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Abstract

In this manuscript, we introduce LGc-fuzzy Euclidean topological space in which L denotes a completely distributive
lattice with a countable subset dense in it. We use the structure of LG-fuzzy topological space (X, T), which X is
an L-fuzzy subset of the crisp set M and T : LM

X → L, is an L-gradation of openness on X to define the fundamental
concepts of LG-fuzzy analysis such as LG-locally compactness and LG-paracompactness and prove several theorems.
In consequence, we show that any second countable Hausdorff LG-fuzzy topological space that is LG-locally compact
is LG-paracompact. Also from any given metric ρ on a crisp set M and L-fuzzy subset X of it, we construct an L-
gradation of openness Tρ on X and obtain LG-fuzzy topological metric space (X,Tρ). Finally, we prove an interesting
theorem: Every LG-fuzzy topological metric space, is LG-paracompact.

Keywords: LGc-fuzzy Euclidean topological space, LG-locally compact, LG-fuzzy topological metric space,
LG-paracompact
2020 MSC: 54A40, 06D72, 08A45

1 Introduction

The concept of fuzzy topological spaces was introduced by Chang [2] in 1968 and later was redefined in a somewhat
different way by Shostak [31]. Chattopadhyay et. al. [3] introduced a concept of gradation of openness of fuzzy subsets
of X in 1992 and Gregori and Vidal [10], defined fuzziness in Chang’s fuzzy topological spaces. To develop this kind
of fuzzy topology, we assumed in [28] that X is an L-fuzzy subset of the crisp set M , in Goguen’s sense [9] where
L =< L,≤,

∧
,
∨
,′> is a complete distributive lattice set with at least 2 elements and introduced an LG-fuzzy

topological space (X, T), which T : LM
X → L, is an L-gradation of openness on X along with C∞ L-fuzzy manifolds

with L-gradation of openness which are defined and studied.

In the theory of fuzzy topological spaces, one of the main problems is to obtain an appropriate notion of a fuzzy
metric space. Many authors have made significant contributions to the development of fuzzy metric space theory [5, 7,
8, 11, 12, 14, 15, 17, 24, 25, 33]. They have introduced different fuzzy metrics, which have applications in Economics,
Geology, Artificial Intelligence and Computer Science. At present, the process of digital signals and images, and
particularly colour image processing, is a problem widely studied. The techniques using fuzzy logic have been studied
to solve the problem reducing impulse noise in colour and multichannel images and improve experimentally sharpness
and the quality of the image, because fuzzy logic and fuzzy metrics can deal with the nonlinear nature of digital
images and with the essential uncertainty in distinguishing between noise and image structures. (See [12, 6, 16, 30]).
The concepts of compact Housdorff fuzzy topological spaces by Lowen [23] and L-fuzzy local compactness by Kudri
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and Warner [18] were introduced. Since paracompactness describes the relation between a locally finite property and
an entire property of spaces, this concept occupies an important position in general topology. As two references of
paracompactness topological spaces, we refer the reader to [32] and [27]. In 1988 Luo [22] initiated the concept of
paracompactness in fuzzy topological spaces and eleven years later Lupianez [20] studied the notion of fuzzy perfect map
and fuzzy paracompactness. Tirado [26] in 2012, studied compactness and G-compactness in fuzzy metric spaces. In
2019 Lupianez defined and discussed three paracompactness-type properties of fuzzy topological spaces [21]. Recently
Wali [34] investigated the compactness of Hausdorff fuzzy metric spaces. Our approach in this manuscripts is different
from what they have constructed here, since we answer two questions: What will these structures look like if we
assume that the fuzzy topological space X is itself an L-fuzzy subset of a crisp set and also if we consider L-gradation
of openness of L-fuzzy subsets of X instead of the collection of fuzzy subsets of X as a topology on it?

In this article, we assume that the Lattice set L has a countable subset J , dence in L, and define the LGc-fuzzy
Euclidean topological space with countable basis. This in turn is used to construct LG-fuzzy topological space proved
LG-compactness and LG-paracompactness.

