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Abstract

For p ≥ 2, let E be a 2 uniformly smooth and p uniformly convex real Banach spaces and let a mapping Φ : E → E∗

be Lipschitz, and strongly monotone such that Φ−1(0) ̸= ∅. For an arbitrary ({ξ1}, {ψ1}) ∈ E, we define the sequences
{ξn} and {ψn} by {

ψn+1 = J−1(Jξn − θnΦξn), n ≥ 0
ξn+1 = J−1(Jψn+1 − λnΦψn+1), n ≥ 0

where λn and θn are positive real number and J is the duality mapping of E. Letting (λn, θn) ∈ (0,Λp) where Λp > 0,
then ξn and ψn converges strongly to ξ∗, a unique solution of the equation Φξ = 0.
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1 Introduction

Many physical problems in applications can be modeled in the following form: find x ∈ H such that

0 ∈ Φξ (1.1)

where Φ is a monotone operator on a real Hilbert space H. Typical examples where monotone operators occur and
satisfy the inclusion 0 ∈ Φξ include the equilibrium state of evolution equations and critical points of some functionals
and convex optimization, linear programing, monotone inclusions and elliptic differential equations defined on Hilbert
spaces (see e.g., Browder [5], Mustafa [21], Stephen [27], Khorasani and Adibi [15], Mendy et la, [18] and Chidume
[9]). For precisely, the classical convex optimization problem: let h : H → R ∪ {+∞} be a proper convex function.
The sub-differential of h at x ∈ H; is defined by ∂h : H → 2H

∂(ξ) = {ξ∗ ∈ h : h(ψ)− h(ξ) ≥ ⟨ψ − ξ, ξ∗⟩∀ψ ∈ h}. (1.2)

Clearly, ∂h : H → 2H is monotone operator on H, and 0 ∈ ∂(ξ0) if and only if ξ0 is a minimizer of h. In the case
of setting ∂(ξ) ≡ Φ ; solving the inclusion 0 ∈ Φξ is solving for a minimizer of h.
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Many authors have done a great works in find zero point of Φ in Hilbert spaces (see e.g., Takahashi and Ueda
[30], Song and Chen [26], and Cho et al. [11]). The proximal point algorithm (PPA) is recognized as a powerful and
successful algorithm in finding a numerical solution of monotone operators equation 0 ∈ Ax which was introduced
by Martinet [17] and studied further by Rockafellar [25], Mendy et la [4] and a host of other authors. That is, given
xk ∈ H;

ξn+1 = Jλn
ξn (1.3)

where Jλn
= (I + λnΦ)

−1 is the resolvent of operator Φ. Since Rockafellar [25] only obtained the weak convergence
of the algorithm 1.3 as λn → ∞ . He asked the following two questions for obtaining the strong convergence of the
proximal point algorithm

1. Does the proximal point algorithm always converge weakly?

2. Can the proximal point algorithm be modified to guarantee strong convergence?

So many authors modify the the proximal point algorithm (PPA) to converges strongly under different setting,
see Takahashi [29], Reich [22], Lehdili and Moudafi [16], Chidume et al. [7], and the references therein.

Let E be a real normed space, E∗ its topological dual space. The map J : E → 2E
∗
defined by

Jξ :
{
ξ∗ ∈ E∗ : ⟨ξ, ξ∗⟩ = ∥ξ∥.∥ξ∗∥ = ∥ξ∥2 = ∥ξ∗∥2

}
is called the normalized duality map on E. where ⟨, ⟩ denotes the generalized duality pairing between E and E∗.

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces, monotonicity and
accretivity coincide. For an accretive-type operator Φ,

The solutions of the equation Φξ = 0, in many cases, represent the equilibrium state of some dynamical system
(see, for example, [11, page 116]). To approximate a solution of Φξ = 0, assuming existence, where Φ : E → E is
of accretive type, Browder [5] defined an operator T : E → E by T := I − Φ, where I is the identity map on E. He
called such an operator pseudo-contractive. It is trivial to observe that zeros of Φ correspond to fixed points of T . For
Lipschitz strongly pseudo-contractive maps, Chidume [6] proved the following theorem.

