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Abstract

Let R be a commutative ring and Γ(R) be its zero-divisor graph. All the vertices of zero divisor graphs are the
non-zero divisors of the commutative ring, with two distinct vertices joined by an edge in case their product in the
commutative ring is zero. In this paper, we study the metric dimension and neighbourhood resoling set for the zero
divisor graphs of order 3,4,5,6,7,8,9,10 of a small finite commutative ring with a unit.
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1 Introduction

The concept of zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [2]. He let all elements
of the ring be vertices of the graph and was interested mainly in colorings. In [1], Anderson and Livingston introduced
and studied the zero-divisor graph whose vertices are the non-zero divisors. This graph turns out to best exhibit the
properties of the set of zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic
properties of rings using graph theoretical tools.

The concept metric dimension of connected graphs and its related properties are first introduced by Slater [8] in
1975, independently by Harary and Melter [5] in 1976. A subset of vertices S resolves a graph G if every vertex of G
is uniquely determined by its vector of distances to the vertices in S. A resolving set of minimum cardinality for a
graph G is called a minimum resolving set. A minimum resolving set is usually called a basis for G and the cardinality
of basis is called the metric dimension of G, denoted by β(G).

Let G(V,E) be a graph. For any element v ∈ V , the collection N̄ [v] of all elements which are adjacent to v and also
v itself. A subcollection N is known as n̄− set of G if the total graph G is the finite union of N̄ [v] for each v ∈ N .The
least number of elements in n̄set is called the neighbourhood number of G and is denoted by n(G). Sampathkumar [7]
is first introduce the concept of neighbourhood number. The least number of elements in r̄− set is known as resolving
number of G and is represented by r(G). A neighbourhood resolving number nr(G) is the least number of elements
in the n̄rset. The concepts of resolving set introduced by Slater [8] and independently by Harary [5].
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2 Preliminaries

Lemma 2.1. [10] For any graph G of order k, nr(G) ≤ k − 1.

Lemma 2.2. [9] For any positive integer n, nr(Pn) =

{ ⌈
n
2

⌉
for n ≤ 3⌊

n
2

⌋
for n ≥ 4.

Lemma 2.3. [9] For any positive integer k ≥ 3, nr(Ck) =

{
3, for k = 4⌈
k
2

⌉
, otherwise

The following definition will be used in the paper:

Definition 2.4. [4] A Commutative Ring < R,+, . > is a set R together with two binary operations +, and ., which
we call addition and multiplication, defined on R such that the following axioms are satisfied.
1. < R,+ > is an abelian group.
2. Multiplication is associative
3. For a, b, c ∈ R, a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c, hold.
4. a.b = b.a for all a, b ∈ R.
5. A unity (or identity) in a ring is a nonzero element. that is an identity under multiplication.

The set of all zero divisors in R is denoted by Z(R) and the set of all non zero zero divisors in R is denoted by
Z∗(R).

Definition 2.5. [3] Let v1, v2, v3 ∈ V . If the metric between v1 , v2 and v3 , v2 are different then we say that vertex
v2 is resolve the vertices v1 and v3.

Definition 2.6. [10] Let P = {p1, p2, ..., pr} of V and any w ∈ V . The distance of w to the subset P is the r
touple of metric between w and pi, i = 1, 2, ...r, represented by r(w/P ) = (x1, x2, ..., xr) where xi = d(w, pi). If
r(x/P ) ̸= r(y/P ), for any x, y ∈ V then P is known as resolving set for G.

Definition 2.7. [11] Let R ⊆ V and R = {k1, k2, ..., kr} r ≥ 1 and w ∈ V . A binary neighbourhood metric of w to

the r touple (k1, k2, ..., kr) is defined by MR(w) = (p1, p2, ..., pr), where pi =

{
1 if w ∈ N̄ [ki], 1 ≤ i ≤ r
0 otherwise.

If MR(x) ̸= MR(y) for each x, y ∈ V , then R is known as n̄r − set or neighbourhood resolving set.

Example 2.8. Consider the ring R = Z6 = {0, 1, 2, 3, 4, 5}, Z∗(R) = {2, 3, 4} and corresponding zero divisor graph
G = K1,2 is given below. From the figure W = {2} is the resolving set and metric dimension dim(K1,2) = 1 and since
N [2] ̸= G So S = {2, 4} is also a resolving set for G and N [2] ∪N [4} = G so the least cardinality of neighbourhood
resolving set for G is nr(K1,2) = 2.

u uv2 3 4

Figure. 1

K1,2

3 Metric dimension and Neighbourhood resolving set of zero divisor graphs

In this section, we consider a simple connected zero divisor graphs G with countable number of vertices, examined
some graphs for find the metric dimension and neighbourhood resolving set obtained the following results.