LG-paracompactness of LG-fuzzy topological metric spaces appear naturally in many areas of mathematics which
we need the existence of suitable LG-partitions of unity. To formulate the definition of LG-paracompactness, following
Bourbaki, [1] and Engelking [4] we include the Hausdorff L-gfts assumption. Significant authors such as Munkres [29]
do not include any separation assumptions. We prove in this paper that any second countable Hausdorff LG-fuzzy
topological space that is LG-locally compact, is LG-paracompact. We recall the definition of concept of an LG-fuzzy
topological space (X,T) of dimension n as we introduced in our previous article [28] and bring out the equivalence of
LG-paracompactness of it with two properties ofX: its connected LG-components are countable unions of LG-compact
sets, its connected LG-components are second countable.

In the last section, we introduce the L-gradation of openness induced by the metric ρ on a crisp set and present
the definition of an LG-fuzzy topological metric space (X,TLρ) and prove an important theorem: Every LG-fuzzy
topological metric space, is LG-paracompact.

2 Preliminary

Let M be an nonempty set and X be an L-fuzzy subset of M . We denote by LM
X the set of all L-fuzzy subsets of

M , which are less than or equal to X (called L-fuzzy subsets of X).

Definition 2.1. If T : LM
X → L, be a mapping satisfying:

i) T(X) = T(0̃) = 1.

ii) T(A ∩B) ≥ T(A) ∧ T(B).

iii) T(
⋃

j∈J Aj) ≥
∧

j∈J T(Aj)

Then T is called a L-gradation of openness on X and (X, T) is called an LG-fuzzy topological space (L-gfts).

Set supp T = {A ∈ LM
X : T(A) > 0}, then A is called an LG-fuzzy open subset of X if A ∈ supp T.

Definition 2.2. Let (X,T) be an LG-fuzzy topological space, p ∈ X and A be an L-fuzzy subset of X,

i) An L-fuzzy subset V of X is called an LG-neighborhood of p, if there exists an LG-fuzzy open subset U of X
such that p ∈ U ≤ N .

ii) The union of all L-fuzzy subsets of X less or equal to A is called LG-interior set of A, denoted by LGA◦ and
the intersection of all LG-closed subsets grater or equal to A is called an LG-closure of A, denoted by LGĀ.

Definition 2.3. Let B(a, r, b) be an L-fuzzy subset of 1Rn , that is equal to zero outside or on the sphere Br(a) for
a ∈ Rn, r ∈ R+ and equal to the function b with values in L, inside Br(a). Let TLn be any L-gradation of openness
on 1Rn , such that suppT = τ

Ln
, where τ

Ln
is the L-fuzzy topology induced by

βLn = {B(a, r, b), a ∈ Rn, r ∈ R+, b : Br(a) → L is a function}.

Then we call (1Rn , TLn) the LG-fuzzy Euclidean topological space.
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Example 2.4. As two usefull examples of L-gradations of openness on 1Rn , we define

TLn : IMX → L TLn(B) =

{
1 B ∈ τ

Ln
,

0 elsewhere.
(2.1)

and

TLinf : LM
X → L, TLinf (B) =

 1 ZB = 0̃
inf{B(x) : x ∈M} 0̃ ̸= B ∈ τLn

0 elsewhere,
(2.2)

Definition 2.5. Let (X,T) be an LG-fuzzy topological space and A be an L-fuzzy subset of X. Then

i) A is called an LG-compact if every LG-fuzzy open cover of A has a finite LG-fuzzy open subcover.

ii) A is called LG-locally compact if each p ∈ A admits an LG-compact LG-neighborhood V such that V ≤ A. It
means that for each p ∈ A, there exists an LG-fuzzy open set U and an LG-compact set K with p ∈ U ≤ K.

iii) A Hausdorff L-gfts X is said to be LG-paracompact if any LG-fuzzy open cover of it has a locally finite LG-fuzzy
open refinement.

iv) X is LG-normal if for any two LG-fuzzy closed disjoint subsets A,B ⊆ X, there exist two disjoint LG-fuzzy
open subsets of X containing A and B respectvely.