Theorem 1.1. (Chidume, [6]. Let E = Lp, 2 ≤ p < 8, and K ⊂ E be nonempty closed convex and bounded. Let
T : K → K be a strongly pseudo-contractive and Lipschitz map. For arbitrary ξ0 ∈ K, let a sequence {ξn} be defined

iteratively by ξn+1 = (1−λn)ξn+λnTξn, n ≥ 0, where {λn} ⊂ (0, 1) satisfies the following conditions: (i)

∞∑
n=1

λn = ∞,

(ii)
∑∞

n=1 λ
2
n ≤ ∞. Then {ξn} converges strongly to the unique fixed point of T .

By setting T := I −Φ in Theorem 1.1, the following theorem for approximating a solution of Φξ = 0 where A is a
strongly accretive and bounded operator can be proved.

Unfortunately, the success achieved in using geometric properties developed from the mid-1980s to early 1990s
in approximating zeros of accretive-type mappings has not carried over to approximating zeros of monotone-type
operators in general Banach spaces. Part of the problem is that since Φ maps E to E∗, for ξn ∈ E,Φξn is in E∗.
Consequently, a recursion formula containing ξn and Φξn may not be well defined. Attempts have been made to
overcome this difficulty by introducing the inverse of the normalized duality mapping in the recursion formulas for
approximating zeros of monotone-type mappings.Examples Chidume [6],[10], Moudafi[20], Reich [24], Takahashi [28],
Zegeye [32], Djitte[18], Mendy [[19],[13]] Chidume et al. [8] ,Djitte et la [13].

Following this great work, in 2019, Tan [31] constructed the following two-step proximal algorithm for the zero point
of monotone mapping and proof a strong convergency of the sequences {ξn} and {ψn} to a unique point ξ∗ ∈ Φ−1(0).{

ψn+1 = J−1(Jξn − λnΦξn), n ≥ 0
ξn+1 = J−1(Jψn+1 − λn+1Φψn+1), n ≥ 0

(1.4)

In this paper, we study the two step size Krasnoselskii-type algorithm introduced by Chidume et al.[6] and prove
a strong convergence theorem to approximate the unique zero of a Lipschitz strongly monotone mapping 2−uniformly
smooth and p−uniformly convex real Banach space for p ≥ 2. This class of Banach spaces contains all Lp-spaces,
2 ≤ p < ∞. Then we apply our results to the convex minimization problem. Finally, our method of proof is of
independent interest
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2 Preliminaries

Let E be a normed linear space. E is said to be smooth if

lim
t→0

∥ξ + tψ∥ − ∥ξ∥
t

(2.1)

exist for each ξ, ψ ∈ SE (Here SE := {ξ ∈ E : ||ξ|| = 1} is the unit sphere of E). E is said to be uniformly smooth if
it is smooth and the limit is attained uniformly for each ξ, ψ ∈ SE , and E is Fréchet differentiable if it is smooth and
the limit is attained uniformly for ψ ∈ SE .

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E , ρE , is defined by:

ρE(τ) := sup

{
∥ξ + ψ∥+ ∥ξ − ψ∥

2
− 1 : ∥x∥ = 1, ∥ψ∥ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exist a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q, then E is said to be q-uniformly
smooth.

A normed linear space E is said to be strictly convex if:

∥ξ∥ = ∥ψ∥ = 1, x ̸= ψ ⇒
∥∥∥ξ + ψ

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by:

δE(ϵ) := inf
{
1− 1

2
∥ξ + ψ∥ : ∥ξ∥ = ∥ψ∥ = 1, ∥ξ − ψ∥ ≥ ϵ

}
.

E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2]. For p > 1, E is said to be p-uniformly convex if
there exists a constant c > 0 such that δE(ϵ) ≥ cϵp for all ϵ ∈ (0, 2]. Observe that every p-uniformly convex space is
uniformly convex.

