
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,203 |
On the solution of a nonlinear fractional integro-differential equation with non-local boundary condition | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 11، دوره 15، شماره 1، فروردین 2024، صفحه 125-136 اصل مقاله (455.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29768.4250 | ||
نویسندگان | ||
Elyas Shivanian* 1؛ Abdollah Dinmohammadi2 | ||
1Department of Mathematics, Imam Khomeini International University, Qazvin, 34149-16818, Iran | ||
2Department of Mathematics, Buein Zahra Higher Education Center of Engineering and Technology, Buein Zahra, Qazvin, Iran | ||
تاریخ دریافت: 09 بهمن 1401، تاریخ بازنگری: 09 اسفند 1401، تاریخ پذیرش: 14 اسفند 1401 | ||
چکیده | ||
This work studies the existence and the uniqueness of the solution to a kind of high-order nonlinear fractional integro-differential equations involving Rieman-Liouville fractional derivative. The boundary condition is of integral type which entangles ending point of the domain. First, the unique exact solution is extracted in terms of Green's function for the linear fractional differential equation and then Banach contraction mapping theorem is applied to prove the main result in the case of general nonlinear source term. Furthermore, our main result is demonstrated by an illustrative example to show its legitimacy and applicability. | ||
کلیدواژهها | ||
High order differential equations؛ fractional integro-differential equating؛ Integral boundary condition؛ Rieman-liouville derivative؛ Fixed point theorem | ||
مراجع | ||
[1] J.A. Adam. A simplified mathematical model of tumor growth, Math. Biosci. 81 (1986), no. 2, 229–244. [2] J.A. Adam, A mathematical model of tumor growth. ii. effects of geometry and spatial nonuniformity on stability, Math. Biosci. 86 (1987), no. 2, 183–211. [3] J.A. Adam and S.A. Maggelakis, Mathematical models of tumor growth. iv. effects of a necrotic core, Math. Biosci. 7 (1989), no. 1, 121—136. [4] N.S. Asaithambi and J.B. Garner, Pointwise solution bounds for a class of singular diffusion problems in physiology, Appl.Math. Comput. 30 (1989), no. 3, 215–222. [5] M. Bhakta, A. Biswas, D. Ganguly, and L. Montoro, Integral representation of solutions using green function for fractional hardy equations, J. Differ. Equ. 269 (2020), no. 7, 5573–5594. [6] A.C. Burton, Rate of growth of solid tumours as a problem of diffusion, Growth 30 (1966), no. 2, 157–176. [7] A. Cabada, P. Habets, and R.L. Pouso, Optimal existence conditions for ϕ-laplacian equations with upper and lower solutions in the reversed order, J. Diff. Equ. 166 (2000), 385–401. [8] A. Cabada and Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput. 228 (2014), 251-257. [9] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl. 389 (2012), no. 1, 403-411. [10] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010. [11] A. Dinmohammadi, A. Razani, and E. Shivanian, Analytical solution to the nonlinear singular boundary value problem arising in biology, Boundary Value Problems 2017 (2017), no. 1, 1-9. [12] A. Dinmohammadi, E. Shivanian, and A. Razani, Existence and uniqueness of solutions for a class of singular nonlinear two-point boundary value problems with sign-changing nonlinear terms, Numer. Funct. Anal. Optim. 38 (2017), no. 3, 344–359. [13] R.C. Duggan and A.M. Goodman. Pointwise bounds for a nonlinear heat conduction model of the human head, Bull. Math. Bio. 48 (1986), no. 2, 229—236. [14] U. Flesch, The distribution of heat sources in the human head: a theoretical consideration, J. Theore. Bio. 54 (1975), no. 2, 285—287. [15] A. Granas and J. Dugundji, Elementary fixed point theorems, Fixed Point Theory, Springer, 2003, pp. 9—84. [16] B.F Gray, The distribution of heat sources in the human head—theoretical considerations, J. Theore. Bio. 82 (1980), no. 3, 473—476. [17] H.P. Greenspan. Models for the growth of a solid tumor by diffusion, Stud. Appl. Math. 51 (1972), no. 4, 317—340. [18] L.N. Huynh, N.H. Luc, D. Baleanu, and L.D. Long, Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative, J. Inequal. Appl. 2021 (2021), no. 1, 1–20. [19] A. Kilbas, H.M. Srivastava, and J.J Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006. [20] R. Klages, G. Radons, and I.M. Sokolov. Anomalous transport, Wiley Online Library, 2008. [21] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29 (1966), no. 1, 255. [22] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, volume 31, Springer Science & Business Media, 2012. [23] Y. Li and Y. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differ. Equ. 266 (2019), no. 6, 3514–3558. [24] R.L. Magin, Fractional calculus in bioengineering, volume 2. Begell House Redding, 2006. [25] N.I. Mahmudov, M. Awadalla, and K. Abuassba, Nonlinear sequential fractional differential equations with nonlocal boundary conditions, Adv. Difference Equ. 2017 (2017), no. 1, 1-–15. [26] D.L.S. McElwain, A re-examination of oxygen diffusion in a spherical cell with michaelis-menten oxygen uptake kinetics, J. Theore. Bio. 71 (1978), no. 2, 255—263. [27] H. Mohammadi, D. Baleanu, S. Etemad, and S. Rezapour, Criteria for existence of solutions for a Liouville–Caputo boundary value problem via generalized Gronwall’s inequality, J. Inequal. Appl. 2021 (2021), no. 1, 1—19. [28] S. Pashayi, S. Shahmorad, M.S. Hashemi, and M. Inc, Lie symmetry analysis of two dimensional weakly singular integral equations, J. Geom. Phys. 170 (2021), 04385. [29] E. Shivanian, Existence of weak solutions to a kind of system of fractional semi-linear Fredholm-Volterra boundary value problem, Int. J. Ind. Math. 14 (2022), no. 2, 153–163. [30] E. Shivanian, Existence of at least three distinct weak solutions for a class of nonlinear system of fractional differential equations, Numer. Funct. Anal. Optim. 41 (2020), no. 10, 1228-1245. [31] E. Shivanian, To study existence of at least three weak solutions to a system of over-determined Fredholm fractional integro-differential equations, Commun. Nonlinear Sci. Numer. Simul. 101 (2021), 105892. [32] E. Shivanian, Error estimate and stability analysis on the study of a high-order nonlinear fractional differential equation with Caputo-derivative and integral boundary condition, Comput. Appl. Math. 41 (2022), no. 8, 395. [33] E. Shivanian, S.J. Hosseini Ghoncheh, and H. Goudarzi, A unique weak solution for the fractional integrodifferential Schrodinger equations, Math. Sci. 17 (2023), 15–19. | ||
آمار تعداد مشاهده مقاله: 25,815 تعداد دریافت فایل اصل مقاله: 493 |