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Abstract

The aim of this study is on using Bayesian inference to analyze right-censored healthcare data using Frechet and
exponential baseline proportional hazard (PH) models. For the baseline hazard parameters, a gamma prior was used,
and for the regression coefficients, normal priors were used. The exact form of the joint posterior distribution was
obtained. Bayes estimators of the parameters are obtained using the Markov chain Monte Carlo (MCMC) simulation
technique. Two real-survival data applications were analyzed by the Frechet PH model and the exponential PH model.
The convergence diagnostic tests are presented. We found that the Frechet PH model was better than the exponential
PH model because it is flexible and could be beneficial in analyzing survival data.
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1 Introduction

Survival analysis is one of the most important fields of statistics in medicine and biological sciences. In medical and
healthcare studies, doctors are interested in determining the type of treatment and reaching recovery in the shortest
possible period of time. We used the proportional hazard (PH) models Frechet and exponential are baseline hazard
functions that are affected by covariates. It is one of the most common methods in dealing with parametric regression
models for the analysis of survival data. In addition, the computational advances in the last decades have favored the
use of Bayesian methods in this context, providing a flexible and powerful alternative to the traditional frequentist
approach.

In a recent study, a flexible Bayesian parametric PH model has been explored. Bayesian estimates of the baseline
hazard parameters and the regression coeflicients were derived with the generalized log-logistic baseline hazard. The
proposed model was applied to real-world applications involving two well-known right-censored survival data sets using
the MCMC approach [16].

Noraslinda, Zarina, and Norhaiza [I1] explored the proportional hazards model (PH) for right-censored data from a
Bayesian perspective. The MCMC approach was used to estimate the background distributions for model parameters
and was applied to Leukemia data.
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A study of the mortality rate of children under the age of five in Bangladesh was carried out using the cox
proportional hazard model under both classical and Bayesian methods. Almost similar results were reached using
these methods, except for one key finding. Under Bayesian analysis, a child’s size at birth appeared as a potential
determinant of under-five mortality, whereas it has an insignificant effect on child survival when the classical Cox
model has been applied [I7].

The researchers (Samuel and Eren) concentrated only on the functioning of the article, Bayesian Survival Analysis.
A broad variety of Bayesian survival models may be fitted using the rstanarm R package, which includes typical
parametric (exponential, Weibull, and Gompertz) models. The rstanarm package for Bayesian regression modeling
has a simple way to get back-end estimates [3].

A model of proportional hazard Bayesian analysis using left truncated and right-censored data. As part of a process
that’s neutral to the right, they used a survival function with a limited number of dimensions as the ”background”
for the baseline survival function. The regression coeflicient is given precedence over other variables. After that, they
had the information you need it. This is exactly what the joint posterior distribution of regression coeflicients should
look like. And the hazard function at the beginning of the baseline data. As a byproduct, they come up with it to
demonstrate the validity of our findings. The accuracy of the regression model’s posterior distribution [12].

A study on patients with COVID-19 was developed to see what characteristics influence their length of hospital
stay. The time between a patient’s admission and discharge served as a response variable and a time-to-event analysis
were carried out to identify the factors that could affect this time. Hospitalization duration predictors were identified
using the Cox proportional hazard model. The study declared that Patients with more than two chronic diseases
tended to stay in the hospital for longer than those without [21].

This paper is concerned with Bayesian inference of the proportional hazard model when observations are right-
censored with applications on two distinct right-censored survival data sets. The first data concerns (98 patients with
COVID-19 disease, and the second data set concerns (46) patients with leukemia disease. It is also concerned with
knowing the risk of the treatments applied for these two diseases. The two data sets were analyzed to demonstrate the
flexibility and applicability of the proposed Frechet PH model and the exponential PH model in modeling different
survival data sets with different hazard rate shapes. All computations are performed in Bayesian analysis using
MCMCpack with the function MCMCmetroplR, an R package from the R software.

2 Hazard, Cumulative hazard, and Survival Functions

There are three key quantities of interest in standard survival analysis: the hazard rate function, the cumulative
hazard function, and the survival function. These quantities are used to form the likelihood function for the survival
models described in later sections.

The hazard is the instantaneous rate of occurrence for the event at time t. mathematically, it is
PH<T<t+At|T>t) Pt<T<t+At) d

h(t) = A7 = AP == log log S(¥)

The cumulative hazard function is defined as

and the survival function is defined as
t
S(t) = expexp{—H(t)} = exp (/ h(u)du> .
0

It can be seen here that in the standard survival analysis setting where there is one event type of interest (i.e.,
no competing events) there is a one-to-one relationship between each of the hazard, the cumulative hazard, and the
survival probability.

3 Parametric Proportional Hazard (PH) Model

The Cox PH model is most commonly used for analyzing censored survival data where the distribution of lifetime
is considered unknown or unspecified. The parametric proportional hazards model is the parametric version of the
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Cox proportional hazards model. According to Cox (1972) [6], the hazard function for the lifetime T in presence of a
set of covariates (X1,Xs...Xy) takes the form

h(x) = ho(t) expexp (z'B) = ho(t) exp (z161 + z282 + - - + Tk k) (3.1)

where ho(t) denotes the baseline hazard function at time t, X denotes the k x 1 covariate vector for an arbitrary
individual in the population, and 3 denotes a k x 1 vector of regression coefficients.

The key difference between the two kinds of models is that the baseline hazard function is assumed to follow a
specific distribution when a fully parametric PH model is fitted to the data, whereas the Cox model has no such
constraint. The coefficients are estimated by partial likelihood in the Cox model but maximum likelihood in the
parametric PH model. Other than this, the two types of models are equivalent. Hazard ratios have the same
interpretation and the proportionality of hazards is still assumed. A number of different parametric PH models
may be derived by choosing different hazard functions. The commonly applied models are exponential, and the
proposed Frechet model in this study.

3.1 Exponential PH Model

The exponential distribution is a continuous probability distribution with only one unknown parameter A. It is the
simplest distribution for lifetime distribution models. The distribution is not flexible enough to describe commonly
encountered hazard rate shapes for survival data. The pdf, cdf, sf, hrf, and chf of the exponential random variable
are, respectively, as follows [2] and [5]. Let X ~ exponential (\),

ft) = e M (3.2)
F(t)=1-e (3.3)
S(t)=e MV = e~ (3.4)
h(t) = X (3.5)
H(t) = —loglog S(t) = —loglog (™) = At (3.6)

where A > 0 is the scale parameter and ¢ > 0. A short value of k shows low risk and long survival, whereas a large
value shows high risk and short survival. For the PH model, the exponential baseline hazard is h(t) = A. So, according
to the formulation of the PH framework, the hazard rate for an individual with covariate vector X and link function
n(z) is

h(t) = ho(t)n(x) = An(z).