Typical examples of such spaces are the Lp, ℓp and Wm
p spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

Remark 2.1. Note also that duality mapping exists in each Banach space.We recall from [12] some of the examples
of this mapping in ℓp, Lp,W

m,p−spaces, 1 < p <∞

� ℓp : Jξ = ∥ξ∥2−p
ℓp

ψ ∈ ℓq, ξ = (ξ1, ξ2, ..., ξn, ...), ψ = (ξ1|ξ1|p−2, ξ2|ξ2|p−2, ..., ξn|ξn|p−2, ...)

� Lp : Ju = ∥u∥2−p
Lp

|u|p−2u ∈ Lq

� Wm,p : Ju = ∥u∥2−p
Wm,p

∑
|α≤m|

(−1)|α|Dα(|Dαu|p−2Dαu) ∈W−m,p

Definition 2.2. � A map Φ : E → E∗ is called monotone if for each ξ, ψ ∈ E, the following inequality holds:

⟨Φξ − Φψ, ξ − ψ⟩ ≥ 0.

� Φ is called strongly monotone if there exists k ∈ (0, 1) such that for each ξ, ψ ∈ E, the following inequality holds:

⟨Φξ − Φψ, ξ − ψ⟩ ≥ k∥ξ − ψ∥2.
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� A map Φ : E → E is called accretive if for each ξ, ψ ∈ E, there exists j(ξ − ψ) ∈ J(ξ − ψ) such that

⟨Φξ − Φψ, j(ξ − ψ)⟩ ≥ 0.

� Φ is called strongly accretive if there exists k ∈ (0, 1) such that for each ξ, ψ ∈ E, there exists j(ξ−ψ) ∈ J(ξ−ψ)
such that

⟨Φξ − Φψ, j(ξ − ψ)⟩ ≥ k∥ξ − ψ∥2.

It is well known that

� E is smooth if and only if J is single-valued.

� If E is uniformly smooth then J is uniformly continuous on bounded subsets of E.

� If E is reflexive and strictly convex dual then J−1 is single-valued, one-to-one, surjective, uniformly continuous
on bounded subsets and it is the duality mapping from E∗ into E and J−1J = IE and JJ−1 = IE .

� J−1 is uniformly continuous if and only if it has a modulus of continuity.

Let E be a smooth real Banach space with dual space E∗. The function ϕ : E × E → R, defined by

ϕ(ξ, ψ) = ∥ξ∥2 − 2⟨ξ, Jψ⟩+ ∥ψ∥2, ξ, ψ ∈ E, (2.2)

where J is the normalized duality mapping from E into E∗, introduced by Alber has been studied by Alber [1], Alber
and Guerre-Delabriere [2], Kamimura and Takahashi[14], Reich[23] and a host of other authors. This functional ϕ will
play a central role in what follows. If E = H, a real Hilbert space, then relation (2.2) reduces to ϕ(ξ, ψ) = ∥ξ − ψ∥2
for ξ, ψ ∈ H. It is obvious from the definition of the function ϕ that

(∥ξ∥ − ∥ψ∥)2 ≤ ϕ(ξ, ψ) ≤ (∥ξ∥+ ∥ψ∥)2 ∀ ξ, ψ ∈ E. (2.3)

Let V : E × E∗ → R be the functional defined by:

V (ξ, ξ∗) = ∥ξ∥2 − 2⟨ξ, ξ∗⟩+ ∥ξ∗∥2, ∀ ξ ∈ E, ξ∗ ∈ E∗. (2.4)

Then, one can observe that
V (ξ, ξ∗) = ϕ(ξ, J−1ξ∗) ∀ ξ ∈ E, ξ∗ ∈ E∗. (2.5)

Lemma 2.3 (Alber, [1]). Let X be a reflexive strictly convex and smooth real Banach space with X∗ as its dual.
Then,

V (ξ, ξ∗) + 2⟨J−1ξ∗ − ξ, ψ∗⟩ ≤ V (ξ, ξ∗ + ψ∗) (2.6)

for all ξ ∈ X and ξ∗, ψ∗ ∈ X∗.

