
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,787 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
سنتز نانوذرات کمپلکسهای Pd(II) شامل لیگاندهایی از مشتقات تریآزول و تترآزول و نانواکسیدهای فلزی مربوطه به روش سونوشیمی | ||
شیمى کاربردى روز | ||
دوره 18، شماره 66، فروردین 1402، صفحه 63-78 اصل مقاله (1.96 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2022.23935.1992 | ||
نویسندگان | ||
زهرا فرهمند ملک آبادی1؛ ربابه علیزاده* 1؛ سارا سیفی1؛ وحید امانی2 | ||
1دانشکده شیمی، دانشگاه دامغان،دامغان، ایران | ||
2دپارتمان شیمی، دانشگاه فرهنگیان، تهران، ایران | ||
تاریخ دریافت: 08 شهریور 1400، تاریخ بازنگری: 24 اسفند 1400، تاریخ پذیرش: 23 شهریور 1401 | ||
چکیده | ||
در این کار تحقیقاتی نانو ذراتی ( N1،N2) از کمپلکسهای (1) [PdCl2(aemptrz)]و (2) [Pd2(μ-mmtz)4].2CH3CN، با بهرهگیری از امواج مافوق صوت در حمام اولتراسونیک (به روش سونوشیمی، که جزء روشهای فراوری حالت مایع است) در دمای ثابت و زمانهای مختلف تهیه شد. هر دو نانوکمپلکس تهیه شده به وسیلهی روشهای پراش پرتو ایکس پودری XRD) ) و تبدیل فوریه ((FT-IR مورد شناسایی قرار گرفتند. پس از تهیه نانوذرات کمپلکسهای 1 و 2، نانوذرات PdO از روش کلسینه کردن در کوره الکتریکی تهیه شد و با تکنیکهای میکروسکوپ الکترونی روبشی (FE-SEM)، پراش پرتو ایکس (XRD)، و تبدیل فوریه (FT-IR) مشخصهیابی گردید. اطلاعات حاصل از آنالیزهای XRD پودری نشان داد که نانوذرات سنتز شده (حاصل از نانوکمپلکسهای 1 و2) در سیستم بلوری تتراگونال و گروه فضایی P42/mmc (برای 1) و درسیستم بلوری مونوکلینیک و گروه فضایی P2/c (برای2) متبلور شدهاند و نتایج حاصل از میکروسکوپ الکترونی روبشی (FE-SEM) نشان داد که اندازه ذرات پالادیوم (II) اکسید حاصل ازنانوکمپلکس(1) و (2) به ترتیب بین 36/61- 44/35 و 69/67-21/34 نانومتر میباشد. | ||
کلیدواژهها | ||
"نانوذره"؛ "پالادیوم(II) اکسید"؛ "سونوشیمی " | ||
عنوان مقاله [English] | ||
Synthesis of nanoparticles of Pd(II) complexes containing triazole and tetrazole derivative ligands and corresponding metal-nano oxides by sonochemical method | ||
نویسندگان [English] | ||
Zahra Farahmand Malekabadi1؛ Robabeh Alizadeh1؛ Sara Seyfi1؛ Vahid Amani2 | ||
1School of Chemistry, Damghan University, Damghan, Iran | ||
2Department of Chemistry, Farhangian University, Tehran, Iran | ||
چکیده [English] | ||
In this research, nanoparticles of the (1) [PdCl2(aemptrz)], and (2) [Pd2(μ-mmtz)4].2CH3CN, have been synthesized using ultrasonic waves in the ultrasonic bath (sonochemistry method, which is one of the methods of liquid state processing) at constant temperature and different times. Both complexes were analyzed using (XRD) and (FTIR) techniques. Nanoparticles of PdO, prepared by calcination in an electric furnace and characterized by (FESEM), (XRD), and (FT-IR) techniques. The results of XRD analysis showed that the synthesized PdO nanoparticles (resulting from nano complexes 1 and 2) crystallized in the space group P42/mmc of the tetragonal (for 1) and P2/c space group of the monoclinic (for 2) systems. The results of the FESEM micrographs showed that the size of the synthesized PdO particles derived from nano complex (1) and (2) is between 35.44 - 61.36 and 34.21 - 67.69 nm, respectively. | ||
کلیدواژهها [English] | ||
"Nanoparticle", " Palladium(II) oxide", "Sonochemistry" | ||
مراجع | ||
[1] Scott-Fordsmand, J. J., Amorim, M. J. D. B., de Garidel-Thoron, C., Castranova, V., Hardy, B., Linkov, I. & Hendren, C. O. (2021). Bridging international approaches on nanoEHS. Nature nanotechnology, 16(6), 608-611.
[2] Ding, M., Chen, G., Xu, W., Jia, C., & Luo, H. (2020). Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science, 2(3), 264-280.
[3] Plata, D. L., & Janković, N. Z. (2021). Achieving sustainable nanomaterial design though strategic cultivation of big data. Nature Nanotechnology, 16(6), 612-614.
[4] Li, C., Luo, M., Xia, Z., & Guo, S. (2020). High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. Nano Materials Science, 2(4), 309-315.
[5] Mendes, G. P., Kluskens, L. D., Mota, M., Lanceros-Méndez, S., & Hatton, T. A. (2021). Spherical and needle shaped magnetic nanoparticles for friction and magnetic stimulated transformation of microorganisms. Nano-Structures & Nano-Objects, 26, 100732.