Applying the log-linear function n(x) = exp (2’3), we can simplify into

hepu(t) = Aexpexp (2'8) = Aexp (x151 + 2202 + - + 21 Bk) - (3.7)

The exponential distribution of the hrf in this equation, with scale parameter A, satisfies the PH assumption, as
shown by the expression (z’(3). It is important to note that several studies have demonstrated that the exponential
distribution is insufficient to characterize survival data. This limits the range of applications for this distribution.

The following are the alternative lifespan distributions of the exponential PH model. The survival function of the
exponential PH model is

Sepu(t) = lexp(—At)](*7) (3.8)

The pdf of the exponential PH model is
fepr(t) = A+ expexp(=At) (a'f) [exp exp(~At)] (7)1, (3.9)

The cdf of the exponential PH model is
Fepr(t) =1 — [exp(—t)](=2). (3.10)

The chf of the exponential PH model is

Hepu(t) = Xt (2'8). (3.11)
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3.2 The Frechet PH Model

Frechet distribution was presented for the first time by the French mathematics scientist Maurice Frechet (1878-
1973) who determined the distribution of his largest statistics in the year (1927). Frechet distribution is one of the
continuous probability distributions and is one of the distributions with heavy tails. The distribution of Frechet is a
special case of the distribution of generalized extremist values when the location parameter is equal to zero. It has
uses in the life sciences, studying the statistical behavior of material properties in the engineering fields, and analyzing
many extreme events, including rains, wind speed, floods, earthquakes, and life tests, and it is also used to model
failure rates, which are commonly used in reliability and analysis of light signals [I] and [9].

The pdf, cdf, sf, hrf, and chf of the Frechet random variable are, respectively, as follows. Let X ~ Fr(a, A)

F(t) = axot— (@D (3)" (3.12)

F(t)=e(3)" (3.13)

Sit)y=1-F(t)=1—e(2)" (3.14)
) aret=(e=De=(3)"

h(t) = St~ 1. 0F (3.15)

H(t) = —loglog S(t) = loglog (1 — 67(%)0)_1 (3.16)

where ¢, a, A > 0. The parameter A is called the scale parameter, and the parameter « is called the shape parameter.
So, according to the formulation of the PH framework, the hazard rate for an individual with covariate vector x and
link function n(z) is
aret—(a=1e=(3)"
h(t) = ho(t)n(z) = e 1(2).
1-— e_( )

Applying the log-linear function n(x) = exp (2’3), we can simplify into

arri=loDe ()" aret(e e (3)”
hprpr(t) = -0 expexp (z'f) = O exp (v181 + 2282 + -+ + 21 PK) - (3.17)
—e .

t t

The Frechet distribution of the hrf in this equation, with scale parameter A, and shape parameter «. satisfies
the PH assumption, as shown by the expression (2’/3). The following are the alternative lifespan distributions of the
Frechet PH model. The survival function of the Frechet PH model is

a7 (z'B
Srrpu(t) = [1 —e(3) }( ) :

The pdf of the Frechet PH model is

Frrpr(t) = ax2t— @ De=(3)" (278) [1 — e—(%)“} S (3.18)

The cdf of the Frechet PH model is
Frrpu(t) = [67(%)1('@/5) (3.19)

The chf of the Frechet PH model is
Hp,pg(t) = loglog (l—e*(%)n)_l (2'B). (3.20)

4 Inferential Procedures

In this section, we discuss the frequentist (via the maximum likelihood estimation) and Bayesian inference (applying
independent gamma priors for the baseline hazard parameter and normal prior for the regression coefficients for the
proposed Frechet PH model parameters and exponential PH model.
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4.1 Maximum Likelihood Estimation (MLE) for the Right-Censored Survival Data

Survival data are often right-censored. That is, survival times are known for only a portion of the individuals under
study, and the remainder of the survival times are known only to exceed certain values. Specifically, an observation is
said to be right censored at time ¢, if the exact value of the observation is not known but only that it is greater than
or equal to c [10].

In this section, we introduce the proportional hazard model for right censoring data and review prior processes
neutral to the right for the baseline survival function. We begin by modeling the complete data censoring mechanisms.
The postulates of the proportional hazard model are as follows. Let 13,75, ...,T;, be survival times with covariates
L1,L2y «+ -3y

Suppose the distribution F; of t; with covariate x; is given by 1 — F;(t) = (1— F(t)) (2’'3), where (3 is the regression
coefficient and F' is the known baseline distribution function. The survival times are observed due to the censoring
variables (W;, C;), which are assumed to be independent random vectors independent of the zs. Let ¢; = min(T%, C1)
and W; = I (T}, C;) which equals 1 if T; < C; and 0 otherwise.

Suppose that a right-censored random sample with data D = (¢;, w;, x;),% = 1,...n, where t; is the censoring time
or survival time according to whether w; = 1 if the event has occurred, w; = 0 if the observation is right censored,
respectively and x; = X1,X24-..,X, IS an n X 1 colomn vector of external covariates for the ith individual. And
suppose that ¢ is the vector of parameters associated with the baseline distribution, and g is the vector of regression
coefficients. Then the likelihood function for (¢, 8) for a set of right censored data on n subjects is given by

L@, | D) =[] Lf (t: | 9,8,2)]" [S(t: | 9, 8,2)]

—-

ﬁ
Il
-

[h(9, B,2) - S (t: | 9, 8,2))" [S (t; | 9, B,2)] ™

|

N
Il
-

|

@
Il
-

[h (ti | ﬁaﬂa‘r)]wi [S (ti ‘ ﬁvﬁvi)]

I

Il
—

h(ti | 9, 8,2)]"" exp { /O t h(u)du}

K2

|

[ho (t; | 9) exp (2/B)]"" lexp <— Z Hy (t; | V) exp (x’ﬁ))] (4.1)

i=1 i=1

An iterative optimization procedure (e.g., Newton-Raphson algorithm) can be used to obtain the maximum like-
lihood estimation ¢ of ¥). The natural logarithm of the likelihood function, so called log-likelihood function can be
written as follows:

n

10,8 D)= w;[logloghg (t; | 9) + (/8)] = Y Ho (ti | ¥) exp (a'B) . (4.2)

i=1 i=1

Note that Sy(t) is the baseline survivor function, which is related to hg(.)isthebaselinehazard function by Sy(t) =
exp ( f(f h(u)du) = exp (—Hp (t;)) where Hy(t) is the baseline cumulative hazard rate function.

4.2 Bayesian Approach

This subsection sketches a Bayesian approach to a multivariate fixed effects proportional hazards model for right-
censored data. The specification of its posterior distribution needs the following ingredients: First, the likelihood of the
observed data; second, specific prior distributions for regression parameters, hyper parameters, and baseline hazard;
third, a Markov Chain Monte Carlo (MCMC) the algorithm which can be used to sample the posterior distribution
of the parameters of interest.