From the definition of ϕ and inequality (2.3), we can observe that for all ξ, ψ ∈ E, ϕ(ψ, ξ) ≥ 0 and

2⟨ξ − ψ, Jξ − Jψ⟩ − ϕ(ξ, ψ) = ϕ(ψ, ξ).

This leads to the following.

Lemma 2.4. Let E be a smooth real Banach space. Then, for all x, y ∈ E, the following holds

ϕ(ξ, ψ) ≤ 2⟨Jψ − Jξ, ψ − ξ⟩.
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Similarly, if E is a reflexive smooth and strictly convex real Banach space, we introduce the functional ϕ∗ :
E∗ × E∗ → R, defined by:

ϕ∗(ξ
∗, ψ∗) = ∥ξ∗∥2 − 2⟨ξ∗, J−1ψ∗⟩+ ∥ψ∗∥2, ξ∗, ψ∗ ∈ E∗, (2.7)

and the functional V∗ : E∗ × E → R defined from E∗ × E to R by:

V∗(ξ
∗, ξ) = ∥ξ∗∥2 − 2⟨ξ∗, ξ⟩+ ∥ξ∥2, ξ ∈ E, ξ∗ ∈ E∗. (2.8)

It is easy to see that
V∗(ξ

∗, ξ) = ϕ∗(ξ
∗, Jξ) ∀ ξ ∈ E, ξ∗ ∈ E∗. (2.9)

In what follows, the product space E × E∗ is equiped with the following norm:

∥w1 − w2∥ =
(
∥ξ − ψ∥2 + ∥ξ∗ − ψ∗∥2

) 1
2 ∀w1 = (ξ, ξ∗) ∈ E × E∗, w2 = (ψ,ψ∗) ∈ E × E∗.

Finally, we introduce the functional ψ : (E × E∗)× (E × E∗) → R defined by:

ψ(w1, w2) := ϕ(ξ, ψ) + ϕ∗(ξ
∗, ψ∗) ∀ w1 = (ξ, ξ∗) ∈ E × E∗, w2 = (ψ,ψ∗) ∈ E × E∗. (2.10)

The following results will be useful.

Lemma 2.5 (Kamimura and Takahashi, [14]). Let E be a smooth and uniformly convex real Banach space, and
let {ξn} and {ψn} be two sequences of E. If either {ξn} or {ψn} is bounded and ϕ(ξn, ψn) → 0 as n → ∞, then
∥ξn − ψn∥ → 0 as n→ ∞.

Lemma 2.6 (Tan and Xu, [31]). Let {an} be a sequence of non-negative real numbers satisfying the following
relation:

an+1 ≤ an + σn ∀n ≥ 0.

Assume that

∞∑
n=0

σn <∞. Then lim
n→∞

an exists.

3 Main Result

We now prove the following result

Theorem 3.1. Let p ≥ 2, let E be a 2 uniformly smooth and p uniformly convex real Banach space and let a mapping
Φ : E → E∗ be lipschitz, and strongly monotone such that Φ−1(0) ̸= ∅. For an arbitrary ({ξ1}, {ψ1}) ∈ E, we define
the sequences {ξn} and {ψn} by {

ψn+1 = J−1(Jξn − θnΦξn), n ≥ 0
ξn+1 = J−1(Jψn+1 − λnΦψn+1), n ≥ 0

(3.1)

where λn and θn are positive real number and J is the duality mapping of E. Letting (λn, θn) ∈ (0,Λp) where Λp > 0,
then ξn and ψn converges strongly to ξ∗, a unique solution of the equation Φξ = 0

i) λn + θn =
1

2
.

ii) lim
n→∞

λn = 0, lim
n→∞

θn =
1

2
.

iii)

∞∑
n=0

λn <∞.

iv) lim
n→∞

(λnkθnδ) = 0.
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Remark 3.1. Real sequences that satisfy conditions (i)-(iv) are λn = (2(n+ 1))−1 and θn = n(2(n+ 1))−1.