Theorem 3.1. If any Zero divisor graph with 3 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 1.
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Table 1: Zero divisor graphs with 3 vertices

No. Vertices Ring |R| Graph G β(G) nr(G)

3

Z6 6

K1,2 1 2
Z8 8
Z2 [x]

(x3)
8

Z4 [x]

(2x, x2 − 2)
8

3 K3 1 0
Z2 [x, y]

(x, y)2
8

Z4 [x]

(2, x)2
8

F4 [x]

(x2)
16

Z4 [x]

(x2 + x+ 1)
16

Proof . Case.1: The zero divisor graphs K1,2 is the special cases of bipartate graph Km,n, with m = 1, n = 2.
Therefore β(K1,2) = 2, nr(K1,2) = 2.
Case.2: The zero divisor graphs K3 is the complete graph Kn with n = 3. Therefore β(K3) = 2 and nr(K3) = 0. □

Theorem 3.2. If any Zero divisor graph with 4 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 2.

Table 2: Zero divisor graphs with 4 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

4

Z2 × Z4 8 K1,3 2 3
Z3 × Z3 9 K2,2 2 3
Z25 25 K4 3 0
Z5 [x]

(x2)
25 K4 3 0

Proof . Case.1: The zero divisor graphs K1,3 and K2,2 are the special cases of bipartate graph Km,n, with m =
1, n = 3 and m = n = 2.
Therefore β(K1,3) = 2, nr(K1,3) = 3.
Case.2: The zero divisor graphs K4 is the complete graph Kn with n = 4. Therefore β(K4) = 3 and lnr(K4) = 0 □

Theorem 3.3. If any Zero divisor graph with 5 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 3

Proof . Case.1: The Zero divisor Graph K1,4 and K2,3 represents the special cases of the bipartate graph Km,n with
m = 1, n = 4 and m = 2, n = 3 respectively. Here β(K1,4) = 3 , nr(K1,4) = 4, β(K2,3) = 3 , nr(K2,3) = 3

Case.2: The Zero divisor graph for the rings Z2 × Z4 and Z2 ×
Z2[x]

x2
is in Figure.2

From this Figure three vertices have the degree one and the remaining two vertices have degree more than one. The
set {1, 4} is the resolving set for the graph. Therefore β(G) = 2. Also set {2, 3, 4} act as a neighbourhood resolving
set for this graph. Therefore nr(G) = 3.
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Table 3: Zero divisor graphs with 5 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

5

Z2 × Z5 10 K1,4 3 4
Z3 × F4 12 K2,3 3 3
Z2 × Z4 8 Fig. 2 2 3

Z2 ×
Z2[x]

x2
8 Fig. 2 2 3

u
u

u
u
v

1

2

3

4 5

Figure.2

□

Theorem 3.4. If any Zero divisor graph with 6 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 4.

Table 4: Zero divisor graphs with 6 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

6

Z3 × Z5 15 K2,4 4 4
F4 × F4 16 K3,3 4 4
Z2 × Z2 × Z2 8 Fig. 3 2 4
Z7[x]

x2
49 K6 5 0

Z49 49 K6 5 0

Proof . Case.1: The zero divisor graphs K2,4 and K3,3 are the special cases of bipartate graph Km,n.
Therefore β(K2,4) = 4, nr(K2,4) = 4 and β(K3,3) = 4, nr(K3,3) = 4.
Case.2: The zero divisor graph for the Ring Z2 × Z2 × Z2 is in the Figure 3.

From the figure there are 3 vertices with degree 1 and remaining 3 vertices have degree 3. Therefore {2, 3} is the
resolving set and its metric dimension is 2. Set {2, 4, 5, 6} is the least neighbourhood resolving set for the graph shown
in the Figure 3.