4.2.1 Maximum likelihood estimation

The likelihood function is one of the important ingredients of the formula of Bayes’ theorem, we can find the
likelihood function of baseline hazard distribution of the models studied in this research as follows.
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Maximum likelihood estimation for Frechet PH model

We obtain the whole likelihood function of the Frechet PH model by using equations (3.15) and (3.16) in the
likelihood function provided in (4.1). The function may be written as follows:

n al® —(a—l)e—(%)a Wi n e
L(a,\ | t) = H 1 l At 5 exp (JU’B)] [exp (— Zloglog(l e (%) YL exp (x’ﬁ))] (4.3)

=1 1 _67(7

and also using equations (3.15) and (3.16) in (4.2) we get a log-likelihood function of the Frechet PH model

n )\atf(afl) *(%)a
o, N\ |t) = Zwl [loglog a _(E)a
i=1 I—e ¢

+ (z’ﬂ)] ~ 3 loglog (1 - e*(%)”)_l exp (z'B) (4.4)

Maximum likelihood estimation for exponential PH model

We obtain the whole likelihood function of the exponential PH model by using equations (3.5) and (3.6) in the
likelihood function provided in (4.2). The function may be written as follows:

LW|t) = H 1[\exp (2/B8)]" [exp (— Z At exp (m’ﬁ))] (4.5)

i=1 i=1
and also using equations (3.5) and (3.6) in (4.2) we get a log-likelihood function of the exponential PH model

10 [t) = w;[loglog A+ (2/8)] — Y Mtexp («/B). (4.6)
=1 =1
4.2.2 Prior Distribution

For each of the parameters, a number of prior distributions are available. Default choices exist, but the user can
explicitly specify the priors if they wish. We have assumed normal priors for the covariates and independent gamma
priors for the baseline parameters of the Frechet PH model and exponential PH model.

Prior Distribution of the Frechet PH model

We assume the independent gamma priors for o «~ G (a1,b1) and A «~ G (az, ba) as

bt

p(a) «~ G (a1, b)) = T (zl)aal_le_bla,al,bl,a >0 (4.7
ba 2

p(A\) « G (az,bs) = ang)vrle*bzk,az,b% A > 0. (4.8)

Prior to that, we had the regression coefficients (assuming a normal distribution).
p(B') «~ N (a3, b3)

The density function of the combined prior distribution of all unknown parameters and the regression coefficients
of the Frechet PH model is given as

p(a, A B') = P(a)p(A)p (8) (4.9)
Prior Distribution of the exponential PH model
We assume the independent gamma priors for A v~ G (ag, bs) as

b2a2
I (ag)

p()\) - G(G‘Q?bQ) = )‘a27167b2)\;a2;b23 A>0.

Prior to that, we had the regression coefficients (assuming a normal distribution)
p(B') «~ N (as,b3).

The density function of the combined prior distribution of all unknown parameters and the regression coefficients
of the exponential PH model is given as

p(XB) =pNp(B). (4.10)
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4.2.3 The Posterior Distribution

The joint posterior density function is equal to the multiplication of the prior distribution and the likelihood
function.

The Posterior Distribution of the Frechet PH model

The joint posterior density function of the parameters o, A, and 3’ of the Frechet PH model given the data can be
expressed using Bayes’ theorem as

p(a’A76/|x) Ocp(a’A7B/)L(a7>\7/8/)

or

p(a, X, B | ) o< p(e)p(\p (B') L (v, A, ') (4.11)

where the first two terms represent the prior specification for the unknown parameters and are assumed to be inde-
pendent and L («a, A, 8) is the likelihood function from Equation (4.3)

p
pla, N\, B | z) H Bj p airtnTlemhiayaatn=lo=baAp (o A g'). (4.12)
j=1

The Posterior Distribution of the exponential PH model

The joint posterior density function of the parameters A and 8’ of the exponential PH model given the data can
be expressed using Bayes’ theorem as

p(AB @) ocp(AB)L(AB)

or

p(A B [ x) ccp(Np (B) L (A, B) (4.13)

where the first two terms represent the prior specification for the unknown parameters and are assumed to be inde-
pendent and L (X, ') is the likelihood function from Equation (4.5)

p
pONB ) o S [ 85 p A=t te AL (A ). (4.14)
j=1

The marginal distribution of the model parameters and the normalizing joint posterior density function is difficult
to calculate analytically, requiring high-dimensional integration and no closed form inferences. To obtain estimates, we
use MCMC simulation methods, which involve sampling from the posterior distribution using the Metropolis-Hastings
Algorithm.

5 A model for the comparison of two groups

An alternative way of expressing the model in Equation (36) leads to a model that can more easily be generalized.
We assume that survival data are available on n individuals and denote the hazard function for the ith of these by
hi(t),i =1,2,...,n. Also, write ho(t) for the hazard function for an individual on the standard treatment. The hazard
function for an individual on the new treatment is then H R ho(t). The relative hazard H R cannot be negative, so it is
convenient to set HR = exp(/3). The parameter [ is then the logarithm of the hazard ratio, that is, 5 = log HR, and
any value of 8 in the range (—o0, 00) will lead to a positive value of HR. Note that positive values of 8 are obtained
when the hazard ratio, HR, is greater than unity, that is when the new treatment is inferior to the standard.

If z; is the value of indicator variable X for the i** individual in the study, i = 1,2,. .., n, the hazard function for
this individual can be written as
hl(t) = h()(t)eﬁwi

where 2; = 0 if the i** individual is on the new treatment and x; = 1 otherwise. This is the proportional hazards
model for the comparison of two treatment groups [5] and [I4].
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6 Application to Real Data

In this section, two applications were considered on real-life survival data. The first application concerns a data
set of (96) infected patients with COVID-19 disease. The second application concern a data set of (42) patients with
leukemia disease. The two data sets were right-censored, which is the most common type of censoring in the analysis
of survival data.

6.1 Data Set I: COVID-19 Survival Data

Coronavirus disease (COVID-19) has become a global pandemic that has affected millions of people worldwide.
The presence of multiple risk factors for COVID-19 makes it difficult to plan treatment and optimize the use of medical
resources. In this study, we are interested to determine the hazard ratio of the new therapy (Favipiravir) compared to
the typical therapy. A sample of 96 positive cases of COVID-19 from Al-Diwaniyah Teaching Hospital is monitored
from the 1% to the 30*" of January 2022. Out of those 96 cases, 49 patients were treated with the new therapy and
48 patients were treated with the typical therapy. We will apply this data to two Frechet PH and exponential PH
models. Table 1 describes the variables applied in the study

In checking the proportionality assumption for our problem, a widely used method for assessing the PH assumption
is based on the TTT plot. As a result, we anticipate that the Frechet PH model will provide a good fit when compared
to the exponential PH model employed in this study.

