
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,918 |
تعداد دریافت فایل اصل مقاله | 7,656,373 |
Precise solutions to the Hirota equation and Hirota-Maccari system by using the extended rational methods | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 2، دوره 15، شماره 2، اردیبهشت 2024، صفحه 11-27 اصل مقاله (797.55 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28400.4355 | ||
نویسندگان | ||
Nikan Ahmadi Karchi؛ Mohammad Bagher Ghaemi* ؛ Javad Vahidi | ||
School of Mathematics and Computer science, Iran University of Science and Technology, Narmak, Tehran, Iran | ||
تاریخ دریافت: 15 دی 1401، تاریخ بازنگری: 19 اسفند 1401، تاریخ پذیرش: 22 اسفند 1401 | ||
چکیده | ||
This paper adopts the extended rational sinh-cosh as well as sine-cosine procedures to find precise solutions to the Hirota equation and Hirota-Maccari equation. It is illustrated that seeking the precise solutions for these equations plays a foremost and effectual role in solving the numerous kinds of PDEs applied in optics, fluid mechanics, plasma physics and solid physics. Furthermore, we are able to obtain some consequences of dark and cusp wave solutions. Besides, two-dimensional and three-dimensional surfaces have been drawn in order to acknowledge the concept of the acquired equations. | ||
کلیدواژهها | ||
Sine-cosine and sinh-cosh method؛ Hirota equation؛ precise solutions؛ Hirota-Maccari system | ||
مراجع | ||
[1] H. Alotaibi, Traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov’s method, Symmetry 13 (2021), no. 11, 2126. [2] Z. Avazzadeh, O. Nikan, and J.A.T. Machado, Solitary wave solutions of the generalized Rosenau-KdV-RLW equation, Mathematics 8 (2020), no. 9, 1601. [3] H. Chen, O. Nikan, W. Qiu, and Z. Avazzadeh, Two-grid finite difference method for 1D fourth-order Sobolev-type equation with Burgers’ type nonlinearity, Math. Comput. Simul. 209 (2023), 248–266. [4] M.M. El-Borai, H.M. El-Owaidy, H.M. Ahmed, and A.H. Arnous, Soliton solutions of Hirota equation and Hirota-Maccari system, New Trends Math. Sci. 4 (2016), no. 3, 231–238. [5] T. Guo, O. Nikan, W. Qiu, and D. Xu, Localized meshless approaches based on theta method and BDF2 for nonlinear Sobolev equation arising from fluid dynamics, Commun. Nonlinear Sci. Numer. Simul. 117 (2023), 106989. [6] R. Hirota, Direct method of finding exact solutions of nonlinear evolution equations, B¨acklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications: NSF Research Workshop on Contact Transformations, Springer, 2006, pp. 40–68. [7] M. Li, O. Nikan, W. Qiu, and D. Xu, An efficient localized meshless collocation method for the two-dimensional burgers-type equation arising in fluid turbulent flows, Engin. Anal. Boundary Elements 144 (2022), 44–54. [8] O. Nikan and Z. Avazzadeh, A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics, Math. Comput.Simul. 199 (2022), 394–413. [9] O. Nikan, Z. Avazzadeh, and M.N. Rasoulizadeh, Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory, Nonlinear Dyn. 106 (2021), no. 1, 783–813. [10] O. Nikan, A. Golbabai, and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus 134 (2019), 1–14. [11] L. Qiao, O. Nikan, and Z. Avazzadeh, Some efficient numerical schemes for approximating the nonlinear two-space dimensional extended Fisher-Kolmogorov equation, Appl. Numer. Math. 185 (2023), 466–482. [12] J. Rashidinia, Y. Karamipour, and O. Nikan, The meshless methods for numerical solution of the nonlinear Klein-Gordon equation, 11 (2021), no. 2, 436–447. [13] M.N. Rasoulizadeh, M.J. Ebadi, Z. Avazzadeh, and O. Nikan, An efficient local meshless method for the equal width equation in fluid mechanics, Engin. Anal. Boundary Elements 131 (2021), 258–268. [14] M.N. Rasoulizadeh, O. Nikan, and Z. Avazzadeh, The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation, Math. Sci. 15 (2021), no. 4, 365–376. [15] M. Wang, X. Li, and J. Zhang, The (G’ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A 372 (2008), no. 4, 417–423. | ||
آمار تعداد مشاهده مقاله: 18,833 تعداد دریافت فایل اصل مقاله: 311 |