicographic products with six vertices which are detected
using the egamorphisms.
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