Figure 1 shows the TTT plot, box plot, and the histogram for the survival times of the COVID-19 data set. Based
on the TTT plot, the hazard rate function is an increasing hazard. The data could be analyzed using a model such as
the Frechet distribution, which would be represented by the PH framework. Posterior Analysis of Frechet distribution.
In this study, we assume the noninformative independent framework with a normal prior N(0, 1000) for 3’ (regression
coefficients) and an independent gamma prior for the baseline parameter for a «~ G (a1,b1) and A «~ G (ag, be) with
hyper-parameter values (a1 = by = as = by = 0.0001).

We started the parallel chain for a sufficiently large number of iterations until convergence was achieved. The
convergence was achieved at 110,000 replication with a burn-in of 10000 . We use MCMCpack, an R package that
contains functions to perform Bayesian inference using posterior simulation for a number of statistical models.

The MCMCmetroplR function allows users to sample from a user-defined continuous density using a random walk
Metropolis algorithm with a multivariate normal proposal distribution. This can be used to explore a posterior (or
log-posterior) distribution, as well as any other target distribution of interest [7] and [I8]. The sampler itself is coded
in C + +, so the iterations run quite fast. Users only have to provide the target density as an R function [15].

Numerical Summary

Different quantities of interest are introduced to investigate posterior properties. Numerical values for these
posterior properties of the Frechet PH model using an MCMC sample are presented. The Naive standard error (SE)
is defined as the mean standard error that incorporates simulation error rather than posterior uncertainty.

posterior SD

Naive SE =
vn
The time series SE adjusts the Naive SE for autocorrelation. Trace plots and autocorrelation plots are the most
common ways to judge the convergence of an MCMC simulation graphically [8].

The posterior mean, posterior standard deviation, Naive standard error SE, time series standard error, 95% credible
interval (2.5%,97.5%) and the highest posterior density (HPD) interval for the model parameters in Table 2. Table 3
showed the basic statistics for Frechet PH model via MCMC sample. These statistics include the minimum, Quartiles,
maximum, mode, skewness, and kurtosis.

Table (2) shows that the Naive SE is smaller than the standard deviations (SD) for all of the distributional
parameters and regression coefficients, as expected, indicating that the MCMC algorithm has converged to the posterior
distribution.

Visual Summary

The convergence diagnostics of an MCMC algorithm can be examined by some graphical techniques. These
techniques include the trace plots, the density plots and the autocorrelation plots. We looked at these diagnostic
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Table 1: Description of the variables of patients with COVID-19 disease

Wariable Description
ti the time until relapses ocours (in days)
Wi the logical anticipation varizble, equal to 1 when the relapse has occurred and O

when you are still in anticipation for this component.

Sex the gender (value O female, value 1: male)

X the therapy type variable where new therapy | Favipiravir) is encoded as 0 and
typical therapy is encoded as 1

WERC the variable number of total white bload cells Ygranuloeytes (neutrophils,
easinophils, and basophils), monocytes, and lymphooytes}iper micraliter of blood

Lym% Lymphaocytes Percentage: It determines the level of lymphooytes in relation to
ather WEBC types. The lymphocyte: It is one of the types of white blood cells found
in the blood,

This test can be used to detect a disease that affects the lymphooytes and immune
system, such as Viral infections, cancer, etc.

Grant The percentage of Granulocyte in relation to other WEC types,

Gran is short for granulocyte (neutrophils, ecsinephils, and bazophils). An elevated
level of granulocytes is indicative of infection, especially bacterial cause and
leukemia

Ml (MID) cells its WEC other than lymphooyte and Granulogrte include less frequently
aceurring and rare cells correlating to monoeytes, ecsinaphils, bazophils, blasts,
and other precursor white cells that fall in & particular size range

Lyt that identifies the amount of lymphocytes in a microliter of blood it value in COVID-
19 patients to differentiate disease severity and to predict mortality

Grang It is an indication of the white blood cell type of granulocytes, which are known as
granulacytes referred to It indicates the presence of some health problems, such as
bacterial infections. Bacterial or viral infection. Autoimmune diseases,

Mids mild in the blood test stands for Mid-range absolute count, and the mid-test means
the combined value of types of white blood cells such as lymphooytes.

RBC Red Blood Cell Count: An RBC test analysis measures the number of red bload cells
present in a blood sample and is often used to assess an individual's health

HGE Hemoglohin is a protein in red blood cells that carries axygen throughout the body
HCT Hematocrit test measures the proportion of red blood cells in your blood,
MW Mean corpuscular volume measures the average size of red blood cells.

plots to get a visual description of the posterior properties. These plots and graphs provide a nearly comprehensive
representation of the parameter’s posterior uncertainty for the application of the COVID-19 data set.

A time series plot (also known as a trace plot) is among the most widely used MCMC simulation diagnostics [§].
Figure 2 shows that the MCMC sampling process converges to the joint posterior distribution with no periodicity.
As a result, we can say that the chains have converged. The basic forms of standard analytic distribution may be
compared to density through density plots. Density charts can show the behavior in the tails, skewness, and other
characteristics.

The density graphs for the Frechet PH model parameters are shown in Figure (2). It appears that data outliers
and multimodal behavior are both present.

Although the autocorrelation plot is not strictly a convergence diagnostic tool, it does aid in indirectly assessing
the convergence of the MCMC simulation process [19]. Figure (3) shows the autocorrelation plots for Frechet baseline
parameter and the regression coefficients. Table 4 show all the variables have converged of the Frechet PH model
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according to Geweke diagnostic.

Hazard Ratio (HR).

The hazard ratio is concerned with the application of the therapy type variable represented by Rx from table 1
for patients with COVID-19. From table 2, the Bayes estimate of the coefficient of the therapy type variable, Rx is
B2 = —1.11931 with a standard error SE = 0.00144. From section 6 , the hazard ratio becomes e¢”? = 0.3265, and
since we have coded this therapy | Favipiravir) as 0 and the typical therapy as 1 , this means that using the typical
therapy will increase the risk by 0.3265 times compared to using the new therapy.

Table 2: Numerical summaries of posterior characteristics based on the Frechet PH model via MCMC sample for the COVID-19 data sets.