Proof . Letting L and k the Lipschitz and strongly monotone constants of A. The proof is in two steps.

Step 1 . We prove that {ξn} and {ψn} is bounded. The proof is by induction. Let ξ∗ ∈ Φ−1(0). Then there exists
r > 0 such that ϕ(ξ∗, ξ1) = r. Suppose that ϕ(ξ∗, ξn) = r for some n = 1. We prove that ϕ(ξ∗, ξn+1) = r.
By construction, ϕ(ξ∗, ξ1) = r. From the Lipschitz property on bounded sets of J−1 (Lemma 2.3) and the
boundedness of A, there exists a positive constant M1 and M2 such that

∥J−1(Jψn+1 − λnΦψn+1)− J−1(Jψn+1)∥ ≤ λnM1∥Φψn+1∥, ∀λn ∈ (0, 1), ξ ∈ E : ϕ(ξ∗, ξ) ≤ r (3.2)

∥J−1(Jξn − θnΦξn)− J−1(Jξn)∥ ≤ θnM2∥Φξn∥, ∀θn ∈ (0, 1), ξ ∈ E : ϕ(ξ∗, ξ) ≤ r (3.3)

Λp = min
{
1,

k

2M1L2
,

k

2M2L2

}
.

Now with lemma 2.3 and 3.1, we compute the following

ϕ(ξ∗, ξn+1) = ϕ(ξ∗, J−1(Jψn+1 − λnΦψn+1))

= V (ξ∗, Jψn+1 − λnΦψn+1)

≤ V (ξ∗, Jψn+1)− 2λn⟨J−1(Jψn+1 − λnΦψn+1)− ξ∗,Φψn+1 − Φξ∗⟩
= V (ξ∗, Jψn+1)− 2λn⟨ψn+1 − ξ∗,Φψn+1 − Φξ∗⟩

+2λn⟨ψn+1 − ξ∗,Φψn+1 − Φξ∗⟩ − 2λn⟨J−1(Jψn+1 − λnΦψn+1)− J−1(Jψn+1),Φψn+1 − Φξ∗⟩
≤ ϕ(ξ∗, ψn+1)− 2λnk∥ψn+1 − ξ∗∥

+2λn∥J−1(Jψn+1 − λnΦψn+1)− J−1(Jψn+1)∥∥Φψn+1 − Φξ∗∥.

Using the strong monotonicity, Lipschitz property of Φ, inequality 3.2 and definition of Λp

ϕ(ξ∗, ξn+1) ≤ ϕ(ξ∗, ψn+1)− 2λnk∥ψn+1 − ξ∗∥2 + 2λ2nM1L
2∥ψn+1 − ξ∗∥2

≤ ϕ(ξ∗, ψn+1)− λnk∥ψn+1 − ξ∗∥2. (3.4)

Similarly, we have

ϕ(ξ∗, ψn+1) = ϕ(ξ∗, J−1(Jξn − θnΦξn))

= V (ξ∗, Jξn − θnΦξn)

≤ V (ξ∗, Jξn)− 2θn⟨J−1(Jξn − θnΦξn)− ξ∗,Φξn − Φξ∗⟩
= V (ξ∗, Jξn)− 2θn⟨ξn − ξ∗,Φξn − Φξ∗⟩

+2θn⟨ξn − ξ∗,Φξn − Φξ∗⟩ − 2θn⟨J−1(Jξn)− θnΦξn − J−1(Jξn),Φξn − Φξ∗⟩
≤ ϕ(ξ∗, ξn)− 2θnk∥ξn − ξ∗∥

+2θn∥J−1(Jξn − θnΦξn+1)− J−1(Jξn)∥∥Φξn − Φξ∗∥.