�
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6

5

Figure. 3

□

Theorem 3.5. If any Zero divisor graph with 7 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 5

Proof . Case.1: The Zero divisor graph K1,6 and K3,4 are the special case of Km,n with m = 1, n = 6 and
m = 3, n = 4. Therefore β(K1,6) = 5, nr(K1,6) = 6. β(K3,4) = 5, nr(K3,4) = 5
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Table 5: Zero divisor graphs with 7 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

7

Z2 × Z7 14 K1,6 5 6
F4 × Z5 20 K3,4 5 5
Z3 × Z4 12 Fig. 4 4 5

Z3 ×
Z2[x]

x2
12 Fig. 4 4 5

Z16 16 Fig. 5 4 0
Z2[x]/x

4 16 Fig. 5 4 0
Z4[x]/x

4 + 2 16 Fig. 5 4 0
Z4[x]/x

2 + 3x 16 Fig. 5 4 0
Z4[x]/(x

3 − 2, 2x2, 2x) 16 Fig. 5 4 0
Z2[x, y]/(x

3, xy, y2) 16 Fig. 6 5 0
Z8[x]/(2x, x

2) 16 Fig. 6 5 0
Z4[x]/(x

3, 2x2, 2x) 16 Fig. 6 5 0
Z4[x]/(x

2 + 2x) 16 Fig. 7 3 0
Z8[x]/(2x, x

2 + 4) 16 Fig. 7 3 0
Z2[x, y]/(x

2, y2 − xy) 16 Fig. 7 3 0
Z4[x, y]/(x

2, y2 − xy, xy − 2, 2x, 2y) 16 Fig. 7 3 0
Z4[x, y]/(x

2, y2, xy − 2, 2x, 2y) 16 Fig. 8 3 0
Z2[x, y]/(x

2, y2) 16 Fig. 8 3 0
Z4[x]/(x

2) 16 Fig. 8 3 0
Z4[x]/(x

3 − x2 − 2, 2x2, 2x) 16 Fig. 9 4 5
Z2[x, y, z]/(x, y, z)

2 16 K7 6 0
Z4[x, y]/(x

2, y2, 2x, 2y) 16 K7 6 0
F8[x]/(x

2) 64 K7 6 0
Z4[x]/(x

3 + x+ 1) 64 K7 6 0

Case.2: The zero divisor graph for the Rings Z3 × Z4 and Z3 ×
Z2[x]

x2
are in the Figure. 4. From the Figure we can

show the metric dimension and neighbourhood resolving set for the graph. Therefore β(G) = 4, nr(G) = 5.
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Figure. 4

Case.3: The zero divisor graph for the Rings Z16, Z2[x]/x
4, Z4[x]/x

4 + 2, Z4[x]/x
2 + 3x, Z4[x]/(x

3 − 2, 2x2, 2x) are
in the Figure. 5. From the Figure we can show the metric dimension and neighbourhood resolving set for the graph.
Here β(G) = 4, nr(G) = 0.
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Case.4: The zero divisor graph for the Rings Z2[x, y]/(x
3, xy, y2), Z8[x]/(2x, x

2), Z4[x]/(x
3, 2x2, 2x) are in the Figure.
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6. The metric dimension and least neighbourhood resolving set for the graph is β(G) = 5, nr(G) = 0.
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Figure. 6

Case.5: The zero divisor graph for the rings

Z4[x]/(x
2 + 2x), Z8[x]/(2x, x

2 + 4), Z2[x, y]/(x
2, y2 − xy), Z4[x, y]/(x

2, y2 − xy, xy − 2, 2x, 2y)

are in the Figure. 7. The metric dimension and least cardinality of neighbourhood resolving sets are determined from
the figure for the above graphs. Here β(G) = 3, nr(G) = 0.
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Figure. 7

Case.6: The zero divisor graph for the Rings Z4[x, y]/(x
2, y2, xy − 2, 2x, 2y), Z2[x, y]/(x

2, y2), Z4[x]/(x
2) are in the

Figure. 8. The metric dimension and least cardinality of neighbourhood resolving set of above graphs are β(G) = 3,
nr(G) = 0.
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Case.7: The zero divisor graph for the Ring Z4[x]/(x
3 − x2 − 2, 2x2, 2x) is in the Figure. 9. Also, determined the

metric dimension and least cardinality of this graph is β(G) = 4, nr(G) = 5. ,
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Case.8: The zero divisor graph of K7 is the case of Kn with n = 7, so the β(Kn) = n − 1, nr(Kn) = 0. Therefore
β(K7) = 6, nr(K7) = 0. □

Theorem 3.6. If any Zero divisor graph with 8 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 6

Table 6: Zero divisor graphs with 8 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

8

Z2 × F8 16 K1,7 6 7
Z3 × Z7 21 K2,6 6 6
Z5 × Z5 25 K4,4 6 6
Z27 27 Fig. 10 6 0
Z9[x]/(3x, x