Nod | Mean SD Naive Time-series 95% credible interval | HPD interval (95%)
e SE SE
BO 0.09219 | 28.73451 | 0.08664 | 1.85647 (-52.88996, 2.20624) | (-55.81047, 0.94856)
Bl -0.9336 | 0.39588 0.00119 | 0.02795 (-1.76352.-0.20061) | (-1.68965, -0.17429)
p2 -1.11931 | 0.47612 0.00144 | 0.0348 (-2.08094. -0.12583) | (-2.04715. -0.23335)
B3 0.87603 | 0.73404 0.00221 | 0.07518 (-0.16816,2.62714) | (-0.30111, 2.2447)
B4 -0.69436 | 0.76923 0.00232 | 0.05618 (-2.28832,0.87517) | (-2.21592, 0.95068)
Bs -0.62822 | 0.78046 0.00235 | 0.05745 (-2.23902, 0.94855) | (-2.19672,1.01229)
B6 -0.48368 | 0.81023 0.00244 | 0.05948 (-2.13808, 1.03696) | (-2.10628, 1.24996)
B7 -0.40038 | 0.85665 0.00258 | 0.08454 (-2.22767,0.96704) | (-1.88658, 1.35391)
B8 -1.19331 | 0.74708 0.00225 | 0.07453 (-2.88972,-0.01613) | (-2.6045, -0.0049)
B9 -2.11015 | 1.68809 0.00509 | 0.12981 (-5.64583,0.88027) | (-5.73752,0.81674)
10 | 2.53733 | 2.25851 0.00681 | 0.18599 (-1.75805, 0.88027) | (-1.3456, 6.57655)
11 |2.96114 | 2.59053 0.00781 | 0.19437 (-1.55457,8.29601) | (-2.22106, 7.52863)
12 | -1.15459 | 0.92886 0.0028 | 0.07131 (-3.06022, 0.49704) | (-3.01505,0.41729)
B13 | 1.30967 | 0.79882 0.00241 | 0.05986 (-0.21149, 2.84499) | (-0.28383, 2.90254)
14 | -3.78414 | 2.40552 0.00725 | 0.17907 (-8.61465,0.77841) | (-8.4969, 1.24689)
15 | 1.95942 | 2.29628 0.00692 | 0.17285 (-2.50977, 6.63951) | (-2.73779, 6.04265)
B16 |-0.32711 | 0.1817 0.00055 | 0.01184 (-0.70785, 0.05024) | (-0.69341, 0.07066)
17 |0.00062 | 0.00212 0.00001 | 0.00015 (-0.00349, 0.00471) | (-0.00319, 0.00526)
a 0.89277 | 0.06501 0.0002 | 0.00836 (0.79835, 1.06773) | (0.64804, 0.90048)
A 112.063 | 18.5206 0.05584 | 4.91788 (66.61264, (96.21888,

1 139.56594) 299.34375)

Table 4. Show all the variables have converged of the Frechet PH model according to Geweke diagnostic.
Posterior Analysis of exponential distribution

In this study, we assume the noninformative independent framework with a normal prior N(0, 1000) for 8’ ’s
(regression coefficients) and an independent gamma prior for the baseline parameter for A v G (a2, by) with hyper-
parameter values (a2 = be = 0.0001).

We started the parallel chain for a sufficiently large number of iterations until convergence was achieved. The
convergence was achieved at 51,000 replication with a burn-in of 1000 . We use MCMCpack, an R package that
contains functions to perform Bayesian inference using posterior simulation for a number of statistical models.

Numerical Summary

Different quantities of interest are introduced to investigate posterior properties. Numerical values for these

posterior properties of the exponential PH model using an MCMC sample are presented.

The posterior mean, posterior standard deviation, Naive standard error SE, time series standard error, 95% credible
interval (2.5%,97.5%), and the highest posterior density (HPD) interval for the model parameters are in Table 5.
Table 6 showed the basic statistics for the exponential PH model via the MCMC sample. These statistics include the
minimum, Quartiles, maximum, mode, skewness, and kurtosis.

Table 5 shows that the Naive SE is smaller than the standard deviations (SD) for the distributional parameter and
regression coefficients, as expected, indicating that the MCMC algorithm has converged to the posterior distribution.

Visual Summary
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Table 3: Some basic statistics for the Frechet PH model via MCMC sample for the COVID-19 data sets.

Mode | Minimum | Q1 Median[Q2) | Q3 Maximum | Mods Skewneszs | Kurtosis
[ -93 43437 | 093405 | -1.93714 1809355 | 11789278 [ -1.98363 | 0.24174 287549
fil -2.20542 | -1.1877 003816 064403 | 023872 -0.81550 | 0013306 | 290803

p2 275001 | -1.4064 | -1.11392 -0.82505 | 045461 -1.0739 | 021425 | 343439
fi3 0550101 ) 031838 | 077902 1.273] 350211 120581 | 0.78627 345918

[ -292075 | -1.21508 | -0.69233 A.17313 | 1836673 -1.11304 | 00086 2EL526
[i3 294017 | -1.15342 | -0.63595 0.10698 | 195988 =1.0766 | 0.0052 28172

pis 298232 | -0.99467 | 05075 0.03924 | 2.07247 -0.89245 | 0060385 | 284258
[T -3.6366 -093475 | 031462 |01 997 | 131252 -0.93475 | 059689 3.49351
pa 43734 | -1.65139 | -1.09994 | -0.60981 | 039315 =1L3A8510 | 077929 | 344638
pe -B0T7408 | 33009 | -1.9192] 083085 | 241593 -1.46130 | 036899 | 28734

1o -3.0%918] 1021594 238004 AR5 1 977333 (.502 (34137 305802
[ill -3 13083 | 1LORATD | 2.85TT | Aed9sd | 1292809 | 002002 | 0.28477 312993

fl2 -4 75981 | -1.74251 | -1.10616 04849 | 172719 -0.03431 | 03131 3243583
13 -LIAALS | 0.TE9TT | 130818 1.3879 3.E8256 161509 | 009524 187451
[il4 -11.26719 | -5.32084 | -3.86968 -2.05313 | 3.11543 -4 97804 | 010183 | 283738
pla -5.2T6TY | 0LS0227 | L9605 35370 | 919491 399217 | 0.07234 3.08222
fli 097812 | -043179 | 032805 021156 | 030823 -0.33098 | 010656 | 345317
17 000564 | -0L000TS | 0.00051 000216 | L0078 -0.00058 | 0L07T361 273578

a 075195 | 084733 | 085508 092429 | 141349 085113 | Ledal2 £.70074
& 314755 ) 10108010 | 1119775 1273801 | 14599857 | 12738010 | 069213 | 345299
9 i ]
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Figure 1: The TTT plot, box plot, and histogram for the survival times of the COVID-19 data set.

The convergence diagnostics of an MCMC algorithm can be examined by some graphical techniques. These
techniques include trace plots, density plots, and autocorrelation plots. We looked at these diagnostic plots to get a
visual description of the posterior properties. These plots and graphs provide a nearly comprehensive representation
of the parameter’s posterior uncertainty for the application of the COVID-19 data set.

Figure 5 shows that the MCMC sampling process converges to the joint posterior distribution with no periodicity.
As a result, we can say that the chains have converged. The basic forms of standard analytic distribution may be
compared to density through density plots. Density charts can show the behavior in the tails, skewness, and other
characteristics. The density graphs for the exponential PH model parameters are shown in Figure 5 . It appears
that data outliers and multimodal behavior are both present. Although the autocorrelation plot is not strictly a
convergence diagnostic tool, it does aid in indirectly assessing the convergence of the MCMC simulation process [19].
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Figure 2: Trace plots and Density distribution for Frechet baseline hazard parameters and the regression coefficients for the COVID-19
data sets.
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Figure 3: Autocorrelation plots for Frechet baseline parameters and all regression coeflicients for the COVID-19 data set

Figure 6 shows the autocorrelation plots for the exponential baseline parameter and the regression coefficients.