Using the strong monotonicity, Lipschitz property of Φ, inequality 3.3 and definition of Λp

ϕ(ξ∗, ψn+1) ≤ ϕ(ξ∗, ξn)− 2θnk∥ξn − ξ∗∥2 + 2θ2nM2L
2∥ξn − ξ∗∥2

≤ ϕ(ξ∗, ξn)− θnk∥ξn − ξ∗∥2. (3.5)

Now substituting 3.5 in 3.4, we have

ϕ(ξ∗, ξn+1) ≤ ϕ(ξ∗, ξn)− θnk∥ξn − ξ∗∥2 − λnk∥ψn+1 − ξ∗∥2.

Using the fact that

∥ψn+1 − ξ∗∥2 = ∥J−1(Jξn − θnΦξn)− ξ∗∥2

≤ ∥J−1(Jξn)− J−1(Jξ∗)∥2 + ∥J−1(Jξ∗)− J−1(Jξn)∥2

+θn∥J−1Φξn∥2 + ∥J−1(Jξn)− ξ∗∥2 (3.6)
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Since J−1J = IE and letting δ = sup
{
∥J−1Φξn∥2

}
, we have the following estimate

∥ψn+1 − ξ∗∥2 ≤ θnδ + ∥ξn − ξ∗∥2.

Putting 3.7 into 3.6, gives

ϕ(ξ∗, ξn+1) ≤ ϕ(ξ∗, ξn)− θnk∥ξn − ξ∗∥2

− λnkθnδ − λnk∥ξn − ξ∗∥2

≤ ϕ(ξ∗, ξn)− (θnk + λnk)∥ξn − ξ∗∥2 − λnkθnδ

≤ ϕ(ξ∗, ξn)−
1

2
k∥ξn − ξ∗∥2 − λnkθnδ

≤ ϕ(ξ∗, ξn)−
1

2
k∥ξn − ξ∗∥2 < r.

Hence, by induction, {ξn} and {ψn} are bounded.

Step 2 We now prove that {ξn} and {ψn} converges strongly to ξ∗ ∈ Φ−1(0). With the same computation as above,
we have that the following

ϕ(ξ∗, ξn+1) ≤ ϕ(ξ∗, ξn)−
1

2
k∥ξn − ξ∗∥2 − λnkθnδ

which implies that limϕ(ξ∗, ξn) exists. Therefore,

0 ≤ lim
n→∞

(1
2
k∥ξn − ξ∗∥2

)
≤ lim

n→∞
ϕ(ξ∗, ξn)− lim

n→∞
ϕ(ξ∗, ξn+1)− lim

n→∞

(
λnkθnδ

)
= 0

Therefore {ξn} → ξ∗ and {ψn} → ξ∗ as n→ ∞.

□

Corollary 3.2. For E = Lp, 2 ≤ p < ∞, and Φ : E → E∗ be a Lipschitz, and strongly monotone mapping such that
Φ−1(0) ̸= ∅. For arbitrary (ξ1, ψ1) ∈ E, define the sequence {ξn} and {ψn} iteratively by{

ψn+1 = J−1(Jξn − θnΦξn), n ≥ 0
ξn+1 = J−1(Jψn+1 − λnΦψn+1), n ≥ 0

(3.7)

where λn and θn are positive real number and J is the duality mapping of E. Letting (λn, θn) ∈ (0, δp) where δp > 0,
then ξn and ψn converges strongly to ξ∗, a unique solution of the equation Φξ = 0.

Proof . Since E = Lp spaces, 2 ≤ p <∞, are 2−uniformly smooth and p−uniformly convex real Banach spaces, then
the proof follows from Theorem 3.1. □

4 Convex minimization problem

Now, we present a convex minimization problem for a convex function ∇ : E → R. The following results are well
known.

Remark 4.1. Let ∇ : E → R be a differentiable convex function and η∗ ∈ E, then the point η∗ is a minimizer of ∇
on E if and only if d∇(η∗) = 0.