3 LG-paracompactness of second countable
Hausdorff LG-fuzzy topological spaces

From now on we assume that there exists a countable subset J dence in the Lattice set L, hence L = J̄ .

Definition 3.1. We denote by βc
Ln the set of all constant L-fuzzy subsets B(a, r, b) defined in Example 2.2. Since for

each real number, there exists an increasing sequences of rational numbers limited to it, hence the L-fuzzy topology
τ c
Ln

, induced by βc
Ln has a countable basis.

{ B(a, r, b), a ∈ Qn, r ∈ Q+, b : Br(a) → J is a constant function }

We call (1Rn , Tc
Ln), the LG

c-fuzzy Euclidean topological space.

Proposition 3.2. Each LGc-fuzzy open covering {Ai} of the LGc-fuzzy Euclidean topological space can be refined
to an LGc-fuzzy open covering that is locally finite.

Proof . For each x ∈ Rn we can consider an LGc-fuzzy open subset B(x, rx, bx) contained in some Ai(x) with rx ≤ 1
in this manner. Since Ai(x) ∈ τ c

In
, then Ai(x) =

⋃
j∈J B(aj , rj , bj). Hence there exists at least one j1 ∈ J such that x ∈

B(aj1 , rj1 , bj1). Setting rx = min{1, (rj1 −∥x−aj1∥)} and bx = bj1 , we have rx ≤ 1 and B(x, rx, bx) ≤ B(aj1 , rj1 , bj1).
If we have x ∈

⋂s
k=1B(ajk , rjk , bjk), then Ai(x)(x) = sup{ bjk | 1 ≤ k ≤ s}. Thus B(x, rx, bx) ≤ Ai(x).

For each integer N > 0 finitely many of LGc-fuzzy open subsets B(x, rx, b0) cover the LG-fuzzy compact set
B(0, N, b0) − B(0, N − 1, b0), say B(x1, rx1 , b0), . . . , B(xm, rxm , b0). Hence we may write {Vj,N} to denote these
finitely many LGc-fuzzy open subsets. As we rechange j and N , the Vj,N ’s assuredly cover the whole (1Rn , Tc

In) (even
the origin), and this covering refines {Ai} in the sense that every Vj,N lies in some Ai and the collection Vj,N is locally
finite in the sense that any point x ∈ Rn has an LGc-neighborhood meeting only finitely many Vj,N ’s. Indeed, since
Vj,N is an LGc-fuzzy open subset of radius at most 1 and it intersects B(0, N, b0) − B(0, N − 1, b0), by elementary
investigation with the triangle inequality we see that a bounded region of Rn encounter only finitely many Vj,N ’s.
Thus, we have refined {Ai} to an LGc-fuzzy open covering that is locally finite. □

Corollary 3.3. The IGc-fuzzy Euclidean topological space (1Rn , Tc
In) is LG

c-paracompact.

Example 3.4. Consider the IGc-fuzzy Euclidean topological space (1R, Tc
I1), that I = [0, 1]. We define for each

q ∈ Q ∩ (0, 1) and any n ∈ Z, the IGc-fuzzy subset Aq,n by

Aq,n(x) =

 q if |x− n| < q

0 elsewhere
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Since for each x ∈ R, we have n ≤ x < n + 1 for some n ∈ Z. Thus we have (x − n) < 3
4 or (n + 1 − x) < 3

4 . These
imply that x ∈ A 3

4 ,n
. Therefore {Aq,n} is an IGc-fuzzy open covering of 1R. Therefore we have refined {Aq,n} to an

IGc-fuzzy open covering {A 3
4 ,n

} that is locally finite.

Proposition 3.5. If X is an LG-locally compact and Hausdorff L-gfts, then each LG-compact L-fuzzy subset K of
X is LG-fuzzy closed.