Hazard Ratio (HR)

The hazard ratio is concerned with the application of the therapy type variable represented by Rx from table 1
for patients with COVID-19. From table 5, the Bayes estimate of the coefficient of the therapy type variable, Rx is
52 = —0.39286 with a standard error SE = 0.0019. From section 6 , the hazard ratio becomes e’? = 0.67512, and
since we have coded this therapy (Favipiravir) as 0 and the typical therapy as 1 , this means that using the typical
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Table 4: Geweke diagnostic of the Frechet PH model parameters for the COVID-19 data sets.

therapy will increase the risk by 0.67512 times compared to using the new therapy.

Geweke diagnostic
Parameter

Pr> |z]|

Bo -1.08024
B1 -0.0230
B2 0.53332
B3 -0.59451
B4 1.94725
B5 1.99652
B6 1.93691
B7 1.24267
B8 0.08828
B9 -0.27783
B10 0.25511
B11 1.22276
B12 -0.90002
B13 -1.22675
B14 1.26191
B15 -1.66808
B16 -0.3652
B17 0.68502
a -3.68747
A 1.3347

27

Table 5: Numerical summaries of posterior characteristics based on exponential PH model via MCMC sample for the COVID-19 data sets.

Node Mean SD Naive SE Time-series 95% credible HPD interval (95%)
SE interval

po -0.89458 | 29.58176 | 0.13099 1.62419 (-58.801, 55.32675) | (-60.1906,52.9614)
p1 -0.59398 | 0.38386 0.0017 0.02245 (-1.4207, 0.16299) (-1.36985, 0.18039)
B2 -0.39286 | 0.42903 0.0019 0.02422 (-1.31014, 0.41485) (-1.33051, 0.3409)
B3 0.75365 0.67981 0.00301 0.05531 (-0.18879, 2.36844) | (-0.26539, 2.15298)
B4 -0.54202 | 0.73877 0.00327 0.04331 (-2.04868, 0.85983) | (-2.02799, 0.87489)
B5 -0.50614 | 0.74583 0.0033 0.04388 (-2.02975, 0.94082) | (-1.93243, 0.98338)
p6 -0.47032 | 0.78427 0.00347 0.0469 (-2.05094, 1.05526) | (-1.85564, 1.18655)
B7 -0.48201 | 0.78231 0.00346 0.06124 (-2.34816, 0.72638) | (-2.14995, 0.81129)
B8 -0.99506 | 0.70802 0.00314 0.05725 (-2.69528, 0.03793) | (-2.42236, 0.14403)
po -1.40254 | 1.66668 0.00738 0.10338 (-5.11998, 1.45464) | (-4.51469, 1.67045)
BLO 1.51207 2.167 0.0096 0.12783 (-2.60529, 5.65292) (-2.54055, 5.6888)
BLL 1.87958 2.63272 0.01166 0.16654 (-3.37972,7.31401) | (-3.51968, 6.86063)
p12 | -0.70315 0.9175 0.00406 0.05832 (-2.60101, 1.05649) (-2.62527, 1.0068)
BL3 0.91535 0.71999 0.00319 0.04239 (-0.44864, 2.38801) (-0.5636, 2.20207)
Bl4 -2.7058 2.20076 0.00975 0.12824 (-7.13623, 1.41348) (-6.65195, 1.6917)
BL5 1.48249 2.04898 0.00907 0.12013 (-2.57847,5.63987) | (-2.67861,5.22875)
Bl6 | -0.16794 | 0.19594 0.00087 0.01186 (-0.58596, 0.20523) (-0.55385, 0.2201)
BL7 0.00112 0.00214 0.00001 0.00012 (-0.00305, 0.00555) | (-0.00273, 0.00568)
A 0.10197 0.00676 0.00003 0.00341 (0.09138, 0.11359) (0.09122, 0.11309)
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Table 6: Some basic statistics for exponential PH model via MCMC sample for the COVID-19 data sets.
Node | Minimum | Q1 Median(Q2) | Q3 Maximum | Mode Skewness | Kurtosis
po -107.58965 | -21.81257 | -0.51454 20.26522 | 114.83106 | -10.60055 | 0.02288 -107.58965
p1 -1.91367 -0.83562 -0.60019 -0.34945 0.70135 -0.25671 -0.12273 | -1.91367

B2 -1.91604 -0.64859 | -0.39302 -0.08165 | 1.00938 -0.64859 | -0.1644 -1.91604
B3 -0.60337 0.20391 0.62894 1.13926 3.46104 0.12911 0.96333 -0.60337
pa -3.64883 -0.99201 | -0.53751 -0.07373 | 1.9085 -0.13078 | -0.08244 | -3.64883
B5 -3.64829 -0.95728 | -0.4976 -0.03067 | 1.9372 -0.10485 | -0.08729 | -3.64829

Be -3.69119 -0.9801 -0.47304 0.0414 1.92824 -0.04906 | -0.14159 | -3.69119
B7 -3.67359 -0.93466 | -0.34032 0.06253 1.28254 0.06045 -0.81584 | -3.67359
B8 -3.74727 -1.39354 | -0.86716 -0.46819 | 0.40125 -0.25025 | -0.91321 | -3.74727
Bo -8.49269 -2.45185 | -1.15087 -0.22406 | 3.32334 0.25844 -0.51903 | -8.49269
10 | -5.6213 0.04974 1.5764 3.05895 9.15638 2.12142 0.08389 -5.6213

f11 | -6.59058 0.13829 1.75542 3.47012 11.70996 1.28238 0.18484 -6.59058
f12 | -4.06886 -1.2428 -0.67528 -0.0738 2.21355 -0.56719 | -0.21304 | -4.06886

B13 | -1.44639 0.38995 0.93959 1.39191 3.74936 0.5277 0.10818 -1.44639
14 | -11.20896 | -4.14139 | -2.75417 -1.07049 | 4.2258 -1.34745 | -0.10205 | -11.20896
B15 | -5.30994 0.06435 1.46072 2.97345 8.91524 0.41621 0.07277 -5.30994
B16 | -0.8903 -0.29027 | -0.17016 -0.03713 | 0.52959 -0.27923 | -0.13032 | -0.8903

B17 | -0.00606 -0.00031 | 0.00101 0.00255 0.00874 -0.00075 | 0.14675 -0.00606
A 0.09001 0.09667 0.10003 0.10878 0.11542 0.09549 0.21234 0.09001
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Figure 4: The TTT plot, box plot, and histogram for the survival times of the COVID-19 data set

6.2 Data Set II: Leukemia Survival Data

In a medical study conducted by Caplehorn [4] on a group of (46) leukemia patients, a new treatment different
from the usual standard treatment was experimented. The effect of this treatment was monitored after recovery on
the occurrence of relapse (the event under study) for a period of 35 months. We will apply this data to two Frechet
PH and exponential PH models. The response and exploratory factors (variables) used in this clinical trial are shown
in Table 8.