Definition 4.2. A function ∇ : E → R is said to be strongly convex if there exists γ > 0 such that the following
condition holds:

∇(βξ + (1− β)ψ) ≤ β∇ξ + (1− β)∇ψ − γ∥ξ − ψ∥2 (4.1)

for all ξ, ψ ∈ E with ξ ̸= ψ and β ∈ (0, 1),

Lemma 4.3. Let E be normed linear space and ∇ : E → R a convex differentiable function. Suppose that ∇ is
strongly convex. Then the differential map d∇ : E → E∗ is strongly monotone, i.e., there exists k > 0 such that

⟨d∇ξ − d∇ψ, ξ − ψ⟩ ≥ k∥ξ − ψ∥2 ∀ ξ, ψ ∈ E. (4.2)
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Now we present the following result.

Theorem 4.4. Let d∇ : E∗ → E be a L-Lipschitz continuous and monotone mapping such that d∇−1(0) ̸= ∅. For
given ξ1, ψ1 ∈ E, define the sequence {ξn} and {ψn} as follows:{

ψn+1 = J−1(Jξn − θnd∇ξn), n ≥ 0
ξn+1 = J−1(Jψn+1 − λnd∇ψn+1), n ≥ 0.

(4.3)

where J is the normalized duality mapping from E into E∗ and the sequences {λn} and {θn}, are in the interval
[0, 1] satisfying assumptions (i) to (iv). Then ∇ has a unique minimizer ξ∗ ∈ E and there exists a positive real number

δp such that if
(
λn, θn

)
∈ (0, δp), the sequence {xn} and {yn} converges strongly to ξ∗.

Proof . From Remark 4.1 it follows that ∇ has a unique minimizer ξ∗ and is obtained by d∇(ξ∗) = 0. From Lemma
4.3 and using the fact that the differential mapping d∇ : E → E∗ is Lipschitz, considering the result of Theorem 3.1
we can complete the proof. □

Conclusion

In this paper, we proposed and analyzed the strong convergence theorem of two step size Krasnoselskii-type
algorithm introduced by Chidume et al.[6] and prove a strong convergence theorem to approximate the unique zero
of a Lipschitz strongly monotone mapping 2−uniformly smooth and p−uniformly convex real Banach space for p ≥ 2.
This class of Banach spaces contains all Lp-spaces, 2 ≤ p <∞. Then we apply our results to the convex minimization
problem. We also complemented and generalized previous worked been done under this setting.

References

[1] Y. Alber, Metric and generalized projection operator in Banach space: Properties and applications, Theory and
Applications of Nonlinear Operators of Accretive and Monotone Type (ed. A. G. Kartsatos), Marcel Dekker, New
York, 1996, pp. 15-50.

[2] Y. Alber and S. Guerre-Delabiere, On the projection methods for fixed point problems, Analysis (Munich) 21
(2001), no. 1, 17–39.

[3] Y. Alber and T. Ryazantseva, Nonlinear Ill Posed Problems of Monotone Type, Springer, London, UK, 2006.

[4] Y.B. El Yekheir, J.T. Mendy, T.M.M. Sow, and N. Djitte, Proximal point algorithms for fixed point problem and
convex minimization problem, Int. J. Math. Anal. 14 (2020), no. 1, 27–44.

[5] F.E. Browder, Nonlinear mappings of nonexpansive and accretive-type in Banach spaces, Bull. Amer. Math. Soc.
73 (1967), no. 6, 875–882.

[6] C.E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc.
Amer. Math. Soc. 99 (1987), no. 2, 283–288.

[7] C.E. Chidume, A. Adamu, and L.C. Okereke, A Krasnoselskii-type algorithm for approximating solutions of
variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal. 2 (2018), 203–218.

[8] C.E. Chidume, A.U. Bello, and B. Usman, Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz
maps in classical Banach spaces, SpringerPlus 4 (2015), 297.