Proof . We will show that X − K is an LG-fuzzy open. Let q ∈ X − K. For each p ∈ X there are LG-fuzzy
open subsets Up, Vp of X such that p ∈ Up, q ∈ Vp and Up ∩ Vp = ϕ. Then we have K =

⋃
p∈K Up. Since K is

LG-compact, there exist p1, . . . , pn elements of K such that K ⊆ Up1
∪ . . . ∪ Upn

. Set Wq = Vp1
∪ . . . Vpn

. Then Wq

is an LG-fuzzy open subset of X containing q. Suppose x ∈ Wq ∩K, then x ∈ Upi
for some i. Since x ∈ Wq ⊆ Vpi

,
hence x ∈ Upi ∩ Vpi = ϕ, a contradiction. Thus Wq ∩K = ϕ. Therefore Wq ⊆ (X −K). □

Proposition 3.6. An LG-fuzzy closed subset of an LG-paracompact L-gfts (X,T) is itself LG-paracompact.

Proof . Let U be an LG-fuzzy open cover of an LG-fuzzy closed subset C of X. Then U ′ = U ∪ {X − C} is an
LG-fuzzy open covering of X. Hence U ′ has a locally finite LG-fuzzy open refinement, which also refines U . □

Lemma 3.7. If (X,T) is an locally LG-compact Hausdorff space that is second countable, then it admits a countable
base of LG-fuzzy open subsets {Vn} with LG-compact LG-closures.

Proof . Since X is an LG-locally compact, each p ∈ X admits an LG-compact LG-neighborhood Np. Hence by
Proposition 3.5, Np is LG-fuzzy closed and so Np contains the LG-closure of LGN◦

p around p. Hence, in such cases
every point p ∈ X lies in an LG-fuzzy open subset Up whose closure is LG-compact. Let {Vn} be a countable base
of LG-fuzzy open subsets of X. Then some Vn(p) contains p and is contained in Up. The LG-closure of Vn(p) is an

LG-closed subset of the LG-compact set LGUp, and so Vn(p) is also LG-compact. Thus, the {Vn}’s with LG-compact
closure are a countable base of LG-fuzzy open subsets. □

Theorem 3.8. Any second countable Hausdorff LG-fuzzy topological space (X,T) that is locally LG-compact is
LG-paracompact.

Proof . Let Vn be a countable base of LG-fuzzy open subsets of X. Let {Ui} be an LG-fuzzy open cover of X for
which we search a locally finite refinement. Each p ∈ X lies in some Ui and so there exists a Vn(p) containing p with
Vn(p) ⊆ Ui. The Vn(p)’s therefore organize a refinement of Ui that is countable. Since the exclusivity of one LG-fuzzy
open covering refining another is transitive, we therefore lose no generality by finding locally finite refinements of
countable LG-fuzzy covers. Assume that all LGV n are LG-compact. Hence, we can curb our attention to countable
covers by LG-fuzzy opens Un for which LGUn is LG-compact. Since closure commutes with finite unions, by replacing
Un with

⋃
j<n Uj we retain the LG-compactness condition (as a finite union of LG-compact subsets is LG-compact)

and so we can suppose that Un is an increasing collection of LG-opens with LG-compact closure (with n ≥ 0). Since
LGUn is LG-compact yet is covered by the open Ui’s, for sufficiently large N we have LGUn ⊆ UN . If we recursively
replace Un+1 with such a UN for each n, then we can arrange that LGUn ⊆ Un+1 for each n. Let K0 = LGU0 and
for n ≥ 1 let Kn = LGUn − Un−1 = LGUn ∩ (X − Un−1), so Kn is LG-compact for every n (as it is LG-fuzzy closed
subset in the LG-compact Un but for any fixed N we see that UN is disjoint from Kn for all n > N . Now we have
a situation similar to the concentric shells in our earlier proof of paracompactness of Rn, and so we can carry over
the argument from LGc-fuzzy Euclidean spaces as follows. We search a locally finite refinement of {Un}. For n ≥ 2
the LG-fuzzy open set Wn = Un+1 − LGUn contains Kn, so for each p ∈ Kn there exists some Vm ⊆ Wn around p.
There are finitely many such Vm’s that cover the LG-compact Kn, and the collection of Vm’s that arise in this way as
we vary n ≥ 2 is a locally finite collection of LG-fuzzy open subsets in X whose union contains X − U0. Throwing in
finitely many Vm’s contained in U1 that cover the LG-compact U0 thereby gives an open cover of X that refines {Ui}
and is locally finite. □