Posterior Analysis of Frechet distribution

In this study, we assume the noninformative independent framework with a normal prior N(0,1000) for 8’ s
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Figure 5: Trace plots and Density distribution for exponential baseline hazard parameter and the regression coefficients for the COVID-19
data sets.
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Figure 6: Autocorrelation plots for exponential baseline parameter and all regression coefficients for the COVID-19 data set.

(regression coefficients) and an independent gamma prior for the baseline parameter for @ « G (a1,b;) and A «
G (ag, ba) with hyper-parameter values (a3 = by = ags = by = 0.0001).

Using the same data, we continue our analysis with the Bayesian approach using MCMCpack, an R package The
choice of hyperparameters and initial values are not sensitive to the estimation of the parameters. one chain with the
starting values was carried out simultaneously. 110,000 iterations are performed for the chain after 10000 iterations
for burn-in To obtain the algorithm’s affinity for the target distribution.
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Table 7: Geweke diagnostic of the exponential PH model parameters for the COVID-19 data sets.

Parameter Geweke diagnostic
Pr> |z|
BO 1.07669
B1 0.00594
B2 -0.4063
B3 -1.33789
B4 -1.18726
B5 -1.19669
B6 -1.33463
B7 0.74013
B8 1.24806
Bo 0.87899
B1o -1.23373
B11 -0.24041
B12 0.5624
B13 0.83273
B14 -1.13958
B15 1.30166
B16 0.00502
B17 -0.52439
A 0.61875

Table 8: Description of the variables of patients with leukemia disease

Variable Description

t the time until relapse occurs (in months)

Censor the logical anticipation variable, equal to 1 when the relapse has occurred and 0 when
are still in anticipation for this component.

Sex the gender (value 0: female, value 1: male)

WBC the variable number of total white blood cells} granulocytes (neutrophils, eosinophils,
and basophils), monocytes, and lymphocytes} per microliter of blood

RX the therapy type variable where new therapy is encoded as 0 and typical therapy is

encoded as 1

MCMC Algorithm Convergence

For the leukemia data set, using the MCMC method, the complex posterior distribution is sampled. A convergence
diagnostics test of the MCMC algorithm is performed using the Geweke diagnostics test. Table .8 indicates the
Geweke diagnostics statistic for the Frechet PH model parameters. It shows that all the variables have converged for
the Frechet PH model.

Hazard Ratio (HR)

The hazard ratio is concerned with the application of the therapy type variable represented by Rx from table 8
for patients with leukemia. From table 9 the Bayes estimate of the coefficient of the therapy type variable, Rx is
(3 = 1.73452 with a Naive standard error (0.0015), and the hazard ratio is e#3 = 5.66621 and since we coded the new
therapy as 0 and the typical therapy as 1 , this means that using the typical therapy will increase the risk by 5.66621

times compared to using the new therapy.
Table 11. Show all the variables have converged of the Frechet PH model according to Geweke diagnostic.
Posterior Analysis of exponential distribution

As in the first application in section (6.1), we assume the noninformative independent framework with a normal
prior N(0,1000) for 8’ ( (regression coefficients) and an independent gamma prior for the distributional parameter
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Figure 7: The TTT plot, box plot, and histogram for the survival times of the leukemia data set.
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Figure 8: Trace plots and Density distribution for Frechet baseline hazard parameters and the regression coefficients for the leukemia data

sets.

Table 9: Numerical summaries of posterior characteristics based on Frechet PH model via MCMC sample for the leukemia data sets.

Nod | Mean SD Naive SE | Time-series 959% credible interval HPD interval (95%)

e SE

BO 2.65325 0.52817 0.00159 0.02755 (1.56643. 3.69445) (1.64952, 3.74999)

B1 0.25726 0.45745 0.00138 0.02139 (-0.61565, 1.15152) (-0.63685, 1.11478)

B2 0.04608 0.00862 0.00003 0.0004 (0.02971. 0.0632) (0.02829, 0.06135)

B3 1.73452 0.49644 0.0015 0.02378 (0.8031, 2.70396) (0.76542, 2.63906)

o 0.36336 0.02061 0.00006 0.00112 (0.32353. 0.40428) (0.3224, 0.40249)

by 1169.26498 | 230.2423 | 0.69421 85.77063 (746.06628,1617.0168) | (724.56102,1582.59647)

Table 10: Some basic statistics for the Frechet PH model via MCMC sample for the leukemia data sets.

Node Minimum Q1 Median(Q2) | Q3 Maximum Mode Skewnes | Kurtosis
s

po 0.44118 2.30527 2.69119 3.01751 4.06731 2.83169 -0.28127 | 3.26251
B1 -1.73828 -0.03535 0.26332 0.5390 1.92811 0.16202 0.02751 3.05339
B2 0.01437 0.04008 0.04617 0.05189 0.07645 0.0489 0.01323 2.73183
B3 0.28513 1.38697 1.70903 2.07047 3.62471 1.41651 0.19883 2.9468

o 0.27649 0.34994 0.36346 0.37803 0.42708 0.35624 -0.13075 3.10884
X 654.50743 | 1002.24738 | 1158.21782 | 1352.02039 | 1749.33906 | 1214.71824 | 0.07982 2.33019

A v G (az,by) with hyper-parameter values (a2 = by = 0.0001). The convergence was achieved at 51000 replication

with a burn-in of 1000 through the posterior simulation.

Numerical Summary

The posterior mean, posterior standard deviation, Naive standard error SE, time series standard error, 95% credible



32 Al-sharifi, AlBaldawi

an

(It
0
0

A

o 20 = O 20 SO0 o 20 =o
L=

Figure 9: Autocorrelation plots for Frechet baseline parameters and all regression coefficients for the leukemia data set.

Table 11: Geweke diagnostic of the Frechet PH model parameters for the leukemia data sets.

Parameter Geweke diagnostic
Pr > |z|

BO -5.07506

B1 -0.4845

B2 -0.40953

B3 0.86171

o 5.06115

A -8.36206

interval (2.5%,97.5%), and the highest posterior density (HPD) interval for the model parameters are in Table 12.
Table 13 showed the basic statistics for the exponential PH model via the MCMC sample. These statistics include
the minimum, Quartiles, maximum, mode, skewness, and kurtosis.

Table 12 shows that the Naive SE is smaller than the standard deviations (SD) for the exponential baseline
parameter and all of the regression coefficients, as expected, indicating that the MCMC algorithm has converged to
the posterior distribution.