[6] Zong, Q., Liu, C., Yang, H., Zhang, Q., & Cao, G. (2021). Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 38, 101201.
[7] Zhu, M., Zhu, F., & Schmidt, O. G. (2021). Nano energy for miniaturized systems. Nano Materials Science, 3(2), 107-112.
[8] Sealy, C. (2021). Novel nanocrystals catch the light.
[9] Ge, F., Xue, J., Du, Y., & He, Y. (2021). Unmodified single nanoparticles undergo a motion-pattern transition on the plasma membrane before cellular uptake. Nano Today, 39, 101158.
[10] Aghaee Al-Qalandis, M., (2012), Optimization and Application of Layered Double Hydroxides Nanoparticle Based on Aluminum for Preconcenteration and Determination of Some Organic and Inorganic Compounds (M.S. thesis, The Oromia University).
[11] Hekmati, M., Yousefi, M., Ziyadi, H., Ghasemi, E., Safari Mehr, P., Veisi, H., & Maleki, B. (2021). Catalytic applications of coated nanopalladium particles coated on modified GO by Thymbraspicata extract in Suzuki coupling reactions. Applied Chemistry, 16(58), 233-244. (in Persian)
[12] Keypour, H., & Noroozi, M. (2016). Hydrogenation of benzene in gasoline fuel over nanoparticles (Ni, Pt, Pd, Ru and Rh) supported fullerene: Comparison study. Applied Chemistry, 10(37), 31-42. (in Persian)
[13] Shirkhanloo, H., Farahani, H., Kian, M. J., Eftekhar, F., & Shahrokhi, S. (2012). Investigation and determination of mercury vapor absorption by Nano particle palladium sorbent. Applied Chemistry, 7(24), 19-32. (in Persian)
[14] Xu, Y., Jin, S., Xu, H., Nagai, A., & Jiang, D. (2013). Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews, 42(20), 8012-8031.
[15] Hou, Z., Theyssen, N., Brinkmann, A., & Leitner, W. (2005). Biphasic aerobic oxidation of alcohols catalyzed by poly (ethylene glycol)‐stabilized palladium nanoparticles in supercritical carbon dioxide. Angewandte Chemie International Edition, 44(9), 1346-1349.
[16] Beller, M., Fischer, H., Kühlein, K., Reisinger, C. P., & Herrmann, W. A. (1996). First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. Journal of organometallic chemistry, 520(1-2), 257-259.
[17] Seyfi, S., (2017), Synthesis, Characterization, Crystal Structure Determination, Solution Studies and Density Functional Theory (DFT) Investigation of Transition Metal (Pd & Hg (II)) Complexes, Containing Triazole, Tetrazole, 2,2'- bipyridine and 1,10-phenanthroline Derivatives (Ph.D Thesis, Damghan University).
[18] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2017). Palladium (II) complexes with 1, 2, 4-triazole derivative & ethylene diamine as ligands, synthesis, characterization, luminesence study & crystal structure determination. Polyhedron, 134, 302-315.
[19] Zhang, J., Duan, L., Jiang, D., Lin, Q., & Iwasa, M. (2005). Dispersion of TiN in aqueous media. Journal of colloid and interface science, 286(1), 209-215.
[20] Kalsi, P. S. (2016). Spectroscopy of Organic Compounds, New Age International Pvt Ltd Publishers.
[21] Durig, J. R., Layton, R., Sink, D. W., & Mitchell, B. R. (1965). Far infrared spectra of palladium compounds—I. The influence of ligands upon the palladium chloride stretching frequency. Spectrochimica Acta, 21(8), 1367-1378.
[22] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2018). Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 298-311.
[23] Majdolashrafi, M. S., Raissi Shabari, A., & Amani, V. (2018). Binuclear paddle-wheel platinum (II) and platinum (III) complexes containing 4-methyl-4H-1, 2, 4-triazole-3-thiol ligand: Synthesis, X-ray studies, and spectroscopic characterization. Phosphorus, Sulfur, and Silicon and the Related Elements, 193(7), 415-422.
[24] Mercury 1.4. 1. Copyright Cambridge Crystallographic Data Center, 12 Union Road.
[25] Ghadermazi, M., Taheriha, M., & Amani, V. (2015). Zinc (II) and Cadmium (II) Mixed-Ligand Coordination Polymers Constructed from 4-Methyl-1, 2, 4-triazole-3-thiol and Ethylene Diamine: X-ray Studies, Spectroscopic Characterization, and Thermal Analyses. Journal of Inorganic and Organometallic Polymers and Materials, 25, 712-719.
[26] Tura, J. M., Regull, P., Victori, L., & De Castellar, M. D. (1988). XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surface and interface analysis, 11(8), 447-449.
[27] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2019). Polymorphism of Palladium (II) Complexes: Crystal Structure Determination, Luminescence Properties, Hirshfeld Surface Analyses and DFT/TD‐DFT Studies. ChemistrySelect, 4(20), 6209-6218.
[28] Taheriha, M., Ghadermazi, M., & Amani, V. (2016). Dimeric and polymeric mercury (II) complexes of 1-methyl-1, 2, 3, 4-tetrazole-5-thiol: Synthesis, crystal structure, spectroscopic characterization, and thermal analyses. Journal of Molecular Structure, 1107, 57-65. | ||
آمار تعداد مشاهده مقاله: 273 تعداد دریافت فایل اصل مقاله: 355 |