Lemma 3.9. Let X be an LG-fuzzy topological space and V = {Vk}k∈K be a locally finite covering of X. Then

LG
⋃
k∈K

Vk =
⋃
k∈K

LGVk.
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Proof . Since each LGVk ⊆ LG
⋃

k∈K Vk, hence
⋃

k∈K LGVk ⊆ LG
⋃

k∈K Vk. To show the reverse inclusion let

p ∈ LG
⋃

k∈K Vk and choose a neighbourhood V of p meeting only finitely many of the Vk. Then given any LG-
neighbourhood U of x, the set U ∩ V meets only finitely many of the Vk nontrivially, V1, . . . , Vn. This implies that
U meets

⋃
k∈K Vk and since U was arbitrary we have p ∈ LG

⋃n
k=1 Vk. Therefore

p ∈ LG
n⋃

k=1

Vk =

n⋃
k=1

LGVk ⊆
⋃
k∈K

LGVk.

□

Proposition 3.10. An LG-paracompact L-gfts (X,T) is LG-normal.

Proof . We first show that X is LG-regular. Let F be an LG-fuzzy closed subset of X and x ∈ X − F . Using the
Hausdorff assumption on X, for any point y ∈ F , there exist disjoint LG-fuzzy open neighbourhoods Uy of x and Vy
of y. Since by Proposition 3.6 we have F is an LG-paracompact, hence LG-fuzzy open covering {Vy}y∈F of F can be
refined to a locally finite family V covering F . Let W be the union of all the sets in V. Then F ⊆ W and x /∈ W .
Moreover, according to Lemma 3.9, the LGW is the union of the LG-closures of the sets in V. This implies that
x /∈ LGW , since for each element of V we can find a disjoint LG-neighbourhood of x. Thus W and X − LGW are
the required separating LG-neighbourhoods of F and x respectively and X is LG-regular.

Let B ⊆ X is a second LG-closed set disjoint from F . Then by LG-regularity of X, for each y ∈ F , we have
LG-fuzzy open setWy whose LG-closure is disjoint from B. ThusW =

⋃
y∈F Wy and X−W are two disjoint LG-fuzzy

open sets containing F and B respectively. Therefore X is LG-normal. □

In our discussion, we now define LG-fuzzy topological space of dimension n and indicate how Theorem 3.7 leads
us to the a conclusion that every LG-fuzzy topological space of dimention n with two equivalent condition, can be
LG-paracompact.

Definition 3.11. Let X ∈ LM1 , Y ∈ LM2 such that (X,T), (Y,R) are LG-fuzzy topological spaces. suppose
f : M1 → M2 be a function. If we have f [X] ≤ Y , then f is called an LG-related function from X to Y and the set
of all these functions is denoted by LGRf(X, Y ). Further more if we have R(H) ≤ T(f−1[H]), for all LG-fuzzy open
subset H of Y , then f is an L-gradation preserving LG-related function so it is called an LGP -related function from
X to Y or briefly f ∈ LGPRf(X, Y ).

Definition 3.12. An LG-fuzzy topological space (X,T) is called an LG-fuzzy topological space of dimention n,
if for any x ∈ X, there exists an LG-fuzzy open subset A of X such that x ∈ A and B ∈ Tc

Ln along with an
LGP -homeomorphism ψ ∈ LGPRf(A,B).

Corollary 3.13. Let (X,T) be an LGc-fuzzy topological space of dimention n. The following properties of X are
equivalent: its connected LG-components are countable unions of LG-compact sets, its connected LG-components are
second countable, and it is LG-paracompact.