[9] C.E. Chidume and M.O. Osilike, Iterative solution of nonlinear integral equations of Hammerstein-type, J. Niger.
Math. Soc. Appl. Anal. 11 (1992), 9–18.

[10] C.E. Chidume and M.O. Osilike, Iterative solutions of nonlinear accretive operator equations in arbitrary Banach
spaces, Nonlinear Anal. Theory Methods Appl. 36 (1999), no. 7, 863–872.

[11] S.Y. Cho, X. Qin, and L. Wang, Strong convergence of a splitting algorithm for treating monotone operators,
Fixed Point Theory Appl. 2014 (2014), 94.

[12] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its
Applications, 62, Springer, Dordrecht, 1990.



Two step size algorithms for strong convergence for a monotone operator in Banach spaces 225

[13] N. Djitte, J.T. Mendy, and T.M.M. Sow, Computation of zeros of monotone type mappings: on Chidume’s open
problem, J. Aust. Math. Soc. 108 (2020), no. 2, 278–288.

[14] S. Kamimura and W. Takahashi, Strong convergence of proximal-type algorithm in Banach space, SIAM J. Optim.
13 (2002), no. 3, 938–945.

[15] S. Khorasani and A. Adibi, Analytical solution of linear ordinary differential equations by differential transfer,
Elect. J. Diff. Equ. 79 (2003), 1–18.

[16] N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optim. 37 (1996),
no. 3, 239–252.

[17] B. Martinet, Regularisation d inequations variationnelles par approximations successives, Rech. Opér. 4 (1970),
154–158.

[18] J.T. Mendy, M. Sene, and N. Djitte, Algorithm for zeros of maximal monotone mappings in classical Banach
spaces, Int. J. Math. Anal. 11 (2017), no. 11, 551–570.

[19] J. Mendy and R. Shukla, Viscosity like implicit methods for zeros of monotone operators in Banach spaces,
Khayyam J. Math. 8 (2022), no. 1, 53–72.

[20] A. Moudifi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241 (2000), 46–55.

[21] T. Mustafa, Approximate analytical solution of the nonlinear system of differential equations having asymptotically
stable equilibrium, Filomat. 31 (2017), no. 9, 2633–2641.

[22] S. Reich, A weak convergence theorem for alternating methods with Bergman distance, A.G. Kartsatos, (ed.)
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and
Applied Mathematics, Vol. 178. New York: Dekker, 1996, pp. 313–318.

[23] S. Reich, Constructive techniques for accretive and monotone operators, Proc. Int. Conf. Appl. Nonlinear Anal.,
Univer. Texas at Arlington, Arlington, Texas, April 20-22, 1978, Appl. Nonlinear Anal., 1979, pp. 335–345.

[24] S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, J.
Numer. Funct. Anal. Optim. 31 (2010), no. 1, 22–44.

[25] R.T. Rockafellar, Monotone operators and the proximal point algorithm, Trans. Amer. Math. Soc. 194 (1970),
75–88.

[26] Y. Song and R. Chen, Strong convergence theorems on an iterative method for a family of finite non-expansive
mappings, Appl. Math. Comput. 180 (2006), 275–287.

[27] B.D. Stephen and H. Gareth, An inductive approximation to the solution of systems of nonlinear ordinary differ-
ential equations in pharmacokinetics-pharmacodynamics, J. Comp. Sci. Netw. 1 (2014), no. 4, 1000119.

[28] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[29] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers Inc,
Yokohama, 2000.

[30] W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math.
Anal. Appl. 104 (1984), no. 2, 546–553.

[31] Y. Tang, Strong convergence of new algorithm for monotone operator in Banach spaces, Numer. Funct. Anal.
Optim. 40 (2019), no. 12, 1426–1447.

[32] H. Zegeye and N. Shahzad, An algorithm for a common minimum-norm zero of a finite family of monotone
mappings in Banach spaces, J. Ineq. Appl. 2013 (2013), 556.


	Introduction
	Preliminaries
	Main Result
	Convex minimization problem

