
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Fixed point theorems in non-Archimedean G-fuzzy metric spaces with new type contractive mappings | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 6، دوره 15، شماره 1، فروردین 2024، صفحه 49-60 اصل مقاله (404.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25209.2954 | ||
نویسنده | ||
Razieh Farokhzad Rostami* | ||
Department of Mathematics, Faculty of Basic Science, Gonbad Kavous University, Gonbad Kavous, Iran | ||
تاریخ دریافت: 30 آبان 1400، تاریخ بازنگری: 02 شهریور 1401، تاریخ پذیرش: 05 شهریور 1401 | ||
چکیده | ||
In this article, we extend some recently fixed point theorems in the setting of G−fuzzy metric spaces. We introduce some new concepts of contractions called γ-contractions and γ-weak contractions. We prove some fixed point theorems for mappings providing γ-contractions and γ-weak contractions. On the other hand, we consider a more general class of auxiliary functions in the contractivity condition. | ||
کلیدواژهها | ||
Fixed point؛ Contractive mapping؛ Weak Contractive mapping؛ Fuzzy metric space | ||
مراجع | ||
[1] S. Banach, Sur les operations dans les ensembles abstraits etleur application aux equations integrales, Fund. Math. 3 (1922), 133—181. [2] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), no. 1, 74–95. [3] M. Grabiec, Y.J. Cho and V. Radu, On Nonsymmetric Topological and Probabilistic Structures, Nova Science Publishers, New York, 2006. [4] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), no. 2, 245–252. [5] D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 3, 95–107. [6] V. Istratescu, An Introduction to Theory of Probabilistic Metric Spaces with Applications, Politehnica University of Bucharest, Bucharest, Romania, 1974. [7] M.A. Kutbi, D. Gopal, C. Vetro and W. Sintunaravat, Further generalization of fixed point theorems in menger PM-spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 32. [8] D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739–744. [9] Z. Mustafa, A new structure for generalized metric spaces–with applications to fixed point theory, PhD Thesis, University of Newcastle, Australia, 2005. [10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289-–297. [11] A. Roldan, J. Martinez-Moreno and C. Roldan, On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2013), 133–150. [12] A. Roldan and M.de la Sen, Some fixed point theorems in menger probabilistic metric-like spaces, Fixed Point Theory Appl. 2015 (2015), 16 pages. [13] S. Shukla and M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 5, 81–92. [14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-–334. [15] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover, New York, 2005. [16] S. Sedghi, N. Shobkolaei, T. Dosenovic, and S. Radenovic, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca 68 (2018), no. 2, 451–462. [17] G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Engin. Technol. 2 (2010), no. 7, 673—678. | ||
آمار تعداد مشاهده مقاله: 25,756 تعداد دریافت فایل اصل مقاله: 236 |