As in the first application in section (8.1), we assume the noninformative independent framework with a normal
prior N(0,1000) for ' (regression coefficients) and an independent gamma prior for the distributional parameter
A ~ G (ag,by) with hyper-parameter values (as = by = 0.0001). The convergence was achieved at 51000 replication
with a burn-in of 1000 through the posterior simulation.

Visual Summary

The density graphs for the exponential PH model parameters are shown in Figure 11. It appears that data outliers
and multimodal behavior are also present. Figure 11 also shows that the MCMC sampling process converges to the
joint posterior distribution with no periodicity. Figure 10 shows the ITT plot, box plot, and histogram for the survival
times of the leukemia data set. Based on the TTT plot, the hazard rate function is an increasing hazard. The
data could be analyzed using a model such as the exponential distribution, which would be represented by the PH
framework. As a result, we can say that the chains have converged. Figure 12 shows the autocorrelation plots for the
exponential baseline parameter and the regression coefficients.

MCMC Algorithm Convergence

For the leukemia data set, using the MCMC method, the complex posterior distribution is sampled. A convergence
diagnostics test of the MCMC algorithm is performed using the Geweke diagnostics test. Table 14 indicates the
Geweke diagnostics statistic for the exponential PH model parameters. It shows that all the variables have converged
for the exponential PH model.

Hazard Ratio (HR)
The hazard ratio is concerned with the application of the therapy type variable represented by Rx from table 8

for patients with leukemia. From table 12 the Bayes estimate of the coefficient of the therapy type variable, Rx is

3 = 1.22032 with a standard error (0.00203), and the hazard ratio is e#® = 3.38827 and since we coded the new
therapy as 0 and the typical therapy as 1 , this means that using the typical therapy will increase the risk by 3.38827
times compared to using the new therapy.
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Figure 10: The TTT plot, box plot, and histogram for the survival times of the leukemia data set

Table 12: Numerical summaries of posterior characteristics based on exponential PH model via MCMC sample for the leukemia data sets.

Node Mean SD Naive SE Tunes-lszenes 959 credible interval HPD interval (95%)
Bo -1.49681 | 0.45235 0.002 0.01378 (-2.39664, -0.64239) (-2.39853, -0.64692)
Bl -0.13395 | 0.45461 0.00201 0.00912 (-1.02361, 0.74491) {-1.02426, 0.7405)
B2 0.02001 0.00555 0.00002 0.00011 (0.00869, 0.03052) (0.00922, 0.03081)
B3 1.22032 0.45856 0.00203 0.00927 (0.35255, 2.14288) (0.36423, 2.14899)
A 0.08103 0.01466 0.00006 0.00676 (0.05617, 0.10609) (0.05698, 0.10664)

Table 13: Some basic statistics for exponential PH model via MCMC sample for the leukemia data sets.

Node | Minimum Ql Median(Q2) Q3 Maximum Mode Skewness Kurtosis
po -3.2024 -1.79815 -1.49017 -1.18111 0.01915 -1.87004 -0.1475 3.00635
Bl -2.07883 -0.44002 -0.13751 0.17542 1.55301 0.16951 -0.00554 2.99515
B2 -0.00736 0.0164 0.02015 0.02381 0.03841 0.01924 -0.17031 3.12082
p3 -0.36527 0.50103 1.21036 1.5248 3.09429 1.38497 0.14508 2.95385
A 0.04941 0.06953 0.07905 0.09442 0.11133 0.10629 0.11046 1.91948

Table 14: Geweke diagnostic of the exponential PH model parameters for the leukemia data sets.

Geweke diagnostic
Parameter
Pr> |z]
Bo -8.26446
B1 1.07099
B2 0.07161
B3 0.07941
A 2.00676

Table 14. Show all the variables have converged of the exponential PH model according to Geweke diagnostic.

7 Bayesian Model Selection

In this study, we will use deviation information criteria (DIC) is a metric used to compare Bayesian models. This
criterion is available in most MCMC packages. It is closely related to the Akaike information criteria (AIC) which are
defined as

AIC = —2loglog p(0) + 2p = D(0) + 2p
where p is the number of parameters in a model (dimension of 4 ), and 0 is the maximum likelihood (minimum
deviance) estimate. The DIC makes some changes to this formula. Firstly by replacing a maximised log-likelihood

with the log-likelihood evaluated at the Bayes estimate 6 and by replacing p with an alternative correction

DIC = —2loglogp(d) + 2ppic = D) + 2ppic.
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Figure 11: Trace plots and Density distribution for exponential baseline hazard parameter and the regression coefficients for the leukemia

data sets.
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Figure 12: Autocorrelation plots for exponential baseline parameter and all regression coefficients for the leukemia data set.

Spiegelhalter et al. [20] use an informal information-theoretic argument to suggest a measure ppyc defined by

pprc = Eg)y[—2loglogp(6)] 4 2log logp(é) =D - D(é)

where D = measure of fit and 0 is a “good” plug-in estimate of 6. If we take 6=F [0 | y] =0, then pprc = "posterior
mean deviance - deviance of posterior means.

These changes make it more suitable for a Bayesian model. [I3]. In general, the best-fitting model has the lowest

DIC values.
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Table 15: Homograft study. DIC for two Bayesian PH models for the COVID-19 data set
Model DIC
Frechet 399.9583

exponential | 524.5553

The values of DIC for the fitted models are reported in Table 15. They again confirm their preference for the proposed
Frechet model

Table 16: Homograft study. DIC for two Bayesian PH models for the leukemia data sets.
Model DIC

Frechet 191.2807
exponential | 212.7492

The values of DIC for the fitted models are reported in Table 16. They again confirm their preference for the
proposed Frechet model

8 Conclusions

In this study, we have discussed the Bayesian estimates of the parameters of two proportional hazard models.
The first model includes a Frechet baseline hazard parameters and the second includes the exponential baseline
hazard with the regression coefficients of the parametric proportional hazard model. The Markov chain Monte Carlo
(MCMC) method was applied. This approach provides an adaptable method for estimating the parameters of the
proposed model. A variety of priors were used in the Bayesian inference process, and several diagnostic techniques
were applied to look into the convergence pattern. Both PH models are found simple and flexible and can be used in
the analysis of parametric survival data. Computational aspects were performed using MCMCpack with the function
MCMCmetroplR, an R package from the R software.

According to our results, we have shown using the DIC criteria that the PH model using Frechet baseline hazard
is better than the PH model using exponential baseline.

Two survival right-censored data sets were carried out. The first data set concerns data of patients infected with
COVID-19 disease. The second data set concerns patients with leukemia disease. Results of the COVID-19 patients
showed that all variables were significant for both the Frechet PH model and the exponential PH model according to
Geweke diagnostic test. Results of the leukemia patients showed that all variables were significant for the Frechet PH
model and exponential PH model according to Geweke diagnostic test. Finally, we conclude that the application of
the indicated therapies for both COVID-19 and leukemia patients would reduce the hazard of the patient’s relapse.
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