2 − 3) 27 Fig. 10 6 0
Z9[x]/(3x, x

2 − 6) 27 Fig. 10 6 0
Z3[x]/(x

3) 27 Fig. 10 6 0
Z3[x, y]/(x, y)

2 27 K8 7 0
Z9[x]/(3, x)

2 27 K8 7 0
F9[x]/(x

2) 81 K8 7 0
Z9[x]/(x

2 + 1) 81 K8 7 0

Proof . Case.1: The Zero divisor graph K1,7, K2,6 and K4,4 are the special case of Km,n with m = 1, n = 7,
m = 2, n = 6 and m = 4, n = 4. Therefore β(K1,7) = 6, nr(K1,7) = 7. β(K2,6) = 6, nr(K2,6) = 6 β(K4,4) = 6,
nr(K4,4) = 6.
Case.2: The zero divisor graph for the Ring Z27, Z9[x]/(3x, x

2 − 3), Z9[x]/(3x, x
2 − 6), Z3[x]/(x

3) From the figure.
10 there are 2 vertices with degree 7 and remaining 6 vertices have degree 2. The resolving set contains 5 vertices of
degree 2 and one vertex of degree 7. Therefore least cardinality of resolving set is 6. From the figure there are two
vertices have the neighbourhood set contains all vertices of this graph. Therefore neighbourhood resolving set of this
graph is zero. Here β(G) = 6, nr(G) = 0.
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Case.3: The zero divisor graph of K8 is the case of Kn with n = 8, so the β(Kn) = n − 1, nr(Kn) = 0. Therefore
β(K8) = 7, nr(K8) = 0. □

Theorem 3.7. If any Zero divisor graph with 9 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 7.

Table 7: Zero divisor graphs with 9 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

9

Z2 × F9 18 K1,8 7 8
Z3 × F8 24 K2,7 7 7
F4 × Z7 28 K3,6 7 7
Z2 × Z2 × Z3 12 Fig.11 3 5
Z4 × F4 16 Fig.12 5 6
Z2[x]/(x

2)× F4 16 Fig.12 5 6

Proof . Case.1: The Zero divisor graph K1,8, K2,7 and K3,6 are the special case of Km,n with m = 1, n = 8,
m = 2, n = 7 and m = 3, n = 6. Therefore β(K1,8) = 7, nr(K1,8) = 8. β(K2,7) = 7, nr(K2,7) = 7 β(K3,6) = 7,
nr(K3,6) = 7.
Case.2: The zero divisor graph for the Ring Z2 × Z2 × Z3 is in the Figure. 11. From the figure the graph of 9
vertices in which four vertices with degree 1, another four vertices with degree 3 and remaining one vertex of degree
2. Therefore the resolving set contains three vertices. Here the least cardinality of neighbourhood resolving set is 5.
Therefore β(G) = 3, nr(G) = 5.
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Case.3: The zero divisor graph for the Ring Z4×F4, Z2[x]/(x
2)×F4 is in the Figure. 12. From the figure the graph of

9 vertices in which five vertices with degree 3, three vertices with degree 1 and remaining one vertex of degree 6. The
resolving set contains 5 vertices. And the least cardinality of neighbourhood resolving set is 6. Therefore β(G) = 5,
nr(G) = 6.
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□

Theorem 3.8. If any Zero divisor graph with 10 vertices have the metric dimension (β(G)) and the least cardinality
of neighbourhood resolving set (nr(G)) are given in the table 8

Proof . Case.1: The Zero divisor graph K2,8, K3,7 and K4,6 are the special case of Km,n. Therefore β(K2,8) = 8,
nr(K2,8) = 8. β(K3,7) = 8, nr(K3,7) = 8, β(K4,6) = 8, nr(K4,6) = 8.
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Table 8: Zero divisor graphs with 10 vertices

No. Vertices Ring |R| Zero divisor graph β(G) nr(G)

10

Z3 × F9 27 K2,8 8 8
F4 × F8 32 K3,7 8 8
Z5 × Z7 35 K4,6 8 8
Z121 121 K10 9 0
Z11[x]/(x

2) 121 K10 9 0

Case.2: The zero divisor graph K10 is a case of Kn complete graph with n = 10, so the β(Kn) = n− 1, nr(Kn) = 0
Therefore β(K10) = 9, nr(K10) = 0. □
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