
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,901 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
سنتز و شناسایی بیوپلیمر کیتوسان اصلاح شده با پورفیرین و کاربرد آن در تخریب متیلن بلو تحت تابش نور مرئی | ||
شیمى کاربردى روز | ||
دوره 18، شماره 66، فروردین 1402، صفحه 173-186 اصل مقاله (1.4 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2022.27140.2071 | ||
نویسندگان | ||
حسین غفوری* ؛ پیمان حنیفه نژاد؛ زیبا فلفلیان | ||
گروه شیمی، دانشکده علوم پایه، دانشگاه علم و صنعت، تهران، ایران | ||
تاریخ دریافت: 21 اردیبهشت 1401، تاریخ بازنگری: 05 مرداد 1401، تاریخ پذیرش: 01 شهریور 1401 | ||
چکیده | ||
در این تحقیق، ابتدا کمپلکس کبالت (III) 5، 10، 15، 20-تتراکیس (تترا (4-کربوکسی فنیل) پورفیرین ( (Co-THPBP سنتز و گروههای اسیدی انتهایی آن با استفاده از تیونیل کلرید، کلردار شد. سپس به منظور تثبیت کمپلکس مورد نظر بر روی بستر پلیمری کیتوسان، کمپلکس کبالت-پورفیرین کلردار با استفاده از 4-آمینوفنول محافظت شده اصلاح گردید و با استفاده از محافظت زدایی گروه هیدروکسیل انتهایی 4-آمینوفنول، کمپلکس اصلاح شده به بستر پلیمری کیتوسانCo-THPBP/CS) (متصل گردید. ترکیبات تهیه شده با استفاده از طیف سنجی تبدیل فوریه مادون قرمز، طیف سنجی مرئی- فرابنفش، میکروسکوپ الکترونی روبشی و طیف سنجی بازتابش انتشاری مشخصه نگاری شد. ترکیب تهیه شده به منظور حذف فوتوکاتالیستی متیلن بلو در حضور نور مریی مورد استفاده قرار گرفت. نتایج حاصل تایید کردند که حضور بستر پلیمری کیتوسان، تاثیر بسزایی بر افزایش میزان جذب رنگ متیلن بلو دارد. | ||
کلیدواژهها | ||
کیتوسان؛ پورفیرین؛ Co-THPBP؛ متیلن بلو؛ جذب؛ تخریب | ||
عنوان مقاله [English] | ||
Synthesis and characterization of porphyrin-modified chitosan biopolymer and its application in the degradation of methylene blue under visible light | ||
نویسندگان [English] | ||
Hossein Ghafuri؛ Peyman Hanifehnejad؛ Ziba Felfelian | ||
Department of Organic Chemistry, Iran University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
In this research, first, the cobalt (III) complex of 20,15,10,5-tetrakis (tetra(4-carboxyphenol)) porphyrin (Co-THPBP) was synthesized and its terminal acidic groups were chlorinated using thionyl chloride. Then, in order to stabilize the desired complex on the chitosan polymer substrate, the chlorinated cobalt-porphyrin complex was modified using protected 4-aminophenol, and as well as by deprotection of the terminal hydroxyl group of 4-aminophenol, the modified complex was attached to the chitosan polymer substrate. The prepared compounds were characterized using Fourier transform infrared spectroscopy (FT-IR), 1H NMR, Ultraviolet–visible spectroscopy (UV-Vis), scanning electron microscope (SEM), Diffuse Reflectance Spectroscopy (DRS). The prepared compound was applied for the photocatalytic removal of methylene blue in the presence of visible light. The results confirmed that the presence of chitosan polymer substrate has a significant effect on increasing the photodegradation of methylene blue dye. | ||
کلیدواژهها [English] | ||
chitosan, porphyrin, Co-THPBP, methylene blue, adsorption, degradation | ||
مراجع | ||
[1] Dai, L., Chang, D. W., Baek, J. B., & Lu, W. (2012). Carbon nanomaterials for advanced energy conversion and storage. small, 8(8), 1130-1166.
[2] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
[3] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686.
[4] Akhtar, B., Ghafuri, H., & Rashidizadeh, A. (2021). Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. Molecular Catalysis, 506, 111527.