Proof . If {U, V } is a separation of X and X is LG-paracompact then it is clear that both U and V are LG-
paracompact. Hence, since the connected LG-components of X are LG-fuzzy open, X is LG-paracompact if and
only if its connected LG-components are LG-paracompact. We may therefore restrict our attention to connected X.
For such X, we claim that it is equivalent to require that X be a countable union of LG- compact sets, that X be
second countable, and that X be LG-paracompact. By the preceding theorem, if X is second countable then it is
LG-paracompact. Since X is connected, Hausdorff, and locally LG- compact, if it is LG-paracompact then it is a
countable union of LG-compacts. Hence, to complete the cycle of implications it remains to check that if X is a
countable union of LG-compacts then it is second countable. Let {Kn} be a countable collection of LG-compacts that
cover X, so if {Ui} is a covering of X by LG-fuzzy open sets LGPRf -homeomorphic to an LGc-fuzzy open set in the
LGc-fuzzy Euclidean space we may find finitely many Ui’s that cover each Kn. As there are only countably many
Kn’s, in this way we find countably many Ui’s that cover X. Since each Ui is certainly second countable, a countable
base of LG-fuzzy opens for X is given by the union of countable bases of LG-fuzzy open subsets for each of the Ui’s.
Hence, X is second countable. □
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4 LG-paracompactness of LG-fuzzy topological metric spaces

Definition 4.1. Let ρ be a metric on the nonempty set M and X be an L-fuzzy subset of M . Let S(p, r) be the
sphere with center p and radius r. Then the L-fuzzy topology τ

Lρ
induced by

βLρ = {S(p, r, s), p ∈ X, r ∈ R+, s : S(p, r) → L is a constant function less than or equal to X}.

is called L-fuzzy topology induced by the metric ρ. Also we call any L-gradation of openness on X, with support
equal to τ

Lρ
, the L-gradation of openness induced by the metric ρ and denote it by TLρ. Also (X,TLρ) is called an

LG-fuzzy topological metric space.

Example 4.2. Let M = R and ρ(x, y) = |x − y| be the ordinary metring on it. Let X be an I-fuzzy subset of M

defined by X(x) =
1

|⌊x⌋|+ 2
where |⌊x⌋| denotes the absolute value of the greatest integer less than or equal to x. For

each x ∈ S(k, 1), we have two cases: if x ∈ (k − 1, k), then x ∈
(
S(k − 1, 1) ∩ S(k, 1)

)
, and so

X(x) =
1

k + 1
= S

(
k − 1, 1,

1

k + 1

)
(x)

∨
S
(
k, 1,

1

k + 2

)
(x)

if x ∈ [k, k + 1) then x ∈
(
S(k, 1) ∩ S(k + 1, 1)

)
, and so

X(x) =
1

k + 2
= S(k, 1,

1

k + 2
)(x)

∨
S
(
k + 1, 1,

1

k + 3

)
(x).

Hence X =
⋃

k∈Z S
(
k, 1,

1

k + 2

)
. Therefore (X, τLρ) has an countable Lρ-fuzzy open covering.

Proposition 4.3. Let (X,TLρ) be an LG-fuzzy topological metric space and Z be an L-fuzzy subset of X. Define

τ
Lρ|Z

= { V | V = U ∩ Z, for some U ∈ τ
Lρ
}

TLρ|Z
: LM

Z → L, TLρ|Z
(W ) = TLρ(W ).

Then TLρ|Z
is an LG-topology on Z with support equal to τ

Lρ|Z
.

Lemma 4.4. Let Z be an LG-topological subspace of LG-fuzzy topological metric space X. Then Z is LG-compact
if and only if for every collection {Ui|i ∈ I} of LG-fuzzy open sets of X such that Z ⊆

⋃
i∈I Ui there is a finite subset

J of I such that Z ⊆
⋃

i∈J Ui

Proposition 4.5. Let Z be an L-fuzzy subset of an LG-fuzzy topological metric space X. If Z is LG-compact (in
the subspace LG-topology TLρ|Z

) then Z is LG-bounded.