[5] Ghafuri, H., Dehghani, M., Rashidizadeh, A., & Rabbani, M. (2019). Synthesis and characterization of magnetic nanocomposite Fe3O4@ TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation. Optik, 179, 646-653.
[6] Ghafuri, H., Movahedinia, Z., Rahimi, R., & Zand, H. R. E. (2015). Synthesis of 5, 10, 15, 20-tetrakis [4-(naphthalen-2-yloxycarbonyl) phenyl] porphyrin (TNBP) and its complexes with zinc and cobalt and an investigation of the photocatalytic activity of nanoFe 3 O 4@ ZrO 2–TNBP. RSC advances, 5(74), 60172-60178.
[7] Ghafuri, H., & Rashidizadeh, A. (2020). Facile preparation of CuS-g-C3N4/Ag nanocomposite with improved photocatalytic activity for the degradation of rhodamine B. Polyhedron, 179, 114368.
[8] Afroozan Bazghale, A., & Mohammad-khah, A. (2021). Improvement of methylene blue removal by La: ZnO/GO nanocomposites in the presence of ultrasound. Applied Chemistry, 16(58), 77-94.
[9] Sessler, J. L., & Seidel, D. (2003). Synthetic expanded porphyrin chemistry. Angewandte Chemie International Edition, 42(42), 5134-5175.
[10] Harvey, J. D., & Ziegler, C. J. (2003). Developments in the metal chemistry of N-confused porphyrin. Coordination chemistry reviews, 247(1-2), 1-19.
[11] Feng, L., Wang, K. Y., Joseph, E., & Zhou, H. C. (2020). Catalytic porphyrin framework compounds. Trends in Chemistry, 2(6), 555-568.
[12] Yaghoubi-berijani, M., & Bahramian, B. (2021). Synthesis, design and use of new BiOBr/Ag@ TCPP and BiOBr/Ag@ SnTCPP nanocomposites for degradation of dye pollutant. Applied Chemistry, 16(58), 287-306.
[13] Kou, S. G., Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94.
[14] Saheed, I. O., Da Oh, W., & Suah, F. B. M. (2021). Chitosan modifications for adsorption of pollutants–A review. Journal of hazardous materials, 408, 124889.
[15] Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules, 150, 1072-1083.
[16] Mohseni, F., Akbarzadeh Torbati, N., & Kondori, T. (2021). Kinetics and isotherm investigation of adsorption process of nickel oxide nanoparticles in edible dye removal from industrial effluent. Applied Chemistry, 16(58), 333-348.
[17] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the total environment, 717, 137222.
[18] Chiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., & Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9(5), 430.
[19] Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408.
[20] Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Materials Today Chemistry, 16, 100233.
[21] Setarehshenas, N., Hosseini, S. H., Nasr Esfahany, M., Mansouri, M., & Ahmadi, G. (2018). Photocatalytic Degradation of Basic Red 46 Azo Dye using Activated Carbon-doped ZrO2/UV Process. Applied Chemistry, 13(48), 53-66.
[22] Nakazono, T., Parent, A. R., & Sakai, K. (2013). Cobalt porphyrins as homogeneous catalysts for water oxidation. Chemical Communications, 49(56), 6325-6327.
[23] Rahimi, R., Mehrehjedy, A., & Zargari, S. (2014, October). Synthesis and photocatalytic activity investigation of CuO nanorod functionalized with porphyrin. In Proceedings of The 18th International Electronic Conference on Synthetic Organic Chemistry.
[24] Alvarez, I. B., Wu, Y., Sanchez, J., Ge, Y., Ramos-Garcés, M. V., Chu, T., ... & Villagrán, D. (2021). Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustainable Energy & Fuels, 5(2), 430-437.
[25] Lions, M., Tommasino, J. B., Chattot, R., Abeykoon, B., Guillou, N., Devic, T., ... & Fateeva, A. (2017). Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chemical Communications, 53(48), 6496-6499.
[26] Wang, C. C., Lee, C. K., Lyu, M. D., & Juang, L. C. (2008). Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes and Pigments, 76(3), 817-824. | ||
آمار تعداد مشاهده مقاله: 358 تعداد دریافت فایل اصل مقاله: 328 |