Proof . Let x0 ∈ Z. We show that X =
⋃∞

n=1 S
(
x0, n,X|S(x0,n)

)
. Clearly each S

(
x0, n,X|S(x0,n)

) ≤ X . Let x ∈ X

be any point, pick a positive integer n > ρ(x, x0). Then we have x ∈ S(x0, n). Hence X ≤ S
(
x0, n,X|S(x0,n)

). Now

suppose that Z is LG-compact. Then Z ⊆
⋃∞

n=1 S
(
x0, n,X|S(x0,n)

)
and by Lemma 4.4, there exist finitely many

LG-fuzzy open subsets

Z ⊆ S
(
x0, n1, X|S(x0,n1)

) ⋃
. . .

⋃
S
(
x0, nk, X|S(x0,nk)

)
.

Let m = max{n1, n2, ..., nk}. Then we have Z ⊆ S
(
x0,m,X|S(x0,m)

)
. Now for z1, z2 ∈ Z we have

ρ(z1, z2) ≤ ρ(z1, x0) + ρ(z0, z2) ≤ m+m = 2m.

Hence Z is LG-bounded. □

Theorem 4.6. Let (X,TLρ) be an LG-fuzzy topological metric space. Then X is LG-paracompact.

Proof . Assume that {Uα} is an LG-fuzzy open cover of X indexed by ordinals. For each positive integer n, define
Aαn to be the union of all LG-fuzzy subsets S(p, 2−n, sn) such that:
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(i) α is the smallest ordinal with p ∈ Uα,

(ii) p /∈ Aβj if j < n,

(iii) S
(
p, 3.2−n, sn

)
⊆ Uα.

We show that {Aαn} is a locally finite refinement of {Uα} which covers X and therefore X is LG-paracompact.
Let p ∈ X. There is a smallest ordinal such that p ∈ Uα and an n so large that (iii) holds, hence , by (ii), p ∈ Aβj for
some j ≥ n. Hence {Aαn} cover X. For each p ∈ X assume that α be smallest ordinal such that p ∈ Aαn and choose
j so that S(p, 2−j , sj) ⊆ Aαn. We prove that {Aαn} is locally finite by showing that:

(1) if i ≥ n+ j, S(p, 2−n−j , sn+j) intersects no Aβi,

(2) if i < n+ j, S(p, 2−n−j , sn+j) intersects Aβi, for at most one β.

Proof of (1). Since i > n, by (2), every one of the LG-fuzzy subsets S(q, 2−i, si) used in the definition of Aβi

has its center q outside of Aαn
. And since S(p, 2−j , sj) ⊆ Aαn

, so ρ(p, q) ≥ 2−j . But i ≥ n+ j ≥ j + 1, so
S(p, 2−n−j , sn+j) ∩ S(q, 2−i, si) = ϕ.

Proof of (2). Suppose that x ∈ Aβi
, y ∈ Aγi

and β ≤ γ; we want to show that ρ(x, y) > 2−n−i+1. There are points
u and v such that x ∈ S(u, 2−i, si) ⊆ Aβi

, y ∈ S(v, 2−i, ti) ⊆ Aγi
; and by (3), S(u, 3.2−i, si) ⊆ Uβ but, by (2), v /∈ Uβ .

So ρ(u, v) ≥ 3.2−i and ρ(x, y) > 2−i ≥ 2−n−j+1. □

5 Conclusion

To gain a new understanding of the notion of fuzzy topological spaces, we have introduced in [28] an LG-fuzzy
topological space (X, T), which T : LM

X → L, is an L-gradation of openness on X. The main motivation of this paper
is to provide an intrinsic study about LG-paracompactness of LG-fuzzy topological spaces that is an extraordinarily
most useful than LG-compactness. A key feature of LG-paracompactness is the existence of suitable LG-partitions of
unity which plays a very important role in LG-fuzzification of Riemannian Geometry and Finsler Geometry. However
we find the conditions under which such LG-fuzzy topological spaces are LG-paracompact. Further, we introduce the
L-gradation of openness induced by any metric on a set and construct an LG-fuzzy topological metric space and we
show that it is LG-paracompact. We also give some examples to clarify the notions and results. We recently wrote
an article entitled LG-fuzzy partitions of unity and are submitting it.

Now for a development of knowledge frontiers, an interesting question is that under what conditions we can
construct LG-fuzzy Minkowski or Finsler manifolds?
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